
Dynamic Games in Transboundary Pollution Problems: An Air
Quality Approach

Pablo Calle Martín
Master in Economics

University of Barcelona

Advisors: Jesus Marín-Solano & Jorge Navas

June 20, 2017

Abstract

We address a problem of transboundary pollution from the perspective of air quality,
which enables us to modelize the welfare function of the countries as a product of the air
quality stock and their production. In this setting we analyse and compare Markovian opti-
mal policies under cooperation and under Stackelberg and Nash competition, studying also
the cases where one of the countries does not value the stock of air quality as an important
component to increase the welfare of its population. We show that in the Markovian Stack-
elberg equilibria the evolution of the air quality is better and that, regardless of their roles,
all the countries achieve a higher value of discounted welfare than in the Markov Perfect
Nash equilibria. The possibility of the leader of select the optimal strategy knowing how the
opponent will react works against him, leading him to obtain levels of welfare lower than
those obtained by the follower.
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1 Introduction

In Europe, emissions of many air pollutants have decreased substantially over the past decades,
resulting in improved air quality across the region. However, air pollutant concentrations are still
too high, and air quality problems persist. A significant proportion of European population lives
in areas where air quality standards are not reached: ozone, nitrogen dioxide and particulate
matter (PM) pollution pose serious health risks. Air quality enters into the social utility function
with a positive marginal utility. The important thing about air quality as a social problem is
that we frequently are not capable of exercising direct control over the desired level. Planning
becomes imperative. By ignoring the problem or by overreacting to it, enormous quantities of
resources are wasted.

From a pollution control point of view, air quality is known for being a common resource
pool that may suffer from the tragedy of the commons, i.e., is a resource threatened by excessive
exploitation, partly because of lack of cooperation among the agents that have common access
to it, because pollutants can move across countries. Consequently, the private exploitation of the
air quality induces inter-temporal production spillovers that prevent the maximization of value
derived from a high air quality level.

Within the framework of differential games, Nash and Stackelberg equilibria can be defined
in many different ways, depending on the assumptions imposed on the information available to
the players. By computing a nondegenerate Markovian equilibirum one makes the assumption
that the state variable can be observed and that the players condition their actions on these
observations. On the other hand, if a player uses an open-loop strategy, he either cannot observe
the state variable or he chooses to commit to a fixed time function. Regrading time-consistency
and subgame perfectness, different informational assumptions lead to different properties and
implications.

To interpret the property of time-consistency assume that, in equilibrium, each player de-
termines his action (his control) at every time following his optimal strategy, which depends on
the state variable he observes at that time. Although the control value may (and usually does)
change at time evolves, the rule he follows does not change. Now assume that at some time, the
players are allowed to reconsider their strategy choices. At that time the players find themselves
at the beginning of a subgame where the state has changed due to the equilibrium strategies. If
the initial strategies constitutes an equilibrium for the subgame, then the original equilibrium
is time-consistent. Every Markovian Nash equilibrium of a differential game is time-consistent.
Time consistency could be seen as a minimal requirement for the credibility of an equilibrium
strategy. If one player had an incentive to deviate from his strategy, then, the other players
would not believe his announcement in first place. Consequently, they would compute their own
strategies by taking into account the expected future deviation of that player, which, in general,
would lead to different strategies. In contrast to time consistency, subgame perfectness not only
requires that the initial strategies constitute an equilibrium for the subgame where the state
trajectory is generated by the equilibrium strategies, but that it is an equilibrium for all sub-
games. By construction, subgame perfectness of an equilibrium implies its time-consistency.

In the previous literature, the studies that characterize and contrast noncooperative and
cooperative strategies in transboundary pollution problems (TPP) usually follow the model
introduced by Van der Ploeg and de Zeeuw (1992) where the world is made by N identical
countries engaged in production activities that generate pollution S(t) which accumulates over
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time according to the dynamics

Ṡ(t) = α

N

n∑
i=1

yi − δS(t), S(0) = 0,

where yi(t) is the production rate of country i, i = 1, ..., N , at time t, S(t) is the stock of pollution,
δ ≥ 0 is the constant decay rate of the stock of pollution and α > 0 denotes the emission-output
ratio. Country i obtains profits from production, measured by a concave function B(yi), and
incurs a damage cost D(S) due to pollution, D′(S) > 0, D′′(S) ≥ 0. Each player i (i.e., the
government of each country i) maximizes the welfare function

Wi =
∫ ∞

0
e−rit(B(yi(t))−D(S(t)))dt,

subject to the pollution stock dynamics,where r > 0 is the social rate of discount. With this
setting, the authors analyse and compare the strategies under international coordination with
open-loop and feedback Nash equilibrium, finding that production and emission levels are lower
in the cooperative case, and open-loop equilibrium leads to lower pollution than in feedback
strategies. Other authors as Long (1992), also analyse an open-loop Stackelberg equilibrium
with the drawback that the solution is in general time inconsistent, and only make sense if the
leader can make a binding commitment. In the other hand, Dockner and Long (1993) analyse
feedback Nash equilibria along with the cooperative solution but assuming a linear-quadratic
structure of the differential game.

The open-loop Stackelberg equilibrium is in general time-inconsistent, thus it is not a plau-
sible equilibrium in situations where the agents cannot credibly commit to a fixed control path.
One of our main contributions is to obtain a nondegenerate Markovian Stackelberg equilibrium,
which is time-consistent. The analysis of such equilibrium in a differential game usually leads
to considerable technical difficulties and this is the reason why this type of equilibrium is sel-
dom analysed. The other main contribution is to provide a different point of view to analyse
transboundary pollution problems in differential games that can lead to a new type of charac-
terizations.

The paper is organized as follows. In Section 2, we present our model and we derive the
nondegenerate Markovian Stackelberg Equilibrium, the Markov Perfect Nash Equilibrium and
the Social optimum. Section 3 is devoted to analyse and compare the different equilibria from
the perspective of the countries. Finally, in Section 4, we conclude. All the equilibria derivations
are relegated to an appendix.

2 The Model
In contrast with the previous authors, we analyse the problem of pollution by the point of view
of the quality of the environment, specifically the air quality. As in the previous literature, the
production activities damage the air quality. Air quality have a positive effect on population
welfare while air pollutants released in one country may be transported in the atmosphere,
contributing to poor air quality elsewhere. Thus, we have a welfare function for each country
that depends on production and air quality Fi(yi, Q) where Q ≥ 0 denote the air quality level
and yi > 0 represents each countries i production1. We also assume that there exist a non-

1We do not consider explicit bounds in the controls or state. While this setting is more realistic, because of
technical difficulties we leave it for future work.
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linear decreasing relation between the pollution stock and the stock of air quality. Each country
maximizes the welfare in an infinite time horizon

Wi =
∫ ∞

0
e−ritFi(yi, Q)dt

where the discount rate ri > 0 for all country i, the use of air quality as the state variable
instead of pollution enables us to introduce the product between air quality and production
in the welfare function. Then, we use a function similar to that used by Cornes et al.(2001),
Fi(yi, Q) = ni(yi(t)βiQ)α where ni > 0 and βi > 0 (for all countries i) are parameters that
represent the size and the different relation between the production and the air quality level
in the welfare function respectively for each country and with 0 < α < 1/2, this assumption
implies that the marginal social welfare of the production, weighted with the air quality level, is
always positive. It allows us to derive the solutions for our Markov equilibria. Indeed Long and
Shinomura (1998) showed that objective functions that are homogenneous are relevant when
looking for Markov equilibria. The air quality dynamics is negatively affected by the production
of each country and have a positive recuperation rate which is greater for high levels of air
quality and lower for small stock levels, fact that reflects the warnings made by ecologists that
the regeneration of high polluted environments is less efficient,

Q̇(t) =
N∑
i=1
−niyi + kQ(t),

where k < 0 is the recuperation rate.

Model 1: When Air Quality Always Matters
In this paper we focus on the case with two players N = 2, and we compare the different results
in nondegenerate Markovian Stackelberg equilibrium (MSE), Markov perfect Nash equilibrium
(MPNE) and the Social optimum (or cooperative equilibrium), hence the game we will analyse
is

max
y1

W1 =
∫ ∞

0
e−r1tn1(y1(t)β1Q)αdt, (1)

max
y2

W2 =
∫ ∞

0
e−r2tn2(y2(t)β2Q)γdt, (2)

s.t. Q̇(t) = −n1y1 − n2y2 + kQ(t), Q(0) = Q0. (3)

2.1 Nondegenerate Markovian Stackelberg Equilibrium

We consider the case where player 2 is the leader and can announce to the follower the policy
rule she (player 2) will use throughout the game. The follower, taking this rule as given, seeks
to maximize his own welfare and finds an optimal policy that will depend on the leader’s policy.
Then the leader, knowing the follower’s reaction function chooses, among all possible decisions,
the one that maximizes her welfare. One way to solve this problem is to restrict the functional
form of the strategies among which she can choose. In our case, we restrict the possible leader’s
optimal strategy to be a linear function 2 of the state variable of the form φ2(Q) = bQ with

2Although the restriction to linear strategies could be a severe assumption, it can be justified from an economic
point of view because of being an easy rule to implement by policymakers.
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b > 0. Hence, the follower’s problem (player 1) is

max
y1

W1 =
∫ ∞

0
e−r1tn1(y1(t)β1Q)αdt,

s.t. Q̇(t) = −n1y1 − n2φ2(Q) + kQ(t), Q(0) = Q0.

For his problem the Hamilton-Jacobi-Bellman equation is

r1V1(Q) = max
y1

{
n1(y1β1Q)α + V ′1(Q)(−n1y1 − n2φ2(Q) + kQ)

}
. (4)

This yields the optimal follower’s production function depending on the air quality stock and
on the policy announced by the leader, i.e., the reaction function of the follower

y1(b) = r1 + 2α (n2b− k)
2 (1− α)n1

·Q (5)

We can undo the announce of the leader φ2(Q) = bQ and rewrite that reaction function as a
function of the leader’s optimal production

y1(b) = r1 − 2αk
2 (1− α)n1

·Q+ 2αn2
2(1− α)n1

· bQ = r1 − 2αk
2 (1− α)n1

·Q+ αn2
(1− α)n1

· φ2(Q)

The leader adopts the information about the follower’s reaction function and maximize her
welfare by choosing her optimal production y2(t), therefore her problem becomes

max
y2

W2 =
∫ ∞

0
e−r2tn1 (y2(t)β2Q)γ dt

s.t. Q̇(t) = −n1 ·
(

r1 − 2αk
2 (1− α)n1

·Q(t) + αn2
(1− α)n1

· y2

)
− n2y2 + kQ(t), Q(0) = Q0.

Solving it by the HJB equation

r2V2(Q) = max
y2

{
n2(y2β2Q)γ + V ′2(Q)

[
− r1 − 2k

2(1− α) ·Q−
n2

(1− α) · y2

]}
, (6)

yields
y2(Q) = r2(1− α) + r1γ − k2γ

2(1− γ)n2
·Q ≡ φ∗2(Q) (7)

and then, since y2(t) = bQ, this implies that

b = r2(1− α) + r1γ − 2γk
2(1− γ)n2

.

Hence, substituting it in the reaction function we obtain the follower’s optimal strategy as a
linear function of the stock of air quality

y1(Q) = r1(1− γ + γα) + r2α(1− α)− k2α
2(1− γ)(1− α)n1

·Q (8)

We can also obtain the value function for each player

V ∗1 (Q) =
(
β1
2

)α (r1(1− γ + γα) + r2α(1− α)− 2αk
(1− γ)(1− α)n1

)α−1
·Q2α (9)
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V ∗2 (Q) =
(
β2(1− α)

2

)γ (r2(1− α) + γr1 − 2γk
(1− α)(1− γ)n2

)γ−1
·Q2γ (10)

and the resulting time path of the state variable is

Q(t) = Q0 · exp
[
θS1 · t

]
where

θS1 = 2k − r1 − r2(1− α)
2(1− γ)(1− α) (11)

so that, depending on the recuperation rate and on the discount rates, we can have three different
scenarios.

• k > r1+r2(1−α)
2 : Air quality grows continuously.

• k = r1+r2(1−α)
2 : Air quality remains constant at the initial level Q0.

• k < r1+r2(1−α)
2 : Air quality decreases to along time.

2.2 Markov Perfect Nash Equilibrium

Now we analyse the case in which none of the players has an advantage, thus both countries
decide their optimal strategies φ∗1(Q) and φ∗2(Q) at the same time taking the other player’s
strategy as given to maximize (1) and (2) with the restriction (3). In order to obtain the optimal
strategies we solve the system of HJB equations for each player

r1V1(Q) = max
y1

{
n1(y1β1Q)α + V ′1(Q) [−n1y1 − n2φ2(Q) + kQ]

}
, (12)

r2V2(Q) = max
y2

{
n2(y2β2Q)γ + V ′2(Q) [−n1φ1(Q)− n2y2 + kQ]

}
(13)

that yields

y1(Q) = r1 (1− γ) + r2α− k2α
2 (1− γ − α)n1

·Q ≡ φ∗1(Q), (14)

y2(Q) = r2 (1− α) + r1γ − k2γ
2 (1− γ − α)n2

·Q ≡ φ∗2(Q), (15)

the value functions for the players

V ∗1 (Q) =
(
β1
2

)α (r1(1− γ) + r2α− 2αk
(1− γ − α)n1

)α−1
·Q2α, (16)

V ∗2 (Q) =
(
β2
2

)γ (r2(1− α) + γr1 − 2γk
(1− γ − α)n2

)γ−1
·Q2γ , (17)

and the optimal path of Q is
Q(t) = Q0 · exp

[
θN1 · t

]
,

where
θN1 = 2k − r1 − r2

2 (1− γ − α) . (18)
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As in the previous case, the air quality depends on the parameters α, γ, k, r1 and r2, but notice
that for all possible values of the parameters, θS1 > θN1 , i.e., air quality is higher under MPNE
competition than in the MSE equilibrium. In some way, the fact that the leader can choose their
strategy anticipating what the other country will do, make the leader to internalize through the
follower’s reaction function the indirect negative effect of her production on the air quality ,i.e.,
as we can see in the dynamics of the air quality in the MSE, the leader’s production effect on
air quality is higher than when countries only care about their direct pollution. Then, instead of
the leader reduce her production knowing that in this way, the follower will do the same, they
compete aggressively increasing the production trying to benefit from the good air quality as
long as it remains unpolluted.

2.3 Social Optimum

We assume in this section that there is a social planner who wants to maximize the discounted
sum of the social welfare of the two countries. This approach is the same than assuming some
type of agreement to cooperate and choose their optimal strategies jointly. Thus, the planner
chooses φ∗1(Q) and φ∗2(Q) to maximize

W = W1 +W2.

In order to solve analytically this problem we need to reduce the degree of asymmetry assuming
that γ = α and that both players have the same discount rate r1 = r2 = r, but the rest of
countries’ asymmetry still exist. In the case where r1 6= r2, we would have a problem of time
inconsistency as showed by De-Paz, Marín-Solano and Navas (2013). Then the problem to solve
is to maximize

W =
∫ ∞

0
e−rt [n1(y1(t)β1Q)α) + n2(y2(t)β2Q)γ ] dt,

subject to the equation (3). We use the HJB equation for the joint problem

rV (E) = max
y1(t),y2(t)

{n1(y1(t)β1Q)α+n2(y2(t)β2Q)γ+

+ V ′(E) [−n1y1(t)− n2y2(t) + kQ]},

(19)

that leads to the equilibrium where the optimal strategies as a linear function of the stock are

y1(Q) = β
α
α−1
1
2 · r − 2αk

(1− α)
(
β

α
α−1
1 n1 + β

α
α−1
2 n2

) ·Q, (20)

y2(Q) = β
α
α−1
2
2 · r − 2αk

(1− α)
(
β

α
α−1
1 n1 + β

α
α−1
2 n2

) ·Q, (21)

the value function of the coalition

V ∗(Q) =
(
β1β2

2

)α r − 2αk

(1− α)
(
β

α
α−1
1 n1 + β

α
α−1
2 n2

)

α−1

·Q2α, (22)
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and the time path of the state variable is

Q(t) = Q0 exp
[
θC1 · t

]
,

where
θC1 = 2k − r

2(1− α) . (23)

We can only compare this result with the ones obtained previously by doing the same assump-
tions we made at the beginning of this analysis, i.e., r1 = r2 = r and γ = α, by doing so, we
see that θC1 > θS1 > θN1 , hence under the same conditions (same parameter’s values) air quality
evolves better under cooperation than in competition in which case the MSE is better than the
MPNE. In cooperation countries internalize their production externalities and contaminate less,
benefiting both by the increase in air quality that increase their social welfare.

Model 2: When A Country Neglects The Air Quality Problem
In this section we go a step further, now we want to analyse the case in which one of the
countries does not value the air quality as an important component of their population’s welfare,
nonetheless his production function is affected by the stock of air quality because even in the
case that the government does not value the pollution adverse effects on population health, for
low air quality levels these health problems reduce the production. Then in the model we will
use in this section the players wish to maximize their respective social welfare

max
y1

W1 =
∫ ∞

0
e−r1tn1(y1β1Q)αdt, (24)

max
y2

W2 =
∫ ∞

0
e−r2tn2(y2)γdt, (25)

subject to the same equation (3) we used in the previous model. In the following sections we
begin with the MSE, notice that due to the asymmetry in the valuation or not of the stock of
air quality in the social welfare, we have to calculate separately the two cases of MSE depending
on which country is the leader and which one is the follower and we finish with the MPNE.
Because of the asymmetry introduced in this model we cannot obtain analytically the social
optimum strategies, but we can still use the social optimum solution of model 1 as a benchmark
to compare the different equilibriums.

2.4 Nondegenerate Markovian Stackelberg Equilibrium: The Leader Neglects

The first MSE we analyse is the case in which the country that values the air quality (player
1) is the follower. As we commented before, although player 2 does not value directly the air
quality stock, it affects her production and therefore when she has to choose among all possible
strategies, the optimal one will necessarily depend on the air quality stock. In this sense, as in
the previous model, we assume that the leader (player 2) announces her strategy as a linear
function of the state variable φ2(Q) = bQ with b > 0. Since the announce made by the leader
and the problem of the follower is the same than in model 1, the follower’s reaction function is
equal to (5), the reaction function calculated in the MSE of the previous model. And then the
leader’s problem becomes

max
y2

W2 =
∫ ∞

0
e−r2tn2(y2(t))γdt,
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s.t. ˙Q(t) = −n1 ·
(

r1 − 2αk
2 (1− α)n1

·Q(t) + αn2
(1− α)n1

· y2

)
− n2y2 + kQ(t), Q(0) = Q0.

This problem is similar to the one solved for model 1, the only difference is that now the objective
function does not depend explicitly on the air quality. We solve this problem following the same
approach used in the model 1, i.e., by the HJB equation

r2V2(Q) = max
y2
{n2(y2)γ + V ′2(Q)

[
− r1 − 2k

2(1− α) ·Q−
n2

(1− α) · y2

]
}, (26)

that yields
y2(Q) = 2r2(1− α) + r1γ − k2γ

2(1− γ)n2
·Q, (27)

and it implies
b = 2r2(1− α) + r1γ − 2γk

2(1− γ)n2
,

therefore the optimal strategy for the follower is

y1(Q) = r1(1− γ + γα) + 2r2α(1− α)− 2kα
2(1− γ)(1− α)n1

·Q, (28)

the value functions are

V ∗1 (Q) =
(
β1
2

)α (r1(1− γ + γα) + 2r2α(1− α)− 2αk
(1− γ)(1− α)n1

)α−1
·Q2α, (29)

V ∗2 (Q) = (1− α)γ
(2r2(1− α) + γr1 − 2γk

2(1− α)(1− γ)n2

)γ−1
·Qγ , (30)

and the resulting time path of the air quality stock is

Q(t) = Q0 · exp
[
θS1

2 · t
]
,

where
θS1

2 = 2k − r1 − 2r2(1− α)
2(1− γ)(1− α) . (31)

Comparing that result with (11),(18) and (23) we see that the evolution of air quality is always
worse than in the different scenarios analysed for model 1. The follower react in the same way
to the decision of the leader but in this case although the leader knows that her production
decision has a higher impact in the air quality evolution than in the previous Nash model, she
does not value directly the effect of the air quality on the population’s welfare and therefore
initially produce more than in the previous equilibriums, but this implies that the pollution is
also higher and the air quality evolution is worse.

2.5 Nondegenerate Markovian Stackelberg Equilibrium: The Leader Worries

In this section we analyse how the previous equilibrium is modified when the roles are changed,
now player 1 is the leader while player 2 is the follower. As in previous MSE analysis we assume
that the announce that the leader can do is restricted to linear functions of the state variable
φ1(Q) = bQ with b > 0. Hence the follower problem is to maximize (25) subject to the restriction

Q̇(t) = −n1φ1(Q)− n2y2 + kQ(t),
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whose HJB equation is

r2V2(Q) = max
y2(t)

{
n2(y2(t))γ + V ′2(Q) [−n1φ1(Q)− n2y2(t) + kQ]

}
, (32)

that yields the optimal strategy for player 2 as a function of the announce made by the leader,
i.e., the reaction function of the follower is

y2(b) = r2 + γ(n1b− k)
(1− γ)n2

·Q. (33)

As in the previous MSE, we can transform the follower’s reaction function into a function that
depends on the leader’s production

y2(b) = r2 − γk
(1− γ)n2

·Q+ γn1
(1− γ)n2

· bQ = r2 − γk
(1− γ)n2

·Q+ γn1
(1− γ)n2

· φ1(Q).

Hence, the Leader’s problem (player 1) becomes

max
y1

W1 =
∫ ∞

0
e−r1t (y1(t)β1Q)α dt,

s.t. Q̇(t) = −n1y1 − n2

[
r2 − γk

(1− γ)n2
·Q(t) + γn1

(1− γ)n2
· y1

]
+ kQ(t).

The HJB for this problem is

r1V1(Q) = max
y1

{
n1(y1β1Q)α + V ′1(Q)

[
−r2 − k

1− γ −
n1

1− γ · y1

]}
, (34)

that yields

y1(Q) = r1(1− γ) + 2r2α− 2αk
2(1− α)n1

·Q, (35)

and it implies

b = r1(1− γ) + 2r2α− 2αk
2(1− α)n1

,

which, introduced in the reaction function of the follower gives us his optimal strategy

y2(Q) = 2r2(1− α+ αγ) + r1γ(1− γ)− 2γk
2(1− α)(1− γ)n2

·Q, (36)

the value functions

V ∗1 (Q) =
(
β1(1− α)

2

)α (r1(1− γ) + 2r2α− 2αk
(1− γ)(1− α)n1

)α−1
·Q2α, (37)

V ∗2 (Q) =
(2r2(1− α+ αγ) + r1γ(1− γ)− 2γk

2(1− α)(1− γ)n2

)γ−1
·Qγ , (38)

and the optimal time path of the air quality stock

Q(t) = Q0 · exp
[
θS1

2 · t
]
,
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where
θS2

2 = 2k − r1(1− γ)− 2r2
2(1− α)(1− γ) . (39)

In this case the roles from the preceding equilibrium have changed, and the evolution of the
air quality is even worse, θS2

2 < θS1
2 , as long as γ < 2α, which we assume is satisfied, otherwise

the asymmetry between the countries would be very strong and it is a case that we will not
analyse. In this Equilibrium, since player 2 does not value directly the stock of air quality, her
reaction function is higher than when player 1 was the follower. Then the leader, that values
the air quality, reduce his production knowing that the follower will do the same, but he is no
able to offset the effect produced by the fact that the follower does not value directly the air
quality and the result is that the initial joint production is higher and the evolution of the state
variable is worse.

2.6 Markov Perfect Nash Equilibrium

We consider now the case in which both countries are in equal footing. Then to obtain the
MPNE we have to solve the system of HJB equations

r1V1(Q) = max
y1

{
n1(y1β1Q)α + V ′1(Q) [−n1y1 − n2φ2(Q) + kQ]

}
, (40)

r2V (Q) = max
y2

{
n2(y2)γ + V ′2(Q) [−n1φ1(Q)− n2y2 + kQ]

}
, (41)

that yields

y1(Q) = r1(1− γ) + 2r2α− 2αk
2(1− α− γ)n1

·Q ≡ φ∗1(Q), (42)

y2(Q) =
r2(1− α) + γ

2 r1 − γk
(1− α− γ)n2

·Q ≡ φ∗2(Q), (43)

the value functions

V ∗1 (Q) =
(
β1
2

)α (r1(1− γ) + 2r2α− 2αk
(1− γ − α)n1

)α−1
·Q2α, (44)

V ∗2 (Q) =
(2r2(1− α) + γr1 − 2γk

2(1− γ − α)n2

)γ−1
·Qγ , (45)

and the dynamic of the state variable

Q(t) = Q0 · exp
[
θN2 · t

]
,

where
θN2 = 2k − r1 − 2r2

2(1− α− γ) . (46)

In this last equilibrium the evolution of the state variable is the worst of all the equilibriums
analysed, as in the first MPNE, both countries compete aggressively by increasing their initial
productions and in addition, as player 2 does not value directly the air quality stock, her initial
production is even higher and then induces a faster pollution, and therefore a worse quality
evolution.
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3 Results
Until now we have focused in how the stock of air quality evolves depending on the type of
competition, and the concern or not about the air quality of the countries. Now we will anal-
yse and compare the different components of players’ behaviour with respect to stock of air
quality, their production and their value functions, i.e., the integral of their discounted utility
in equilibrium. Recall that the air quality changes along time in different ways depending on
the strategies adopted by the countries, therefore in this section we analyse and compare the
different reactions of the players to a given stock of air quality. For simplicity we assume a high
degree of symmetry between the players, and to obtain the following graphical representations
we set r1 = r2 = r = 0.05, k = 0.05, n1 = n2 = 1, β1 = β2 = 1 and γ = α = 0.25.

3.1 Model 1: When Air Quality Always Matters

In the first model all countries value the air quality stock as an important component of their
population’s welfare. In the initial analysis we saw that, from the air quality perspective, the
cooperative equilibrium Pareto dominates the other non-cooperative equilibria analysed among
which the MSE dominates the MPNE. Now we compare the results of these equilibriums from
the point of view of the countries.
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Figure 1: Model 1: Aggregate Value

Figure 1 shows that for larger values of the air quality stock, the aggregate welfare is higher.
It also shows that, for whatever level of air quality, the value of discounted aggregate welfare
is always higher under cooperation than in the MSE, which Pareto dominates the outcome of
the MPNE. Considering that, in cooperation, the two countries decide as if they were one, and
they internalize completely the externalities of their productions in terms of air quality loss. In
the case of the MSE, the leader internalize part of her externality by taking into account the
reaction function of the follower. And in the case of the MPNE, each country only cares about
the negative externality of his production on his own welfare. We reach the conclusion that the
more the agents care about the negative effect that their decisions have on the other country,



Dynamic Games in Transboundary Pollution Problems: An Air Quality Approach 13

the higher is the aggregate welfare. Jointly the two countries are better off when one of them is
the leader and the other is the follower than if both compete in equal footing.
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Figure 2: Model 1: Individual Value

In addition, Figure 2 shows that individually both are also better off in the MSE than in
the MPNE regardless of their roles. Although the welfare they obtain for a given level of air
quality is different depending on the roles they assume, being the leader who obtains a lower
welfare value. Hence both prefer to not compete in equal footing but none of them wants to be
the leader. This result is in accordance with other dynamic models such as Pohjola (1983).
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Figure 3: Model 1: Individual Production

Once we have compared the welfare outcomes, we analyse the individual strategies that
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produce these results, that is, the level of production each country chooses depending on the
stock of air quality. Recall that in this graphical analysis we take the level of air quality as
given, then the results obtained here do not take into account the different evolution of the state
variable along time. In Figure 3 we see that the relation of the production choice among the
three equilibria has changed totally in comparison to the relation in the welfare value analysis.
The production is higher in the MPNE than in MSE, and in the cooperative equilibrium is the
lowest, but in the case of the MSE the follower is who produces more, and that is the reason
why his welfare is higher than the leader’s.

3.2 Model 2: When a Country Neglects The Air Quality Problem

In this second model, one of the countries does not value the air quality in her welfare function.
From the air quality perspective, we saw that all the equilibria in model 1 Pareto dominate all
the second model equilibria, in which the two MSE obtain better outcomes than in the MPNE.
Furthermore, we found that when the country that does not value the level of air quality (player
2) is the leader, the evolution of the air quality stock is better than if she is the follower.
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Figure 4: Model 2: Aggregate Value

From the countries’ aggregate welfare perspective, Figure 4 shows the same relation we found
for the evolution of the air quality stock. The MSE where the leader does not value the air quality
(Stackelberg 1) yields higher aggregate welfare values than when the roles change, and both of
them Pareto dominate the MPNE.

Figure 5 shows that the welfare of both players is higher when they are the follower than
when they are the leader. Nonetheless, the welfare of player 1 is always higher than for the
player 2 and the higher the level of air quality, the higher the difference between the welfare of
the players.
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Figure 5: Model 2: Individual Value

In the MSE, through the reaction function, she (the leader) realizes that her production has
a negative indirect effect on her welfare. Then, her optimal strategy is to produce less than in
the MPNE, motivating the follower to reduce his production as well.
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Figure 6: Model 2: Individual Production

As we commented in the introduction, the players’ available information about the state
variable has an important role in the properties of the equilibria, but the difference between
Stackelberg and Nash competition is also the information that each player has about the other
player’s behaviour. In Nash competition none of the players knows how the other will behave and
both adapt their strategies observing how the state variable evolves. In contrast, in Stackelberg
competition the leader has information about the follower and therefore she can predict and
manipulate his behaviour by announcing her strategy in advance. In our model, we have seen
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that both (symmetric) countries are better off in the MSE than in the MPNE, although both
agents prefer to be the follower.

4 Conclusions
In this paper we have analysed the different strategic behaviour of the countries according to
different scenarios of competition or cooperation. We found that the Cooperative Solution Pareto
dominates all other equilibria from the perspective of the air quality evolution and from the
aggregate welfare valuation. If there is no social planner or countries cannot agree to cooperate,
a non-cooperative game is played, in which case, the MSE produces better outcomes for both
the air quality evolution, the aggregate and the individual welfare values than the MPNE. We
found that in the MSE both agents prefer to be the follower, it could imply that the game is in
a stalemate, i.e., in a position where neither agent wants to take the initiative and announce his
strategy first. However, in different economic context, either market power or political factors
determine natural leaders and followers. We also show that when one of the countries does not
value the stock of air quality, regardless of the type of competition the evolution of air quality gets
worse, and therefore the welfare of the country that still value the level of air quality decreases
drastically. In our analysis we have assumed total symmetry between the countries’ welfare
functions, but it would be interesting to analyse the countries strategies for different degrees of
asymmetry. For simplicity in the derivation of the equilibriums, we confined our analysis to linear
strategies, however by extending to non-linear strategies better outcomes could be achieved as
showed for the Stackelberg equilibrium by Shimomura and Xie (2008).

We have not addressed the possibility of regulation as an instrument to achieve the Social
optimum, or the possibility of transferable welfare which will make easier an agreement to achieve
a Pareto efficient equilibrium.

Appendix

A Model 1

Nondegenerate Markovian Stackelberg Equilibrium

To solve (4) first we solve the right hand side

∂ {· · · }
∂y1

= 0 ⇒ αn1y
α
1 β

α
1Q

α − V ′1(Q)n1 = 0,

y1 =
(
V ′1(Q)
αβα1Q

α

) 1
α−1

, (A.1)

then the HJB becomes

r1V1(Q) = n1

( V ′1(Q)
αβα1Q

α

) 1
α−1

β1Q

α +

+ V ′1(Q)

−n1

(
V ′1(Q)
αβα1Q

α

) 1
α−1
− n2bQ+ kQ

 ,
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r1V1(Q) = n1

(
V ′1(Q)
αβα1Q

α

) α
α−1

[βα1Qα (1− α)]− V ′1(Q) [n2bQ− kQ] .

Now we make the conjecture that the value function for player 1 is of the form

V1(Q) = AQ2α and therefore V ′1(Q) = 2αAQ2α−1,

where A is a constant.

r1AQ
2α = n1

(
2αAQ2α−1

αβα1Q
α

) α
α−1

[βα1Qα (1− α)]−

− 2αAQ2α−1 [n2bQ− kQ] ,

r1AQ
2α = n1

(2A
βα1

) α
α−1

βα1Q
2α (1− α)− 2αAQ2α [n2b− k] ,

n1

( 2
β1

) α
α−1

(1− α)A
1

α−1 = r1 + 2α (n2b− k) ,

A =
(
β1
2

)α (r1 + 2α (n2b− k)
n1 (1− α)

)α−1
, (A.2)

introducing the value of A in (A.1)

y1(t, b) =
(
V ′1(Q)
αβα1Q

α

) 1
α−1

=

2α
(
β1
2

)α ( r1+2α(n2b−k)
n1(1−α)

)α−1
Q2α−1

αβα1Q
α


1

α−1

,

and it yields the reaction function (5). In order to solve the HJB equation for player 2 we follow
the same procedure, first we solve the right hand side of the equation and we obtain the first
order condition

y2 =
(

V ′2(Q)
γβγ2Q

γ(1− α)

) 1
γ−1

, (A.3)

substituting it in (6) we get

r2V2(Q) = n2

(
V ′2(Q)

γβ2Q(1− α)

) γ
γ−1

(1− γ)− V ′2(Q) · r1 − 2k
2(1− α) ·Q.

Now we make a conjecture of the functional form of the player 2 value function

V2(Q) = BQ2γ ⇒ V ′2(Q) = 2γBQ2γ−1,

then, the previous equation becomes

r2BQ
2γ = n2

(
2γBQ2γ−1

γβ2Q(1− α)

) γ
γ−1

(1− γ)− 2γBQ2γ−1 · r1 − 2k
2(1− α) ·Q,

r2B = n2

( 2B
β2(1− α)

) γ
γ−1

(1− γ)− 2γB · r1 − 2k
2(1− α) ,
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r2 = n2

( 2
β2(1− α)

) γ
γ−1

(1− γ)B
1

γ−1 − 2γ · r1 − 2k
2(1− α) ,

and finally we obtain

B =
(
β2(1− α)

2

)γ (r2(1− α) + γr1 − 2γk
(1− α)(1− γ)n2

)γ−1
.

Substituting this value in the conjecture done for player 2 we obtain (9), which we use in the
first order condition of player 2 HJB equation and obtain (8), then we also have the value for b
and we can obtain the production for player 1, and his value function.

Markov Perfect Nash Equilibrium

Solving the right hand side of (12)

∂ {· · · }
∂y1

= 0 ⇒ αn1y
α
1 β

α
1Q

α − V ′1(Q) = 0,

y1 =
(
V ′1(Q)
αβα1Q

α

) 1
α−1
≡ φ1(Q). (A.4)

Similarly for (13) we get:

y2 =
(
V ′2(Q)
γβγ2Q

γ

) 1
γ−1
≡ φ2(Q), (A.5)

then, back in the HJB

r1V1(Q) = n1

( V ′1(Q)
αβα1Q

α

) 1
α−1

β1Q

α +

+ V ′1(Q)

−n1

(
V ′1(Q)
αβα1Q

α

) 1
α−1
− n2

(
V ′2(Q)
γβγ2Q

γ

) 1
γ−1

+ kQ

 ,

r1V1(Q) = n1

(
V ′1(Q)
αβα1Q

α

) α
α−1

[βα1Qα (1− α)]−

− V ′1(Q)

n2

(
V ′2(Q)
γβγ2Q

γ

) 1
γ−1
− kQ

 .
We make a guessing about the functional form of the value function for player 1 and player 2
respectively

V1(Q) = AQ2α and therefore V ′1(Q) = 2αAQ2α−1,

V2(Q) = BQ2γ and therefore V ′2(Q) = 2γBQ2γ−1.
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Inserting them into the previous equation we get:

r1AQ
2α = n1

(
2αAQ2α−1

αβα1Q
α

) α
α−1

[βα1Qα (1− α)]−

−αAQ2α−1

n2

(
2γBQ2γ−1

γβγ2Q
γ

) 1
γ−1

− kQ

 ,
r1AQ

2α = n1

(2A
βα1

) α
α−1

βα1Q
2α (1− α)− 2αAQ2α

[
n2

(2B
βγ2

) 1
γ−1
− k

]
,

r1A = n1

(2A
βα1

) α
α−1

βα1 (1− α)− 2αA
[
n2

(2B
βγ2

) 1
γ−1
− k

]
,

n1

( 2
β1

) α
α−1

(1− α)A
1

α−1 = r1 + 2α
[
n2

(2B
βγ2

) 1
γ−1
− k

]
,

A =
(
β1
2

)αr1 + 2α
[
n2
(

2B
βγ2

) 1
γ−1 − k

]
n1 (1− α)


α−1

.

Now, we go back to the HJB of player 2

r2V2(Q) = n2

( V ′2(Q)
γβγ2Q

γ

) 1
γ−1

β2Q

γ +

+ V ′2(Q)

−n1

(
V ′1(Q)
αβα1Q

α

) 1
α−1
− n2

(
V ′2(Q)
γβγ2Q

γ

) 1
γ−1

+ kQ

 ,
and following the same logic, with the guessing we have made previously we get:

r2B = n2

(2B
β2

) γ
γ−1

(1− γ)− 2γB
[
n1

(2A
βα1

) 1
α−1
− k

]
.

With the result of A:

r2B = n2

(2B
β2

) γ
γ−1

(1− γ − α
(1− α)

)
− γB

(
r1− 2k
(1− α)

)
,

n2

( 2
β2

) γ
γ−1

(1− γ − α
(1− α)

)
B

γ
γ−1 = r2 + γ

(
r1− 2k
(1− α)

)
,

B =
(
β2
2

)γ [r2 (1− α) + γr1 − 2γk
n2 (1− γ − α)

]γ−1
.

Then A becomes
A =

(
β1
2

)α (r1 (1− γ) + r2α− k2α
(1− γ − α)n1

)α−1
.
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And finally, substituting it in the value functions we obtain (16) and (17), and in (A.4) and
(A.5) we have that the optimal strategies for player 1 and for player 2 are respectively (14) and
(15).

Social Optimum

In (19) we obtain the first order conditions

∂ {· · · }
∂y1

= 0 ⇒ αn1y
α−1
1 βα1Q

α − n1V
′(E) = 0,

y1 =
(
V ′(E)
αβα1Q

α

) 1
α−1

, (A.6)

∂ {· · · }
∂y2

= 0 ⇒ γn2y
γ−1
2 βγ2Q

γ − n2V
′(E) = 0,

y2 =
(
V ′(E)
γβγ2Q

γ

) 1
γ−1

, (A.7)

rV (E) = n1

( V ′(E)
αβα1Q

α

) 1
α−1

β1Q

α + n2

( V ′(E)
γβγ2Q

γ

) 1
γ−1

β2Q

γ −

− V ′(E)

n1

(
V ′(E)
αβα1Q

α

) 1
α−1

+ n2

(
V ′(E)
γβγ2Q

γ

) 1
γ−1
− kQ

 ,
rV (E) = n1

(
V ′(E)
αβ1Q

) α
α−1

(1− α) + n2

(
V ′(E)
γβ2Q

) γ
γ−1

(1− γ) + V ′(E)kQ.

In order to solve analytically the cooperative problem we assume that γ = α, hence as in the
other problems we can make a guessing about the functional form of the value function

V (E) = AQ2α ⇒ V ′(E) = 2αAQ2α−1.

Then, from the previous equation we get

rAQ2α = n1

(
2αAQ2α−1

αβ1Q

) α
α−1

(1− α)+

+ n2

(
2αAQ2α−1

αβ2Q

) α
α−1

(1− α) + 2αAQ2α−1kQ,

rAQ2α =Q2αn1

(2A
β1

) α
α−1

(1− α)+

+ n2Q
2α
(2A
β2

) α
α−1

(1− α) + 2αAQ2αk,
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r = A
1

α−1

( 2
β1

) α
α−1

n1(1− α) +A
1

α−1

( 2
β2

) α
α−1

n2(1− α) + 2αk,

r = A
1

α−1 (1− α)2
α
α−1

[( 1
β1

) α
α−1

n1 +
( 1
β2

) α
α−1

n2

]
+ 2αk,

A =
(
β1β2

2

)α  r − 2αk

(1− α)
(
β

α
α−1
1 n1 + β

α
α−1
2 n2

)

α−1

.

With the value of A we obtain the value function of the coalition which substituting in (A.6)
and (A.7), we obtain (20) and (21), respectively.

B Model 2

Nondegenerate Markovian Stackelberg Equilibrium: The Leader Neglects

To solve (26) we obtain the first-order condition from the left hand side

∂ {...}
∂y2

= 0 ⇒ y2 =
(

V ′2(Q)
γ(1− α)

) 1
γ−1

, (B.1)

that substituting in the HJB equation yields

r2V2(Q) = n2

(
V ′2(Q)
γ(1− α)

) γ
γ−1
− (1− γ)− V ′2(Q) · r12k

2(1− α) ·Q.

Now we make the guessing about the functional form of V2(Q)

V2(Q) = BQγ ⇒ V ′2(Q) = γBQγ−1,

then, the previous equation becomes

r2BQ
γ = n2

(
γBQγ−1

γ(1− α)

) γ
γ−1

(1− γ)− γBQγ−1 · r2 − 2k
2(1− α) ·Q,

r2B = n2

(
B

(1− α)

) γ
γ−1

(1− γ)− γB · r2 − 2k
2(1− α) ,

r2 = n2

( 1
(1− α)

) γ
γ−1

(1− γ)B
1

γ−1 − γ · r2 − 2k
2(1− α) ,

and it yields

B = (1− α)γ
(
r22(1− α+ γr1 − 2γk

2(1− α)(1− γ)n2

)γ−1
,

that introduced in the conjecture for V2(Q) give us the value function for player 2, and then
we can obtain from (B.1) the production for the leader (27), which give us the value for b and
therefore substituting in the reaction function of the follower and on the value of A obtained in
(A.2) we get (28) and (29) respectively.
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Nondegenerate Markovian Stackelberg Equilibrium: The Leader Worries

Since the objective functions are asymmetric not only in the parameters but in the functional
form we cannot obtain the Stackelberg equilibrium when the roles change from the previous
analysis, then we have to repeat the process to reach the equilibrium when player 1 is the leader
and player 2 is the follower. From the right hand side of the follower HJB equation (32)

∂ {...}
∂y2

= 0 → n2γy
γ−1
2 − n2V

′
2(Q) = 0,

y2 =
(
V ′2(Q)
γ

) 1
γ − 1 , (B.2)

the HJB equation becomes

r2V (Q) = n2

(
V ′2(Q)
γ

) γ
γ−1

(1− γ)− V ′2(Q)Q(n1b− k).

As in the other MSE, we make a guessing about the functional form of the follower’s value
function

V2(Q) = BQγ ⇒ V ′2(Q = γBQγ−1,

then, the previous equation is

r2BQ
γ = n2

(
γBQγ−1

γ

) γ
γ−1

(1− γ)− γBQγ−1Q(n1b− k),

r2B = n2B
γ
γ−1 (1− γ)− γB(n1b− k),

r2 = n2B
1

γ−1 (1− γ)− γ(n1b− k),

and finally it yields

B =
(
r2 + γ(n1b− k)

(1− γ)n2

)γ−1
,

which depends not only on the parameter but also on the strategy of the leader through b. With
this value in (B.2) we obtain the reaction function of the follower (33). Now we solve the leader’s
problem, which in this case is the player 1. As we have done in the other analysis we begin with
the HJB equation of the leader (34) and we obtain the first-order condition

∂ {...}
∂y1

= 0 ⇒ αn1y
α−1
1 βα1Q

α − n1
1− γ V

′
1(Q) = 0,

y1 =
(

V ′1(Q)
αβα1Q

α(1− γ)

) 1
α−1

, (B.3)

the HJB equation becomes

r1V1(Q) = n1

(
V ′1(Q)

αβα1Q
α(1− γ)

) α
α−1

(1− α)− V ′1(Q) · r2 − k
(1− γ) ·Q,
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following the same logic we used in the other analysis we make a conjecture about the functional
form of the leader’s value function

V1(Q) = AQ2α ⇒ V ′1(Q) = 2αAQ2α−1,

then, the previous equation is

r1AQ
2α = n1

(
2αAQ2α−1

αβ1Q(1− γ)

) α
α−1

(1− α)− 2αAQ2α−1 · r2 − k
1− γ ·Q,

r1A = n1

( 2A
β1(1− γ)

) α
α−1

(1− α)− 2αA · r2 − k
1− γ ,

r1 = n1

( 2
β1(1− γ)

) α
α−1

(1− α)A
1

α−1 − 2α · r2 − k
1− γ ,

A =
(
β1(1− α)

2

)α (r1(1− γ) + 2αr2 − 2αk
(1− α)(1− γ)n1

)α−1
.

Once we have obtained the value of A we can obtain V1(Q), which introduced in (B.3) give us
(35) the optimal strategy for the leader, and then with the value of b we can also solve the
problem for the follower, obtaining (36) and (38).

Markov Perfect Nash Equilibrium

We begin solving the right hand side of (40)

∂ {...}
∂y1

= 0 ⇒ αn1β
α
1 y

α−1
1 Qα − n1V

′
1(Q) = 0,

y1 =
(
V ′1(Q)
αβα1Q

α

) 1
α−1
≡ φ1(Q), (B.4)

and of (41)
∂ {...}
∂y2

= 0 ⇒ γn2y
γ−1
2 − n2V

′
2(Q) = 0,

y2 =
(
V ′2(Q)
γ

) 1
γ−1
≡ φ2(Q). (B.5)

Back into the HJB equation for player 1 with (B.4) and (B.5) we have

r1V1(Q) = n1

(
V ′1(Q)
αβ1Q

) α
α−1

(1− α)−

− V ′1(Q)n2

(
V ′2(Q)
γ

) 1
γ−1

+ V ′1(Q)kQ.

As usual we make a conjecture about the functional form of the players’ value functions

V1(Q) = AQ2α ⇒ V ′1(Q) = 2αAQ2α−1,
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V2(Q) = BQγ ⇒ V ′2(Q) = γBQγ−1,

then the HJB equation for player 1 becomes

r1AQ
2α =n1

(
2αAQ2α−1

αβ1Q

) α
α−1

(1− α)−

− 2αAQ2α−1n2

(
γBQγ−1

γ

) 1
γ−1

+ 2αAQ2α−1kQ,

r1A = n1

(2A
β1

) α
α−1

(1− α)− 2αAn2B
1

γ−1 + 2αAk,

r1 = n1

( 2
β1

) α
α−1

A
1

α−1 (1− α)− 2αn2B
1

γ−1 + 2αk,

and finally it yields

A =
(
β1
2

)αr1 − 2αk + 2αn2B
1

γ−1

n1(1− α)

α−1

.

Now we have the value of A but it depends on B, to obtain the equilibrium we solve the HJB
equation for player 2 with (B.4) and (B.5)

r2V2(Q) = n2

(V ′2(Q)
γ

) 1
γ−1

γ +

+ V ′2(Q)

−n1

(
V ′1(Q)
αβα1Q

α

) 1
α−1
− n2

(
V ′2(Q)
γ

) 1
γ−1

+ kQ

 ,
and with the guessing we made previously

r2BQ
γ = n2

(γBQγ−1

γ

) 1
γ−1
γ +

+γBQγ−1

−n1

(
2αAQ2α−1

αβα1Q
α

) 1
α−1

− n2

(
γBQγ−1

γ

) 1
γ−1

+ kQ

 ,
r2BQ

γ = n2B
γ
γ−1Qγ(1− γ)− γBQγn1

(2A
βα1

) 1
α−1

+ γBQγk,

r2B = n2B
γ
γ−1 (1− γ)− γBn1

(2A
βα1

) 1
α−1

+ γBk,

introducing the value of A obtained before we have

r2B = n2B
γ
γ−1

(
1− γ − γα

1− α

)
− γBr1 − 2αk

2(1− α) + γBk,
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r2 = n2

(1− α− γ
1− α

)
B

1
γ−1 − γ r1 − 2αk

2(1− α) + γk,

and finally it yields

B =
(
r2(1− α) + γ

2 r1 − γk
(1− α− γ)n2

)γ−1

.

With this result we can obtain

A =
(
β1
2

)α [r1(1− γ) + 2r2α− 2kα
(1− α− γ)n1

]α−1
, (B.6)

and now, substituting in the guessing of the value functions we get (44) and (45), which with
the first-order conditions (B.4) and (B.5) we have (42) and (43) respectively.
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