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ABSTRACT  

We compute the cooperative and noncooperative solutions for sophisticated agents with 

Instantaneous-Gratification discounting in infinite horizon, as an extension of the work of 

Harris & Laibson (2013) and Zou, Chen & Wedge (2014). This research contributes to the 

existing literature to the extent that we compute multi-agent sophisticated solutions with 

Instantaneous-Gratification discounting in infinite time, and we place the results of the 

Instantaneous-Gratification model in context of the management of renewable natural 

resources. The conclusions withdrawn are applicable for resources of any kind and are 

suitable for settings where the temporal horizon is unlimited, but the duration of the 

short-run is large enough to dodge the future. The discussion of this work is useful for 

policy implementation towards exploitation of renewable natural resources under 

different forms of ownership.  
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1. INTRODUCTION 

This research analysis integrates the thesis of the Master in Economics, imparted at the 

University of Barcelona, for the period 2015-2017. Within the field of Behavioral 

Economics, the scope of the study here presented, is to derive the equilibrium behavior of 

economic agents in regard of the intertemporal choices they are called to make.  

Intertemporal Choice is the economic branch that appraises the impact that elections 

made by economic agents at different moments in time, have on their intertemporal 

welfare, contingent on the behavior they decided to follow. Overeating, smoking, working 

out, marriage or investing, are a few examples of a much broader spectrum of personal 

and business time-dependent resolutions with intertemporal effects. These decisions 

imply a present action, which has a flow of future outcomes and is associated with a 

current utility level. Eventually, any choice made today can trigger either positive 

(rewards) or negative (costs) future results.  

Mathematically, future outcomes are discounted to be evaluated in the present. 

Discounting is the methodology followed to determine the present value of forthcoming 

consequences, which are downgraded at some discount rate. Discount rates are 

representative of agents’ willingness to trade-off utility increments at different points in 

time (Thaler, 1981). Fisher (1930) said that individual discount rates are equal to interest 

rates because agents lend or borrow until their marginal rate of substitution, between 

current and future consumption, is equal to the interest rate.  

Time discounting is a major issue in economics. It is not only a concern of Behavioral 

Economics but also of the Economic Growth Theory. For decades, Growth Theory has used 

time-consistent preferences, represented by exponential constant discount rates (Barro, 

1999; Phelps & Pollak, 1968). Albeit, evidences are, that economic agents behave 

differently when they assess short- and long-run decisions, and that their preferences are 

not the same when they have to decide on rewards or costs (McClure, 2004). Therefore, 

we should debate whether exponential discounting is precise enough to epitomize human 

behavior and which alternatives could be approached.  

When at a certain moment 𝑡, let us say March 1st of 2017, an agent declares her preference 

for one action, but when, at 𝑡 + 1, let us say Abril 1st of 2017, the same individual is asked 

again, in regard of the same action, and she clearly chooses a different option, we say that 

her intertemporal preferences are time inconsistent. Exponential discounting does not 
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account for this inconsistency, as it assumes that all the consequences of present actions, 

are going to be discounted equally, no matter how far or close they are placed. 

When we turn to non-constant discounting, the most developed breakthrough is the 

hyperbolic discounting. Hyperbolic discounting mirrors the intertemporal inconsistency 

of economic agents in intertemporal decision models by considering that agents are more 

impatient for immediate rewards than for later ones. This impatience is mathematically 

elucidated in the discount function, by associating a different weight to present and future 

decisions (the 𝛽𝛿 preferences). Discrete-time hyperbolic discounting, illustrates the 

impatience individuals exhibit on their intertemporal preferences and has been used to 

study patterns of consumption, procrastination and addiction (Loewenstein & Thaler, 

1989; O ’Donoghue & Rabin, 1999; O’Donoghue & Rabin, 2000). 

The mainstream literature defines three profiles of behaviors regarding the time-

inconsistency of agent’s intertemporal preferences: precommitment, sophisticated or 

naive. The difference among these behaviors relies on the awareness of the individuals 

for the fact that their preferences may change over time, and their readiness to commit.  

An individual who is aware of her time-inconsistent preferences, may decide to 

precommit or to be sophisticated, adopting her conduct in each moment. The first, leads 

to precommitment behaviors, such as saving plans, marriage and credits. The agent 

establishes an agreement where deviations are not contemplated and, thus, his behavior 

becomes invariable over time.  

The sophisticated agent is aware of her weaknesses and decides in each moment what to 

do, taking into consideration that her preferences are going to change with time. At each 

moment, the agent reconsiders and redefines her strategy. The assumption of rationality 

underlying this behavior, together with its time consistency, makes of this solution the 

most studied in economics. The discussion below will hinge on the sophisticated agent. 

Finally, the naive agent continuously procrastinates costs and hurry rewards, under the 

general belief that her lack of commitment is transitory and that she will behave well in 

the future.  

In this paper, we are going to extend the analysis of a time-inconsistent discounting - the 

Instantaneous Gratification discounting (hereinafter IG), suggested by Harris & Laibson 

(2013) and further discussed by Zou, Chen, & Wedge (2014). The IG came to light in the 

field of nonexponential discounting, as an extension of the quasi-hyperbolic discounting, 
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presented by Laibson (1997) as an extension of the hyperbolic discounting. The IG 

assumes that the transition from the present to the future occurs at a constant hazard rate 

λ that in the IG approaches the limiting case λ→∞. 

Laibson (1997) analyzed the IG under a finite time-horizon framework for general assets 

and individual sophisticated agents, following Barro (1999) and Luttmer & Mariotti 

(2003). Here, we want to extend the analysis to an infinite horizon and for multi-agent 

cases. To do so, we are going to study the cooperative and noncooperative solutions. We 

believe the infinite time-horizon setting and the multiplayer approach, are consistent with 

environments such as the management of renewable natural resources where, for the 

characteristics of the resource, time-horizon restrictions are absent, and several owners 

can exploit the resource. This specification is relevant because we confine our research to 

cases in which the number of players is controlled, what is not possible to assure in 

common access resources. The analysis could easily be mimetic for any other resource of 

common property.  

When we approach the exploitation of natural resources, often, the interests of the 

exploiter, under a profit maximization standpoint, and what is the best Maximum 

Sustainable Yield (MSY) for the resource, go in opposite directions. The aim is to withdraw 

conclusions on the equilibrium exploitation path for resources in settings where the 

temporal horizon is unlimited, but the duration of the short-run is large enough to dodge 

the future. The equilibrium exploitation path must be aligned with the MSY which is 

clearly defined in Clark (1990): “based on a model of biological growth (…) assumes that 

at any given population below a certain level (…), a surplus production exists that can be 

harvested in perpetuity without altering the stock level.” The economic agents here 

considered can be countries, companies, groups of companies or individuals.  

The contribution of this research to the existing literature is twofold. From one side, the 

cooperative and noncooperative sophisticated solutions with Instantaneous-Gratification 

discounting in infinite time that we compute here, have not been analyzed yet, at least not 

that we are aware of. On the other side, we place the results of the Instantaneous-

Gratification model in context of the management of renewable natural resources. 

The next section provides an overview of the existing literature on intertemporal 

behaviors, specifically in what concerns time-inconsistent discounting. Section three 

introduces the methodology of this paper and section four presents some results for 

isoelastic utilities. Section five offers a discussion of the results obtained and section six 
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concludes. The appendices compile all the calculations that for a matter of organization 

and ease of reading were left out of the main text. 

2. LITERATURE REVIEW 

Often, from the economic theory perspective, the complex and developed behavior of 

human beings is reduced to the maximization of a utility function subjected to a budget 

constraint. However, the rationing behind the economic assumptions of stability 

underlying the economic analysis, more specifically, in the aim of behavioral economics, 

the use of time-consistent discounting to study the present value of future utilities, has 

been contended since ever (Samuelson, 1937; Phelps & Pollak, 1968; Barro, 1999). The 

difficulty relies on finding those mathematic expressions that accurately replicate human 

behavior which is normally trimmed for the purpose of maximizing a certain utility. 

Samuelson (1937) on “A note on Measurement of Utility” correctly abridges the economic 

analysis framework stating: “In order to arrive at the measurement of utility, essentially 

a subjective quantity, it is necessary to place the individual (homo economics) whose 

scale is south under certain ideal circumstances where his observable behavior will 

render open to unambiguous inference the form of the function which he is conceived of 

as maximizing.”, and he continues with the assumptions required for his research: “During 

any specified period of time, the individual behaves so as to maximize the sum of all future 

utilities (…) This is in the nature of an axiom, or definition, not subject to proof in any 

empirical sense, since any and all types of observable behavior might conceivably result 

from such an assumption.”, alluding to the inconsistency of the assumption of constant 

discount rates on his third assumption: “The individual discounts future utilities in some 

simple regular fashion which is known to us. (…) We assume in the first instance that the 

rate of discount of future utilities is a constant. This constant might of course be such that 

there is no time preference whatsoever, or even a premium on future utilities. This third 

assumption, unlike the previous two, is in the nature of a hypothesis, subject to refutation 

by the observable facts…”. Although, it is not until Strotz (1955) when the validity of 

constant discount rates is discussed and time-inconsistent preferences are analytically 

introduced: “Special attention should be given, I feel, to a discount function (…) which 

differs from the logarithmically linear one in that it “over-values” the more approximate 

satisfaction relative to the more distant ones.”. Strotz (1955) identified three behaviors  
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for agents with inconsistent time preferences: spendthrift, precommit and consistent. If 

the agent was aware of his problem of inconsistency, then she would be spendthrift; on 

the contrary, if the agent realized her problem, she would face two solutions – to 

precommit or to consistently plan her actions. For what Strotz declared: “My own 

supposition is that most of us are “born” with discount functions of the sort considered 

here [non-constant], that precommitment is only occasionally a feasible strategy (…) and 

that we are taught to plan consistently…”. 

Later on, Pollak (1968) revisited Strotz’s analysis and labeled the naive individuals as the 

agents that do not recognize the problem of future misbehavior and the sophisticated 

individuals as those that do. His major criticism of Strotz’s work was that for agents with 

inconsistent-intertemporal preferences, the conditions which determine the allocation of 

consumption and capital over time are different and while for the former, they coincide 

for the naive and the sophisticated behavior, the naive equilibrium path for the capital is 

different. Specifically, the difference between naive and sophisticated agents relies not on 

the way they allocate their consumption decisions, but on how they allocate their capital 

among their consumption decisions. 

Empirical evidence of Strotz’s research was reported on Thaler (1981) who dismissed 

Fisher (1930) and endorsed the idea that individuals’ decisions tend to vary with the size 

of the reward (whether it is a profit or a cost) and the length of the delay.  

O’Donoghue & Rabin (2000, 1999) pinpointed that time-consistent agents are self-

controlled whereas time-inconsistent individuals face self-control problems. When an 

individual procrastinates every period without acknowledgment of her self-control 

problems and still believes that she will, eventually, manage to pick her most preferred 

choice, she is designated as naive. If the agent procrastinates but she perceives her 

inconsistency and acknowledge the risk of misbehaving due to her self-control problems, 

she is characterized as sophisticated. When costs are immediate, naive will execute the 

activity the latest as possible, completing the task too late whilst she will perform the 

assignment too soon if costs are delayed. On the contrary, when costs are instantaneous, 

aware of the chances of misbehaving, the sophisticated will act the soonest as possible, 

whereas she will do the task too late if costs are delayed. More generally, agents tend to 

under-indulge in activities with immediate costs and delayed benefits, and over-indulge 

in activities with immediate rewards and delayed costs (O’Donoghue and Rabin, 2000). 
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3. METHODOLOGY 

In this section, we detail the notation that will be used throughout the paper and blueprint 

the problem we will solve in section 4. 

In what follows, we start from a discrete-time analysis as in Phelps & Pollak (1968) and 

adopt the structure suggested in Harris & Laibson (2013) and further examined in Zou, 

Chen, & Wedge (2014).  

In discrete time, the timeline is divided into several intervals, each of which are 

discounted at a specific discount rate. In continuous time, the intervals into which the 

timeline is divided are of such a tiny duration that the agent is continuously discounting 

at some discount rate. With quasi-hyperbolic time preferences, each interval of time is 

discounted at the rate 𝛽𝛿, with 𝛽, 𝛿 ∈ (0,1]. Present and future periods are discounted 

exponentially with the discount factor 𝛿 whilst future periods are further discounted with 

𝛽, which is a “present-biased” indicator.  

Following Harris & Laibson (2013), we denote 𝜏 as the length of the present, with 

𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛 representing the duration of each subsequent moment. 𝜏 is stochastic and 

is exponentially distributed with hazard rate 𝜆 ∈ [0,∞). If we let 𝜆 → 0, the present is 

suppressed and when 𝜆 → ∞, the future is neglected. The scope of this study is to outline 

the sophisticated solution, represented by the limiting case of 𝜆 → ∞ of the IG discounting, 

in continuous time, for an infinite horizon. 

We define 𝑡 as the initial moment, 𝑇 as the last period of the time horizon, here, 𝑇 → ∞, 

and 𝑠 is any moment in between 𝑡 and 𝑇, with 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 describing successive 

moments in the interval [𝑡,∞]. 

 

 

 

 

 

 

 

Let introduce 𝜌(𝑠), which represents the instantaneous discount rate at time 𝑠. The 

discount factor that evaluates a payoff at a certain moment, is exponentially discounted 

as  

𝑡 𝑇 → ∞ 

𝜏 

𝑠 

Figure 1: 𝑡 and 𝑇 are the initial and final moments of the 
timeline considered. 𝜏 represents the duration of the 
current moment which lasts from 𝑡 to 𝑠, and is to be 
evaluated at 𝑡.  
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𝜃(𝑠 − 𝑡) = {
𝑒−∫ 𝜌(𝑧−𝑡) 𝑑𝑧

𝑠
𝑡 , (s − t) ≤ τ

𝛽𝑒−∫ 𝜌(𝑧−𝑡) 𝑑𝑧
𝑠
𝑡 , (s − t) > τ

 , 

in particular, 𝜌(𝑠) = 𝜌, if 𝑠 ≤ 𝜏.  

Harris & Laibson (2013) introduced a new model of time preferences: the Instantaneous-

Gratification model, and developed their research for one consumer who had a stock of 

financial wealth and received a flow of labor income. Zou, Chen, & Wedge (2014) 

incorporated the IG preferences into the classical model of Merton (1971, 1969) with 

constant relative risk aversion (CRRA), in finite horizon. Here, we interpret the IG model 

under the framework of the management of renewable natural resources and compute 

the sophisticated solution in infinite horizon for one and several agents. These agents can 

be thought of as individuals, companies, institutions, governments or countries, who 

oversee a certain resource that replenishes over time by some natural process, such as 

forests, fisheries or agriculture.  

Once the individual solutions are achieved, we will analyze the cooperative and 

noncooperative feedback solutions.  

We designate 𝐽 as the net payoff of the agent, so that, the functional to be maximized in 

the one-agent infinite-time problem, is 

 
𝐽 =∫ 𝑒−𝜌(𝑠−𝑡)𝑢(𝑐(𝑠))𝑑𝑠

𝑡+𝜏

𝑡

+ 𝛽∫ 𝑒−𝜌(𝑠−𝑡)𝑢(𝑐(𝑠))𝑑𝑠 
∞

𝑡+𝜏

. 
(1) 

Let 𝑐(𝑠) be the equilibrium control rule and 𝑤(𝑠) the state trajectory of the problem. Then, 

𝑢(𝑐, 𝑤) is the stream of payoffs obtained from applying the control 𝑐, given a state 𝑤 at 

any moment 𝑠, 𝑡 ≤ 𝑠 ≤ 𝑇. Furthermore, 𝑐(𝑠) = 𝜙(𝑤(𝑠), 𝑠),  where 𝑐∗(𝑠) = 𝜙(𝑤(𝑠), 𝑠) is 

the equilibrium strategy. The present-biased indicator, 𝛽, embodies a measure of how 

intense the resource is exploited in the short-run.  

At any time 𝑡 ≥ 0 the resource owner extracts a certain amount of the resource stock, 

𝑐(𝑠) > 0 and the resource refills at a rate 𝑟 > 0. Hence, the dynamics of the resource are 

 𝑤̇ = 𝑟𝑤 − 𝑐 . (2) 

Designate 𝑉(𝑤) as the value function: 

 
𝑉(𝑤) = ∫ 𝜃(𝑠 − 𝑡) 𝑢(𝑐∗, 𝑤)

∞

𝑡

 𝑑𝑠 . 
(3) 

Finally, the Dynamic Programing Equation (henceforward DPE) for the single-agent 

problem is: 

 𝐾(𝑤) + 𝜌𝑉(𝑤) = max
𝑐
{𝑢(𝑐, 𝑤) + 𝑉′𝑔(𝑐, 𝑤)} , (4) 
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where  

 
𝐾(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[𝑢(𝑐∗(𝑠; 𝑤))]𝑑𝑠

∞

𝑡

] , 
(5) 

and 𝑔(𝑐, 𝑤) is the function that describes the equation of motion, 
𝑑𝑤

𝑑𝑡
= 𝑤̇ = 𝑔(𝑐, 𝑤).  

The problem above defined, first yields the result for the case of the stochastic hyperbolic 

discounting1. The solution for the IG discounting is retrieved by taking 𝜆 → ∞ on the 

stochastic-hyperbolic discounting result. 

In the multi-agent problem, agents can exploit the resource together or separately. For 

instance, think of a farm which is exploited by several farmers, for some, it might be more 

important to extract as much as possible in the current season while for others, it could 

be better to not surpass a certain level of extraction and assure that the field gets ready 

for the next harvest.  

3.1. The Cooperative case 

In the cooperative game, players joint strengths to exploit the resource. Therefore, they 

agree on personal parameters, such that, the duration of the present, 𝜏, and the weight of 

future harvest, implied by 𝛽. 

Let 𝐽𝐶 = 𝜁𝐽1 + 𝛾𝐽2, with 𝜁, 𝛾 ≥ 0. If we assume 𝜁 = 𝛾 = 1, the net payoff of the resource, is 

expressed as: 

 
𝐽1 + 𝐽2 = 𝐽

𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏

𝑡

[𝑢1(𝑐1(𝑠)) + 𝑢2(𝑐2(𝑠))] 𝑑𝑠 

+𝛽∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏

[𝑢1(𝑐1(𝑠)) + 𝑢2(𝑐2(𝑠))] 𝑑𝑠 , 
(6) 

contingent to the dynamics  

 𝑤̇ = 𝑟𝑤 − 𝑐1 − 𝑐2 . (7) 

The cooperative value function is 𝑉1 = 𝑉2 = 𝑉; 𝑉
𝐶 = 2𝑉, and the DPE is defined as 

 𝜌𝑉𝐶(𝑤) + 𝐾𝐶(𝑤) = max
𝑐1,𝑐2

[[𝑢1(𝑐1) + 𝑢2(𝑐2)]+𝑉′
𝐶(𝑤)(𝑟𝑤 − 𝑐1 − 𝑐2)] , (8) 

where, 𝑉𝑐′, represents the value of the coalition between the agents, and 𝐾(𝑤) is 

expressed as 

 
𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[𝑢1(𝑐1

∗) + 𝑢2(𝑐2
∗)]𝑑𝑠

∞

𝑡

] . 
(9) 

                                                           
1 See appendices for this result 
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In general, in the cooperative case with N agents, the problem to solve is: 

 
∑𝐽𝑖

𝑁

𝑖=1

= 𝐽𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏

𝑡

∑𝑢𝑖(𝑐𝑖(𝑠))

𝑁

𝑖=1

 𝑑𝑠 + 𝛽∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏

∑𝑢𝑖(𝑐𝑖(𝑠))

𝑁

𝑖=1

 𝑑𝑠 , 
(10) 

subject to,  

 
𝑤̇ = 𝑟𝑤 −∑𝑐𝑖

𝑁

𝑖=1

 . 
(11) 

The value function is 𝑉𝑖 = 𝑉𝑗 = ⋯ = 𝑉𝑁 = 𝑉; 𝑉
𝐶 = 𝑁𝑉, with the following DPE: 

 
𝜌𝑉𝐶(𝑤) + 𝐾𝐶(𝑤) = max

𝑐1,𝑐2,…,𝑐𝑛
[∑𝑢𝑖(𝑐𝑖)

𝑁

𝑖=1

+ 𝑉′𝐶(𝑤)(𝑟𝑤 −∑𝑐𝑖

𝑁

𝑖=1

)] , 
(12) 

where 

 
𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)∑𝑢𝑖(𝑐𝑖

∗)

𝑁

𝑖=1

𝑑𝑠
∞

𝑡

] . 
(13) 

When the players are symmetric, meaning that 𝑢1 = 𝑢2 = ⋯ = 𝑢𝑁 = 𝑢, the problem is 

equivalent to: 

i. 𝑁𝐽𝑖 = 𝐽
𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)

𝑡+𝜏

𝑡

𝑁𝑢(𝑐(𝑠)) 𝑑𝑠 + 𝛽∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏

𝑁𝑢(𝑐(𝑠)) 𝑑𝑠 ; (14) 

ii. 𝑤̇ = 𝑟𝑤 − 𝑁𝑐 ; (15) 

iii. 𝜌𝑉𝐶(𝑤) + 𝐾𝐶(𝑤) = max
𝑐
[𝑁𝑢(𝑐) + 𝑉′𝐶(𝑤)(𝑟𝑤 − 𝑁𝑐)] ; (16) 

iv. 𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑁𝑢(𝑐∗)𝑑𝑠
∞

𝑡

] . (17) 

3.2. The Noncooperative Solution 

In the noncooperative game, the agents play independently and their strategies of 

extraction are unknown. Each player will maximize the following functional: 

 
𝐽𝑖 = 𝐽

𝑁𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏𝑖

𝑡

𝑢𝑖(𝑐𝑖(𝑠)) 𝑑𝑠 + 𝛽𝑖∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏𝑖

𝑢𝑖(𝑐𝑖(𝑠)) 𝑑𝑠, 
(18) 

with 𝑖 = 1,2, . . , 𝑁. The dynamics of the model are 

 
𝑤̇ = 𝑟𝑤 − 𝑐𝑖 −∑𝜙𝑗(𝑤)

𝑁

𝑗=1

, 𝑖, 𝑗 = 1,2, … ,𝑁;  𝑖 ≠ 𝑗 . 
(19) 
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The DPE is:  

 

𝜌𝑉𝑖(𝑤) + 𝐾𝑖(𝑤) = max
𝑐𝑖
[𝑢𝑖(𝑐𝑖)+𝑉𝑖

′𝑁𝐶(𝑤)(𝑟𝑤 − 𝑐𝑖 −∑𝜙𝑗(𝑤)

𝑁

𝑗=1

 )] , 

(20) 

with 𝑖, 𝑗 = 1,2, … , 𝑁;  𝑖 ≠ 𝑗. Where,  

 
𝐾𝑖(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑢𝑖(𝑐𝑖

∗)𝑑𝑠
∞

𝑡

] , 𝑖 = 1,2, . . , 𝑁 . 
(21) 

When the players are symmetric, 𝑢1 = 𝑢2 = ⋯ = 𝑢𝑁 = 𝑢, the problem is equivalent to: 

i. 𝐽𝑖 = 𝐽
𝑁𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)

𝑡+𝜏𝑖

𝑡

𝑢(𝑐(𝑠)) 𝑑𝑠 + 𝛽𝑖∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏𝑖

𝑢(𝑐(𝑠)) 𝑑𝑠 (22) 

ii. 𝑤̇ = 𝑟𝑤 − 𝑁𝑐 (23) 

iii. 𝜌𝑉𝑖
𝑁𝐶(𝑤) + 𝐾𝑖

𝑁𝐶(𝑤) = max
𝑐
[𝑢(𝑐)+𝑉𝑖′

𝑁𝐶(𝑤)(𝑟𝑤 − 𝑁𝑐)], (24) 

iv. 𝐾𝑖
𝑁𝐶(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑢(𝑐∗)𝑑𝑠

∞

𝑡

] (25) 

In the upcoming section, we will solve, analytically, the one-agent and the symmetric 

cooperative and noncooperative N-agent problems introduced up to this point.  

4. RESULTS 

To illustrate the results, we will use isoelastic utilities of the form: 

 

𝑢(𝑐) = {

ln 𝑐(𝑡) , 𝑏 = 1

𝑐1−𝑏

1 − 𝑏
, 𝑏 ≠ 1

 , 
(26.1) 

(26.2) 

as in Harris & Laibson (2013) and Zou, Chen, & Wedge (2014), where 
1

𝑏
 is the 

intertemporal elasticity of substitution. For a matter of simplicity, we narrow our analysis 

to the symmetric N-agent cases. To avoid burdening the reader with the calculations, we 

present them in the appendix. This section is subdivided into two major sections. In the 

first part, we present the results for the case of the logarithmic utility described by 

equation (26.1) and in section 4.2 we show the results for the power utility featured by 

(26.2). 
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4.1. Logarithmic Utility 

Based on the form of the utility function, the general proposal for the value function is: 

 𝑉𝑖(𝑤) = 𝐴𝑖 ln(𝑤) + 𝐵𝑖 , 𝑖 = 1, 2, … ,𝑁. (27) 

From where it follows that  

 
𝑉𝑖
′(𝑤) =

𝐴𝑖
𝑤
 , 𝑖 = 1, 2, … ,𝑁. (28) 

4.1.1. Single Agent 

Equation (1) is to be maximized as  

 
max
𝑐
∫ 𝑒−𝜌(𝑠−𝑡) ln 𝑐
𝑡+𝜏

𝑡

+ 𝛽∫ 𝑒−𝜌(𝑠−𝑡) ln 𝑐 𝑑𝑠 ,
∞

𝑡+𝜏

 
(29) 

subject to: 

 𝑤̇ = 𝑟𝑤 − 𝑐 . (30) 

The DPE equation is   

 𝜌𝑉(𝑤) + 𝐾(𝑤) = max
𝑐
[ln 𝑐 + 𝑉′(𝑤)(𝑟𝑤 − 𝑐)] ,  (31) 

where, 

 
𝐾(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln 𝑐 𝑑𝑠

∞

𝑡

] . 
(32) 

After the calculations enclosed in appendix I, we arrive to proposition 1. 

Proposition 1 The sophisticated agent with logarithmic utility and instantaneous-

gratification discounting is characterized by the following results: 

i. Equilibrium extraction path 

𝑐∗ =
𝜌

𝛽
𝑤0 𝑒

(𝑟−
𝜌
𝛽
)𝑡
 ; 

(33) 

ii. Consistent stock-level trajectory  

𝑤(𝑡) = 𝑤0 𝑒
(𝑟−

𝜌
𝛽
)𝑡
 . 

(34) 
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4.1.2. Several Agents 

A. The cooperative case 

We will now illustrate the N-agent cooperative case. We assume the agents are symmetric.  

Equation (14) is expressed as 

 
𝑁𝐽𝑖 = 𝐽

𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏

𝑡

[𝑁 ln 𝑐] 𝑑𝑠 + 𝛽∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏

[𝑁 ln 𝑐] 𝑑𝑠 , 
(35) 

constrained to the resource dynamics, which are defined as 

 𝑤̇ = 𝑟𝑤 − 𝑁𝑐 . (36) 

The DPE is 

 𝜌𝑉𝐶(𝑤) + 𝐾𝐶(𝑤) = max
𝑐
[[𝑁 ln 𝑐]+𝑉𝐶′(𝑤)(𝑟𝑤 − 𝑁𝑐)] , (37) 

where, 

 
𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[ln 𝑐𝐶

∗
]𝑑𝑠

∞

𝑡

] 
(38) 

With the inherent calculations that can be verified in appendix II, we come to the second 

proposition.  

Proposition 2 The sophisticated cooperative solution for symmetric agents with 

logarithmic utility and instantaneous-gratification discounting is characterized by the 

following results: 

i. Equilibrium extraction path 

𝑐𝐶
∗
=
𝜌𝑤0𝑒

(𝑟−
𝜌𝑁

𝛽−1+𝑁
)𝑡

𝛽 − 1 + 𝑁
 ; 

(39) 

ii. Consistent stock-level trajectory  

𝑤(𝑡) = 𝑤0𝑒
(𝑟−

𝜌𝑁
𝛽−1+𝑁

)𝑡
 . 

(40) 
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B. The Noncooperative case 

Each agent will maximize his own objective,  contingent to the extraction of 

the other players.  Equation (22) is defined as  

 
𝐽𝑖 = 𝐽

𝑁𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏𝑖

𝑡

ln 𝑐  𝑑𝑠 + 𝛽𝑖∫ 𝑒−𝜌(𝑠−𝑡)
∞

𝑡+𝜏𝑖

ln 𝑐  𝑑𝑠 , 
(41) 

subject to the dynamics of the resource defined by (23) as  

 𝑤̇ = 𝑟𝑤 − 𝑁𝑐 . (42) 

The DPE equation is 

 𝜌𝑉𝑖
𝑁𝐶(𝑤) + 𝐾𝑖

𝑁𝐶(𝑤) = max
𝑐
[ln 𝑐 + 𝑉𝑖

𝑁𝐶′(𝑤)(𝑟𝑤 − 𝑁𝑐)] , (43) 

where, 

 
𝐾𝑖
𝑁𝐶(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln 𝑐∗ 𝑑𝑠

∞

𝑡

] . 
(44) 

With the inherent calculations that can be verified in appendix III, we get to the following 

Proposition 3 The sophisticated noncooperative solution for symmetric agents with 

logarithmic utility and instantaneous-gratification discounting is characterized by the 

following results: 

i. Equilibrium extraction path 

𝑐𝑁𝐶
∗
=
𝜌𝑤0𝑒

(𝑟−
𝜌𝑁

𝛽𝑖−1+𝑁
)𝑡

𝛽𝑖

∗

 ; 
(45) 

ii. Consistent stock-level trajectory  

𝑤𝑁𝐶(𝑡) = 𝑤0𝑒
(𝑟−

𝜌𝑁
𝛽𝑖
)𝑡
 . 

(46) 

4.2. Power Utility 

Based on the form of the utility function, the general proposal for the value function is: 

 
𝑉𝑖(𝑤) = ℎ𝑖

𝑤(𝑡)1−𝑏𝑖

1 − 𝑏𝑖
 , 𝑖 = 1, 2, … ,𝑁. 

(47) 

From where it follows that  

 𝑉𝑖
′(𝑤) = ℎ𝑖𝑤(𝑡)

−𝑏𝑖 , 𝑖 = 1, 2, … ,𝑁. (48) 
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4.2.1. Single Agent 

Equation (1) is to be maximized as  

 
max
𝑐
∫ 𝑒−𝜌(𝑠−𝑡)

𝑐1−𝑏

1 − 𝑏
  

𝑡+𝜏

𝑡

+ 𝛽∫ 𝑒−𝜌(𝑠−𝑡)
𝑐1−𝑏

1 − 𝑏
 𝑑𝑠 ,

∞

𝑡+𝜏

 
(49) 

subject to: 

 𝑤̇ = 𝑟𝑤 − 𝑐 . (50) 

The DPE equation is  

 
𝜌𝑉(𝑤) + 𝐾(𝑤) = max

𝑐
[
𝑐1−𝑏

1 − 𝑏
+ 𝑉′(𝑤)(𝑟𝑤 − 𝑐)] , (51) 

where, 

 
𝐾(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

𝑐∗1−𝑏

1 − 𝑏
𝑑𝑠

∞

𝑡

]. 
(52) 

Through the calculations shown in appendix IV, we arrive to  

Proposition 4 The sophisticated agent with power utility and instantaneous-

gratification discounting is characterized by the following results: 

i. Equilibrium extraction path 

𝑐∗ =
(1 − 𝑏)𝑟 − 𝜌

1 − 𝛽 − 𝑏
 𝑤0 𝑒

(𝑟−
(1−𝑏)𝑟−𝜌
1−𝛽−𝑏

)𝑡
 ; 

(53) 

ii. Consistent stock-level trajectory  

𝑤(𝑡) = 𝑤0 𝑒
(𝑟−

(1−𝑏)𝑟−𝜌
1−𝛽−𝑏

)𝑡
 . 

(54) 

4.2.2. Several Agents 

A. The Cooperative Solution 

We will now illustrate the N-agent cooperative case. We assume symmetry among agents.  

Equation (14) is expressed as 

 
𝑁𝐽𝑖 = 𝐽

𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏

𝑡

[𝑁
𝑐1−𝑏

1 − 𝑏
]  𝑑𝑠 + 𝛽∫ 𝑒−𝜌(𝑠−𝑡)

∞

𝑡+𝜏

[𝑁
𝑐1−𝑏

1 − 𝑏
]  𝑑𝑠 , 

(55) 

constrained to the resource dynamics, which are defined as 

 𝑤̇ = 𝑟𝑤(𝑡) − 𝑁 𝑐(𝑡) . (56) 

The DPE is 
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𝜌𝑉𝐶(𝑤) + 𝐾𝐶(𝑤) = max

𝑐
[[𝑁

𝑐1−𝑏

1 − 𝑏
]+𝑉′𝐶(𝑤)(𝑟𝑤 − 𝑁 𝑐)] , 

(57) 

where,  

 
𝐾𝐶(𝑤)  = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) [

𝑐∗1−𝑏

1 − 𝑏
] 𝑑𝑠

∞

𝑡

] 
(58) 

With the inherent calculations that can be verified in appendix V, we come to the fifth 

proposition. 

Proposition 5 The sophisticated cooperative solution for symmetric agents with 

power utility and instantaneous-gratification discounting is characterized by the 

following results: 

i. Equilibrium extraction path 

𝑐𝐶
∗
=
−𝜌 + 𝑟(1 − 𝑏)

𝑁(1 − 𝑏 − 𝛽)
𝑤0 𝑒

(𝑟−
−𝜌+𝑟(1−𝑏)
𝑁(1−𝑏−𝛽)

)𝑡
 ; 

(59) 

ii. Consistent stock-level trajectory  

𝑤𝐶(𝑡) = 𝑤0 𝑒
(𝑟−

−𝜌+𝑟(1−𝑏)
𝑁(1−𝑏−𝛽)

)𝑡
 . 

(60) 

B. The Noncooperative Solution  

Each agent will maximize his own objective,  contingent to the extraction of 

the other players.  Equation (22) is defined as  

 
𝐽𝑖 = 𝐽

𝑁𝐶 = ∫ 𝑒−𝜌(𝑠−𝑡)
𝑡+𝜏𝑖

𝑡

𝑐1−𝑏

1 − 𝑏
 𝑑𝑠 + 𝛽𝑖∫ 𝑒−𝜌(𝑠−𝑡)

∞

𝑡+𝜏𝑖

𝑐1−𝑏

1 − 𝑏
 𝑑𝑠 , 

(61) 

subject to the dynamics of the resource defined by (23) as  

 𝑤̇ = 𝑟𝑤(𝑡) − 𝑁𝑐(𝑡) (62) 

The DPE is 

 
𝜌𝑉𝑖

𝑁𝐶(𝑤) + 𝐾𝑖
𝑁𝐶(𝑤) = max

𝑐
[
𝑐1−𝑏

1 − 𝑏
+ 𝑉𝑖

𝑁𝐶′(𝑤)(𝑟𝑤 − 𝑁𝑐) ], 
(63) 

where, 

 
𝐾𝑖
𝑁𝐶(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

𝑐1−𝑏

1 − 𝑏
𝑑𝑠

∞

𝑡

] . 
(64) 

With the inherent calculations that can be verified in appendix VI, we get to the following 
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Proposition 6 The sophisticated noncooperative solution for symmetric agents with 

power utility and instantaneous-gratification discounting is characterized by the 

following results: 

i. Equilibrium extraction path 

𝑐𝑁𝐶
∗
= 𝑁−

1
𝑏
−𝜌 + 𝑟(1 − 𝑏)

𝑁 (1 − 𝑏 − 𝑁−
1
𝑏𝛽𝑖)

𝑤0 𝑒[
 
 
 
 

𝑟−𝑁
𝑏−1
𝑏

(

 
 −𝜌+𝑟(1−𝑏)

𝑁(1−𝑏−𝑁
−
1
𝑏𝛽𝑖)

)

 
 

]
 
 
 
 

𝑡

 ; 

(65) 

ii. Consistent stock-level trajectory  

𝑤𝑁𝐶(𝑡) = 𝑤0 𝑒[
 
 
 
 

𝑟−𝑁
𝑏−1
𝑏

(

 
 −𝜌+𝑟(1−𝑏)

𝑁(1−𝑏−𝑁
−
1
𝑏𝛽𝑖)

)

 
 

]
 
 
 
 

𝑡

 . (66) 

5. DISCUSSION 

To illustrate the results obtained in the previous section, we are going to attribute values 

to the parameters 𝛽, 𝑟, 𝜌 and 𝑏, to analyze the impact they have on the equilibrium 

extraction patch, 𝑐∗.  

We are interested in comparing the log and the power utility for a single agent and then 

for the cooperative and the noncooperative solution. We follow Zou, Chen, & Wedge 

(2014) in the values chosen for the parameters, which are listed in table 1, and we set 

𝑤0 = 1.  

Table I Values assigned to the parameters 

Description Symbol Value assigned 

Discount rate 𝜌 0.046 

Replenishing 
rate 

𝑟 0.5 

Present-bias 𝛽 

1 

0.8 

0.5 

0.25 

Marginal 
elasticity 

b 

1.5 (single 

agent) 

0.5 (several 

agents) 
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In figure 2, we can observe that stronger present - biased agents (lower 𝛽) extract at a 

greater rate in the beginning, but are overpassed by more patient agents in the medium - 

long run. In infinite horizon, in the long term, the extraction level of agents characterized 

by high values of 𝛽, thus more patient individuals, tend to coincide, whereas the extraction 

rate of impatient agents drops drastically with time. In the power utility case, patient 

agents are always better off, as impatient individuals are crossed by patient ones much 

earlier than in the logarithmic case. 

In the cooperative case (figure 3), as expected, levels of individual extraction decrease 

with the number of players. In this scenario, the group is better off when all are impatient, 

regardless the form of the utility function. In the long term, impatient cooperative agents 

will still extract at a higher rate than patient ones.  

In the noncooperative game (figure 4), since each player decides, unilaterally, which level 

of stock to extract at each moment, the number of players does not affect the rate of 

extraction. In the short-run, impatient resource owners represented by a logarithmic 

utility function are better off than patient agents with a power utility function. In the long 

term, all behaviors converge to the same extraction level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Impact of 𝛽 and 𝑡 on 𝑐∗(𝑡) of single sophisticated agents.  
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Figure 4: Impact of 𝛽,𝑁 and 𝑡 on 𝑐∗(𝑡) of noncooperative sophisticated agents. 
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Figure 3: Impact of 𝛽,𝑁 and 𝑡 on 𝑐∗(𝑡) of cooperative sophisticated agents. 
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6. CONCLUSIONS 

We have computed the sophisticated solution with Instantaneous-Gratification 

discounting in infinite horizon for a single agent, as an extension of Harris & Laibson 

(2013) and Zou, Chen, & Wedge (2014) and we have contributed to the existing literature 

by extending the model with more than one agent, studying both the cooperative and 

noncooperative solutions. In addition, the results were interpreted under the framework 

of natural resources management.  

The discussion of this work may be useful for policy implementation towards exploitation 

of renewable natural resources under different forms of ownership. 

In a resource to be exploited by a single agent, restrictions on impatient behavior are 

important to assure harvesting in the long run.  

Contrariwise, in a resource that is to be exploited by several owners, who cooperate 

among them, the restrictions on impatient behavior could be relaxed, as our results 

suggest that the patient group will be worse off. 

In the noncooperative game, the optimal policy will depend on the form of the utility 

function. For the logarithmic utility, agents extracting, virtually, all what the resource 

yields in each period, will be better off. Yet, for the power utility case, patient players will 

be more fortunate. 

Unlike the timeline considered in this research, academic projects are handled in a finite 

time horizon. Thus, we leave room for improvements in future research. Despite the 

appealing feature the sophisticated behavior provides, the precommit and naive solutions 

embody other relevant behaviors too. As a matter of fact, the naive behavior is likely to be 

a finer portrayal of individuals’ inborn conduct, whereas the precommit and sophisticated 

results could be the representative of learning or compulsory behaviors. Hence, it would 

be compelling, to integrate the analysis here performed, to compute the precommit and 

naive solutions in infinite time with Instantaneous-Gratification discounting.  

Likewise, it would be noteworthy, to analyze the influence that the other parameters, such 

as the refilling rate and the coefficient 𝑏, have on the extraction capacity of the resources. 
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APPENDIX: Calculations 

In this section, we present in detail all the calculations behind each of the results proposed 

in the text. 

Appendix I: 

Calculations for proposition 1. 

By maximizing the right side of the DPE respect to 𝑐, we obtain the optimal control of the 

resource, 𝑐∗: 

 1

𝑐
− 𝑉′(𝑤) = 0  

𝑐 =
1

𝑉′(𝑤)
 

𝑐∗ =
𝑤

𝐴
 (1) 

The consumption rate is given by the expression: 

 𝑐∗(𝑡)

𝑤(𝑡)
=
1

𝐴
 

(2) 

Now, we compute the time-consistent state of the stock of the resource.  

 
𝑤̇ = 𝑟𝑤 − 𝑐

𝑏𝑦 (1)
⇔   𝑤̇ = 𝑟𝑤 −

𝑤

𝐴
⟺ 𝑤̇ − (𝑟 −

1

𝐴
)𝑤 = 0 

 
The above is a separable first-order linear differential equation that can easily be solved 

by any method that applies to this kind of equations. All these types of equations will be 

solved using the method of the integrating factor. This time, the integrating factor is 

𝑒
−(𝑟−

1

𝐴
)𝑡

. Multiplying through, it yields: 

 
𝑒−(𝑟−

1
𝐴
)𝑡 [𝑤̇ − (𝑟 −

1

𝐴
)𝑤 = 0] ⟺ 𝑒−(𝑟−

1
𝐴
)𝑡𝑤̇ − 𝑒−(𝑟−

1
𝐴
)𝑡 (𝑟 −

1

𝐴
)𝑤 = 0 

⟺
𝑑(𝑒−(𝑟−

1
𝐴
)𝑡𝑤)

𝑑𝑡
= 0 

⟺ 𝑒−(𝑟−
1
𝐴
)𝑡𝑤 = 𝐷 

 

Multiplying by 𝑒(𝑟−
1

𝐴
)𝑡, we obtain: 

 
𝑤(𝑡) = 𝑒(𝑟−

1
𝐴
)𝑡𝐷 

 

Applying the boundary condition 𝑤(0) = 0: 

 
𝑤(0) = 𝑒(𝑟−

1
𝐴
)0𝐷 = 𝐷 

 

If we assume that 𝑤(0) = 𝑤0, then 𝑤0 = 𝐷, which yields:
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𝑤(𝑡) = 𝑤0 𝑒

(𝑟−
1
𝐴
)𝑡

 (3) 

The above equation describes the optimal path of the stock of the resource over time. It 

can also be expressed for any moment 𝑠: 

 
𝑤(𝑠) = 𝑤𝑡 𝑒

(𝑟−
1
𝐴
)(𝑠−𝑡), 𝑠 > 𝑡 (4) 

Now, we replace the resulting expressions from above into 𝐾(𝑤): 

 
𝐾(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln 𝑐∗ 𝑑𝑠

∞

𝑡

] 

=  𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln
𝑤

𝐴
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[ln𝑤 − ln 𝐴]𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) [ln𝑤𝑡 + (𝑟 −
1

𝐴
) (𝑠 − 𝑡)] 𝑑𝑠 −

∞

𝑡

− ln𝐴∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [(ln𝑤𝑡 − ln𝐴)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠 +
∞

𝑡

(𝑟 −
1

𝐴
)

×∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

(𝑠 − 𝑡)𝑑𝑠 
(5) 

Replacing 𝑐∗, 𝑉(𝑤),𝐾(𝑤) and 𝑉′ into the DPE, we obtain:  

𝜌(𝐴 ln𝑤𝑡 + 𝐵) + 𝜆(1 − 𝛽) [(ln𝑤𝑡 − ln𝐴)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

𝑑𝑠 + (𝑟 −
1

𝐴
)× 

×∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

(𝑠 − 𝑡)𝑑𝑠] = ln𝑤(𝑡) − ln 𝐴 + 𝐴 𝑟 − 1 

The next step is to impose that 𝐴 is such, that it is the same for all values of 𝑤(𝑡).  So that, 

we collect all the terms adjacent to 𝑤𝑡 in the expression above, to obtain: 

 
𝜌𝐴 + 𝜆(1 − 𝛽)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

∞

𝑡

𝑑𝑠 = 1 , 
 

from where we can extract the constant 𝐴: 

 
𝐴 =

𝜌 + 𝜆𝛽

𝜌(𝜆 + 𝜌)
 

(6) 

The expression above provides a solution for the constant A for the hyperbolic 

discounting. Assuming the limiting case when 𝜆 approaches to infinite, we obtain the 

constant in the IG case:
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𝐴 =

𝛽

𝜌
 

(7) 

By replacing the above expression into  𝑐∗, 𝑤(𝑡) and 
𝑐∗(𝑡)

𝑤(𝑡)
, we will obtain the resulting 

equations for the IG case, which are: 

 
𝑐∗ =

𝜌

𝛽
𝑤0 𝑒

(𝑟−
𝜌
𝛽
)𝑡

 
(8) 

 
𝑤(𝑡) = 𝑤0 𝑒

(𝑟−
𝜌
𝛽
)𝑡

 (9) 

 𝑐∗

𝑤(𝑡)
=
𝜌

𝛽
 

(10) 

Appendix II 

Calculations for proposition 2. 

By maximizing the right side of the DPE, we obtain the optimal cooperative control, which 

is: 

 
𝑁
1

𝑐
− 𝑉𝐶

′
𝑁 = 0  

𝑐𝐶
∗
=
𝑤𝐶

𝐴𝐶
 (11) 

From where we extract the optimal cooperative extraction rate  

 𝑐𝐶
∗

𝑤𝐶(𝑡)
=
1

𝐴𝐶  
 . 

(12) 

Secondly, we compute the time-consistent state of the stock of the resource: 

𝑤̇ = 𝑟𝑤 − 𝑁𝑐𝐶
∗
⇔ 𝑤̇ = 𝑟𝑤 − 𝑁 (

𝑤𝐶

𝐴𝐶
)⟺ 𝑤̇ − 𝑤𝐶 (𝑟 −

𝑁

𝐴𝐶
) = 0 

(13) 

Like what we did in last section, here the integrating factor is 𝑒−(𝑟−
𝑁

𝐴
)𝑡. Following the same 

approach as for (3) and (4), we arrive to  

 
𝑤𝐶(𝑡) = 𝑤0 𝑒

(𝑟−
𝑁

𝐴𝐶
)𝑡
 , (14) 

And to 

 
𝑤𝐶(𝑠) = 𝑤𝑡 𝑒

(𝑟−
𝑁

𝐴𝐶
)(𝑠−𝑡)

, 𝑠 > 𝑡 . (15) 

Now, we replace the resulting expressions into 𝐾𝐶(𝑤): 
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𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)  ln 𝑐∗ 𝑑𝑠
∞

𝑡

] 

=  𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln
𝑤

𝐴
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[ln𝑤(𝑠) − ln𝐴]𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln𝑤(𝑠) 𝑑𝑠
∞

𝑡

−∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)(ln𝐴)𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) [ln𝑤𝑡 + (𝑟 −
𝑁

𝐴
) (𝑠 − 𝑡)] 𝑑𝑠

∞

𝑡

−  ln𝐴∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [(ln𝑤𝑡 − ln𝐴)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠 +
∞

𝑡

(𝑟 −
𝑁

𝐴
)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

∞

𝑡

(𝑠 − 𝑡)𝑑𝑠] 
(16) 

Replacing 𝑐∗, 𝑉𝐶(𝑤),𝐾𝐶(𝑤) and 𝑉𝐶
′
 into the DPE, we obtain: 

 𝜌(𝐴 ln(𝑤) + 𝐵) + 𝜆(1 − 𝛽)[(ln𝑤𝑡 − ln𝐴)× 

×∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠 +
∞

𝑡

(𝑟 −
1

𝐴𝑁
)× 

×∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

(𝑠 − 𝑡)𝑑𝑠 = 

= N[ln w − ln A] + 𝐴𝑟 − 𝑁  

The next step is to impose that 𝐴𝐶  is such, that it is the same for all values of 𝑤 for all 𝑖. So 

that, we collect all the terms adjacent to 𝑤𝑡 in the expression above: 

𝜌𝐴 + 𝜆(1 − 𝛽)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

𝑑𝑠 = 𝑁 , 

Solving the integral, we get 

𝜌𝐴 + 𝜆(1 − 𝛽) [
1

𝜆 +  𝜌
] = 𝑁 . 

 

From where, the solution for the hyperbolic discounting is: 

 
𝐴 =

𝑁𝜌 + (𝛽 + 𝑁 − 1)𝜆

𝜌(𝜌 + 𝜆)
 

(17) 

Like what was done before, taking the limiting case when 𝜆 approaches infinite, we obtain 

the constant for the IG model: 

 
𝐴𝐶 =

𝛽 − 1 + 𝑁

𝜌
 

(18) 

By replacing 𝐴𝐶  into  𝑐𝐶∗, 𝑤(𝑡) and 
𝑐∗(𝑡)

𝑤(𝑡)
, we obtain the final expressions in the cooperative 

case when agents are symmetric and use a logarithmic utility with IG discounting: 
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𝑐𝐶
∗
=
𝜌𝑤0𝑒

(𝑟−
𝜌𝑁

𝛽−1+𝑁
)𝑡

𝛽 − 1 + 𝑁
 

(19) 

 
𝑤𝐶(𝑡) = 𝑤0𝑒

(𝑟−
𝜌𝑁

𝛽−1+𝑁
)𝑡

 (20) 

 𝑐𝐶
∗

𝑤𝐶(𝑡)
=

𝜌

𝛽 − 1 + 𝑁
 

(21) 

Appendix III 

Calculations for proposition 3. 

By maximizing the right side of the DPE respect to 𝑐, we obtain the optimal control: 

 1

𝑐
− 𝑁𝑉𝑖

𝑁𝐶′(𝑤) = 0  

𝑐𝑁𝐶
∗
=
𝑤𝑁𝐶(𝑡)

𝐴𝑖𝑁
 

(22) 

The time-consistent state of the stock of the resource is: 

 
𝑤̇ = 𝑟𝑤 − 𝑁𝑐∗⇔ 𝑤̇ = 𝑟𝑤 − 𝑁 (

𝑤

𝐴𝑖𝑁
)⟺ 𝑤̇ − 𝑤 (𝑟 −

1

𝐴𝑖
) = 0 

(23) 

(25) is a separable first-order linear differential equation. Choosing 𝑒
−(𝑟−

1

𝐴
)𝑡

as the 

integrating factor and multiplying through, as before, it yields: 

 
𝑤𝑁𝐶(𝑡) = 𝑤0 𝑒

(𝑟−
1
𝐴𝑖
)𝑡

 (24) 

Note that now the constant 𝐴𝑖
𝑁𝐶  is considered at the individual level. The above equation 

describes the optimal path of the stock of the resource over time. It can also be expressed 

for any moment 𝑠: 

 
𝑤𝑁𝐶(𝑠) = 𝑤𝑡 𝑒

(𝑟−
1
𝐴𝑖
)(𝑠−𝑡)

, 𝑠 > 𝑡 (25) 

Now, we replace the resulting expressions from above into 𝐾(𝑤): 
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𝐾𝑖
𝑁𝐶(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln 𝑐∗ 𝑑𝑠

∞

𝑡

] 

=  𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)  ln
𝑤

𝐴𝑖 𝑁
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)[ln𝑤 − ln𝐴𝑖 − ln𝑁]𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) ln𝑤 𝑑𝑠
∞

𝑡

−∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)(ln𝐴𝑖 − ln𝑁)𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) [ln𝑤𝑡 + (𝑟 −
1

𝐴𝑖
) (𝑠 − 𝑡)] 𝑑𝑠

∞

𝑡

− 

−(ln𝐴𝑖 − ln𝑁)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖)[(ln𝑤𝑡 − ln𝐴𝑖 − ln𝑁)× 

×∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠 +
∞

𝑡

(𝑟 −
1

𝐴𝑖
)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

∞

𝑡

(𝑠 − 𝑡)𝑑𝑠] 
(26) 

Replacing 𝑐∗𝑁𝐶 , 𝑉𝑁𝐶(𝑤),𝐾𝑁𝐶(𝑤) and 𝑉′𝑁𝐶  into the DPE, we obtain:  

𝜌(𝐴𝑖 ln(𝑤) + 𝐵𝑖) + 𝜆(1 − 𝛽𝑖)× 

× [(ln𝑤𝑡 − ln𝐴𝑖 − ln𝑁)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑑𝑠 +
∞

𝑡

(𝑟 −
1

𝐴𝑖
)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

∞

𝑡

(𝑠 − 𝑡)𝑑𝑠] = 

= ln𝑤 − ln𝐴𝑖 − ln𝑁 + 𝐴𝑖𝑟 − 1 (27) 

The next step is to impose that 𝐴𝑖
𝑁𝐶  is such, that it is the same for all values of 𝑤for all 𝑖. 

So that, we collect all the terms adjacent to 𝑤𝑡 in the expression above: 

 
𝜌𝐴𝑖

𝑁𝐶 + 𝜆(1 − 𝛽𝑖)∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
∞

𝑡

𝑑𝑠 = 1 
(28) 

From where, the constant for the hyperbolic discount is: 

 
𝐴𝑖
𝑁𝐶 =

𝜌 + 𝜆𝛽𝑖
𝜌(𝜆 + 𝜌)

 
(29) 

And as we did before, we take 𝜆 to infinite to get the IG constant: 

 
𝐴𝑖
𝑁𝐶 =

𝛽𝑖
𝜌

 
(30) 

By replacing 𝐴𝑖  into the original expressions we obtain the final expressions in the 

noncooperative case when agents are symmetric and use a logarithmic utility with 

instantaneous gratification discounting: 

 

𝑐𝑁𝐶
∗
=
𝜌𝑤0𝑒

(𝑟−
𝜌𝑁

𝛽𝑖−1+𝑁
)𝑡

𝛽𝑖
 

(31) 
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𝑤𝑁𝐶(𝑡) = 𝑤0𝑒

(𝑟−
𝜌𝑁
𝛽𝑖
)𝑡

 (32) 

 𝑐𝑁𝐶
∗

𝑤𝑁𝐶(𝑡)
=
𝜌

𝛽𝑖
 

(33) 

Appendix IV 

Calculations for proposition 4. 

By maximizing the right side of the DPE, we obtain the optimal control, 𝑐∗: 

 𝑐−𝑏 − 𝑉′(𝑤) = 0  

𝑐∗ = ℎ−
1
𝑏𝑤(𝑡) (34) 

Secondly, we compute the time-consistent state of the stock of the resource. We have that: 

 
𝑤̇ = 𝑟𝑤 − 𝑐∗⇔ 𝑤̇ = 𝑟𝑤 − ℎ−

1
𝑏𝑤⟺ 𝑤̇ − 𝑤 (𝑟 − ℎ−

1
𝑏) = 0 

 

In this case, we use 𝑒
−(𝑟−ℎ

−
1
𝑏)𝑡

as the integrating factor. Multiplying through, it yields: 

 
𝑒
−(𝑟−ℎ

−
1
𝑏)𝑡
[𝑤̇ − (𝑟 − ℎ−

1
𝑏)𝑤(𝑡) = 0] 

⟺ 𝑒
−(𝑟−ℎ

−
1
𝑏)𝑡
𝑤̇ − 𝑒

−(𝑟−ℎ
−
1
𝑏)𝑡
(𝑟 − ℎ−

1
𝑏)𝑤(𝑡) = 0 

⟺

𝑑(𝑒
−(𝑟−ℎ

−
1
𝑏)𝑡
𝑤(𝑡))

𝑑𝑡
= 0 

⟺ 𝑒
−(𝑟−ℎ

−
1
𝑏)𝑡
𝑤(𝑡) = 𝐷 (35) 

Multiplying (38) by 𝑒
(𝑟−ℎ

−
1
𝑏)𝑡

, we obtain: 

 
𝑤(𝑡) = 𝑒

(𝑟−ℎ
−
1
𝑏)𝑡
𝐷 

 

Applying the boundary condition 𝑤(0) = 0: 

 
𝑤(0) = 𝑒

(𝑟−ℎ
−
1
𝑏)0
𝐷 = 𝐷 

 

If we assume that 𝑤(0) = 𝑤0, then 𝑤0 = 𝐷, which yields:
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𝑤(𝑡) = 𝑤0 𝑒

(𝑟−ℎ
−
1
𝑏)𝑡

 (36) 

The above equation describes the optimal path of the stock of the resource over time. It 

can also be expressed for any moment 𝑠: 

 
𝑤(𝑠) = 𝑤𝑡 𝑒

(𝑟−ℎ
−
1
𝑏)(𝑠−𝑡)

, 𝑠 > 𝑡 (37) 

Now, we replace the resulting expressions from above into 𝐾(𝑤): 

 
𝐾(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

𝑐∗1−𝑏

1 − 𝑏
𝑑𝑠

∞

𝑡

] 

=  𝜆(1 − 𝛽)

[
 
 
 

∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
(ℎ−

1
𝑏𝑤)

1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

]
 
 
 

 

=  𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
ℎ
𝑏−1
𝑏 𝑤1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽) [
ℎ
𝑏−1
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑤1−𝑏𝑑𝑠
∞

𝑡

] 

=  𝜆(1 − 𝛽) [
ℎ
𝑏−1
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) (𝑤𝑡 𝑒

(𝑟−ℎ
−
1
𝑏)(𝑠−𝑡)

)

1−𝑏

𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [
ℎ
𝑏−1
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

] 

(38) 

Replacing 𝑐∗, 𝑉(𝑤),𝐾(𝑤) and 𝑉′ into the DPE, we obtain: 

𝜌 (ℎ
𝑤1−𝑏

1 − 𝑏
) + [𝜆(1 − 𝛽) [

ℎ
𝑏−1
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

]] =

= 𝑤1−𝑏 [
ℎ
𝑏−1
𝑏

1 − 𝑏
+ ℎ (𝑟 − ℎ−

1
𝑏)] 

The next step is to impose that ℎ is such, that it is the same for all values of 𝑤(𝑡).  So that, 

we collect all the terms adjacent to 𝑤1−𝑏 from the expression above:
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𝜌
ℎ

1 − 𝑏
+ [𝜆(1 − 𝛽)

ℎ
𝑏−1
𝑏 − 1

1 − 𝑏
 ∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

]

=
ℎ
𝑏−1
𝑏 − 1

1 − 𝑏
+ ℎ (𝑟 − ℎ−

1
𝑏)  

𝜌ℎ + [
𝜆(1 − 𝛽)ℎ

𝑏−1
𝑏

(𝜆 + 𝜌) − (𝑟 − ℎ−
1
𝑏) (1 − 𝑏)

] = ℎ [ℎ−
1
𝑏 + (1 − 𝑏) (𝑟 − ℎ−

1
𝑏)] 

 

Since this is not a linear expression, the constant ℎ cannot be computed straightforward 

as we did in the logarithmic case. Thus, for the power utility case, we are not able to offer 

the solution for the stochastic hyperbolic discounting. As we are interested in the solution 

when 𝜆 approaches ∞, we can analyze this limiting case in the expression above: 

 

lim
𝜆→∞

𝜌ℎ + [
𝜆(1 − 𝛽)ℎ

𝑏−1
𝑏

(𝜆 + 𝜌) − (𝑟 − ℎ−
1
𝑏) (1 − 𝑏)

] − ℎ [ℎ−
1
𝑏 + (1 − 𝑏) (𝑟 − ℎ−

1
𝑏)], 

(39) 

what brings us to the following expression: 

 ℎ(−(𝛽 − 1 + 𝑏)ℎ−1 𝑏⁄ + (𝑏 − 1)𝑟 + 𝜌) = 0. (40) 

Solving (42) for ℎ, we obtain the constant in the IG case: 

 
ℎ = [

1 − 𝛽 − 𝑏

(1 − 𝑏)𝑟 − 𝜌
]
𝑏

 
(41) 

And we replace ℎ into them, we obtain the final expressions in the case of one agent with 

power utility and instantaneous gratification discounting: 

 
𝑐∗ =

(1 − 𝑏)𝑟 − 𝜌

1 − 𝛽 − 𝑏
 𝑤0 𝑒

(𝑟−
(1−𝑏)𝑟−𝜌
1−𝛽−𝑏

)𝑡
 

(42) 

 
𝑤(𝑡) = 𝑤0 𝑒

(𝑟−
(1−𝑏)𝑟−𝜌
1−𝛽−𝑏

)𝑡
 (43) 

 𝑐∗(𝑡)

𝑤(𝑡)
=
(1 − 𝑏)𝑟 − 𝜌

1 − 𝛽 − 𝑏
 

(44) 

Appendix V 

Calculations for proposition 5. 

By maximizing the right side of the DPE respect to 𝑐, we obtain the equilibrium control, 

𝑐𝐶
∗
, for the cooperative case with power utility:
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 𝑁𝑐−𝑏 − 𝑁𝑉𝑐
′
= 0  

𝑐𝐶
∗
= ℎ−

1
𝑏𝑤 (45) 

Computation of the time-consistent state of the stock of the resource: 

 
𝑤̇ = 𝑟𝑤 − 𝑁𝑐∗⇔ 𝑤̇ = 𝑟𝑤 − 𝑁 (ℎ−

1
𝑏𝑤)⟺ 𝑤̇ − 𝑤 (𝑟 − 𝑁ℎ−

1
𝑏) = 0 (46) 

𝑒
−(𝑟−𝑁ℎ

−
1
𝑏)𝑡

is the integrating factor. Multiplying through and following the same approach 

from previous sections, we obtain: 

 
𝑤𝐶(𝑡) = 𝑤0 𝑒

(𝑟−𝑁ℎ
−
1
𝑏)𝑡

 (47) 

It can also be expressed for any moment 𝑠: 

 
𝑤𝐶(𝑠) = 𝑤𝑡 𝑒

(𝑟−𝑁ℎ𝐶
−
1
𝑏)(𝑠−𝑡)

, 𝑠 > 𝑡 (48) 

Now, we replace the resulting expressions from above into 𝐾(𝑤): 

 
𝐾𝐶(𝑤) = 𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

𝑐(𝑠)∗
1−𝑏

1 − 𝑏
𝑑𝑠

∞

𝑡

] 

=  𝜆(1 − 𝛽)

[
 
 
 
 

∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
(ℎ−

1
𝑏𝑤(𝑠))

1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

]
 
 
 
 

 

=  𝜆(1 − 𝛽) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
ℎ−
1−𝑏
𝑏 𝑤(𝑠)1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽) [
ℎ−
1−𝑏
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑤(𝑠)1−𝑏𝑑𝑠
∞

𝑡

] 

=  𝜆(1 − 𝛽) [
ℎ−
1−𝑏
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) (𝑤𝑡 𝑒

(𝑟−𝑁ℎ
−
1
𝑏)(𝑠−𝑡)

)

1−𝑏

𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽) [
ℎ−
1−𝑏
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

] 

(49) 

Replacing 𝑐∗𝐶 , 𝑉𝐶(𝑤), 𝐾𝐶(𝑤) and 𝑉′𝐶  into the DPE, we obtain: 
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𝜌 (ℎ
𝑤(𝑡)1−𝑏

1 − 𝑏
) + [𝜆(1 − 𝛽) [

ℎ−
1−𝑏
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

]]

= 𝑤(𝑡)1−𝑏 [𝑁
ℎ
𝑏−1
𝑏

1 − 𝑏
+ ℎ (𝑟 − 𝑁ℎ−

1
𝑏)] 

(50) 

We impose that ℎ is such, that it is the same for all values of 𝑤(𝑡).  So that, we collect all 

the terms adjacent to 𝑤(𝑡) in the expression above: 

 

𝜌
ℎ

1 − 𝑏
+ [𝜆(1 − 𝛽)

ℎ
𝑏−1
𝑏 − 1

1 − 𝑏
 ∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁ℎ
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

]

= 𝑁
ℎ
𝑏−1
𝑏 − 1

1 − 𝑏
+ ℎ (𝑟 − 𝑁ℎ−

1
𝑏)  

𝜌ℎ + [
𝜆(1 − 𝛽)ℎ

𝑏−1
𝑏

(𝜆 + 𝜌) + (𝑟 − 𝑁ℎ−
1
𝑏) (1 − 𝑏)

] = ℎ [𝑁ℎ−
1
𝑏 + (1 − 𝑏) (𝑟 − 𝑁ℎ−

1
𝑏)] 

 

Since this is not a linear expression, the constant ℎ cannot be computed straightforward. 

As we are interested in the solution when 𝜆 approaches ∞, we can analyze this limiting 

case in the expression above: 

 

lim
𝜆→∞

𝜌ℎ + [
𝜆(1 − 𝛽)ℎ

𝑏−1
𝑏

(𝜆 + 𝜌) − (𝑟 − 𝑁ℎ−
1
𝑏) (1 − 𝑏)

] − ℎ [𝑁ℎ−
1
𝑏 + (1 − 𝑏) (𝑟 − 𝑁ℎ−

1
𝑏)] 

(51) 

What brings us to the following expression: 

 
ℎ (−𝑁(𝛽 − 1)ℎ−

1
𝑏 + 𝜌 − 𝑟 + 𝑏 (𝑟 − 𝑁ℎ−

1
𝑏)) = 0 

(52) 

From where we can obtain the following expression for ℎ: 

 
ℎ = [

𝑁(1 − 𝑏 − 𝛽)

−𝜌 + 𝑟(1 − 𝑏)
]

𝑏

 
(53) 

We can now replace ℎ𝐶  in the original expressions to obtain the final equations for the 

cooperative case with power utility. 

 
𝑐𝐶
∗
=
−𝜌 + 𝑟(1 − 𝑏)

𝑁(1 − 𝑏 − 𝛽)
𝑤0 𝑒

(𝑟−
−𝜌+𝑟(1−𝑏)
𝑁(1−𝑏−𝛽)

)𝑡
 

(54) 

 
𝑤𝐶(𝑡) = 𝑤0 𝑒

(𝑟−
𝜌+𝑟(𝑏−1)
𝛽−1−𝑏

)𝑡
 (55) 
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 𝑐𝐶
∗

𝑤𝐶(𝑡)
=
−𝜌 + 𝑟(1 − 𝑏)

𝑁(1 − 𝑏 − 𝛽)
 

(56) 

Appendix VI 

Calculations for proposition 6. 

By maximizing the right side of the DPE respect to 𝑐: 

 𝑐−𝑏 − 𝑁𝑉𝑖
𝑁𝐶′0  

𝑐𝑁𝐶
∗
= (𝑁ℎ𝑖)

−
1
𝑏𝑤(𝑡) (57) 

From where, the consumption rate is given by the expression: 

 𝑐𝑁𝐶
∗
(𝑡)

𝑤𝑁𝐶(𝑡)
= (𝑁ℎ𝑖

𝑁𝐶)
−
1
𝑏 

(58) 

We compute the time-consistent state of the stock of the resource: 

 
𝑤̇ = 𝑟𝑤(𝑡) − 𝑁(𝑁ℎ𝑖)

−
1
𝑏𝑤(𝑡)⟺ 𝑤̇ − (𝑟 − 𝑁(𝑁ℎ𝑖)

−
1
𝑏)𝑤(𝑡) = 0 (59) 

(64) is a separable first-order linear differential. Choosing 𝑒
−(𝑟−𝑁(𝑁ℎ𝑖)

−
1
𝑏)𝑡

 as the 

integrating factor we obtain the following expressions: 

 
𝑤𝑁𝐶(𝑡) = 𝑤0 𝑒

(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)𝑡

 (60) 

The above equation describes the optimal path of the stock of the resource over time. It 

can also be expressed for any moment 𝑠: 

 
𝑤𝑁𝐶(𝑠) = 𝑤𝑡 𝑒

(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)(𝑠−𝑡)

, 𝑠 > 𝑡 (61) 

Now, we replace the resulting expressions from above into 𝐾(𝑤):
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𝐾𝑖
𝑁𝐶(𝑤) = 𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)

𝑐(𝑠)∗
1−𝑏

1 − 𝑏
𝑑𝑠

∞

𝑡

] 

=  𝜆(1 − 𝛽𝑖)

[
 
 
 
 

∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
((𝑁ℎ𝑖)

−
1
𝑏𝑤(𝑠))

1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

]
 
 
 
 

 

=  𝜆(1 − 𝛽𝑖) [∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)
(𝑁ℎ𝑖)

−
1−𝑏
𝑏 𝑤(𝑠)1−𝑏

(1 − 𝑏)
𝑑𝑠

∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖) [
(𝑁ℎ𝑖)

−
1−𝑏
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡)𝑤(𝑠)1−𝑏𝑑𝑠
∞

𝑡

] 

=  𝜆(1 − 𝛽𝑖) [
(𝑁ℎ𝑖)

−
1−𝑏
𝑏

1 − 𝑏
∫ 𝑒−(𝜆+𝜌)(𝑠−𝑡) (𝑤𝑡  𝑒

(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)(𝑠−𝑡)

)

1−𝑏

𝑑𝑠
∞

𝑡

] 

= 𝜆(1 − 𝛽𝑖) [
(𝑁ℎ𝑖)

−
1−𝑏
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

] 
(62) 

Replacing 𝑐∗𝑁𝐶 , 𝐾𝑁𝐶(𝑤) and 𝑉′𝑁𝐶  into the DPE, we obtain: 

𝜌 (ℎ𝑖
𝑤(𝑡)1−𝑏

1 − 𝑏
) + [𝜆(1 − 𝛽𝑖) [

(𝑁ℎ𝑖)
−
1−𝑏
𝑏

1 − 𝑏
𝑤𝑡
1−𝑏∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

]] =

= 𝑤(𝑡)1−𝑏 [
(𝑁ℎ𝑖)

𝑏−1
𝑏

1 − 𝑏
+ ℎ (𝑟 − 𝑁ℎ𝑖

−
1
𝑏)] 

The next step is to impose that ℎ𝑖  is such, that it is the same for all values of 𝑤(𝑡).  So that, 

we collect all the terms adjacent to 𝑤(𝑡) in the expression above: 

𝜌
ℎ𝑖
1 − 𝑏

+ [𝜆(1 − 𝛽𝑖)
(𝑁ℎ𝑖)

𝑏−1
𝑏 − 1

1 − 𝑏
 ∫ 𝑒

(𝑠−𝑡)[−(𝜆+𝜌)+(𝑟−𝑁(𝑁ℎ𝑖)
−
1
𝑏)(1−𝑏)]

𝑑𝑠
∞

𝑡

] =

=
(𝑁ℎ𝑖)

𝑏−1
𝑏 − 1

1 − 𝑏
+ ℎ𝑖 (𝑟 − 𝑁ℎ𝑖

−
1
𝑏)  

𝜌ℎ𝑖 + [
𝜆(1 − 𝛽𝑖)(𝑁ℎ𝑖)

𝑏−1
𝑏

(𝜆 + 𝜌) − (𝑟 − 𝑁(𝑁ℎ𝑖)
−
1
𝑏) (1 − 𝑏)

] = ℎ𝑖 [𝑁
𝑏−1
𝑏 ℎ𝑖 

−
1
𝑏 + (1 − 𝑏)(𝑟 − 𝑁ℎ𝑖

−
1
𝑏)] 

Since this is not a linear expression, the constant ℎ cannot be computed straightforward.
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As we are interested in the solution when 𝜆 approaches ∞, we can analyze this limiting 

case in the expression above:  

 

lim
𝜆→∞

𝜌ℎ𝑖 + [
𝜆(1 − 𝛽𝑖)(𝑁ℎ𝑖)

𝑏−1
𝑏

(𝜆 + 𝜌) − (𝑟 − 𝑁(𝑁ℎ𝑖)
−
1
𝑏) (1 − 𝑏)

]

− ℎ𝑖 [𝑁
𝑏−1
𝑏 ℎ𝑖 

−
1
𝑏 + (1 − 𝑏) (𝑟 − 𝑁ℎ

𝑖

−
1
𝑏)] 

(63) 

What brings us to the following expression: 

 
ℎ𝑖(−(𝛽𝑖 − 1)𝑁(𝑁ℎ𝑖)

−
1
𝑏 + ℎ

𝑖

−
1
𝑏𝑁 (1 − 𝑏 − 𝑁−

1
𝑏) + 𝜌 + (𝑏 − 1)𝑟) = 0 (64) 

From where we can obtain the following expression for ℎ: 

 

ℎ𝑖 = [
𝑁 (1 − 𝑏−𝑁−

1
𝑏𝛽𝑖)

−𝜌+ 𝑟(1 − 𝑏)
]

𝑏

 

(65) 

By replacing ℎ𝑖  into the original expressions we obtain the final expressions in the 

noncooperative case when agents are symmetric and use a logarithmic utility with 

instantaneous gratification discounting: 

 

𝑐𝑁𝐶
∗
= 𝑁−

1
𝑏
−𝜌 + 𝑟(1 − 𝑏)

𝑁 (1 − 𝑏 − 𝑁−
1
𝑏𝛽𝑖)

𝑤0 𝑒[
 
 
 
 

𝑟−𝑁
𝑏−1
𝑏

(

 
 −𝜌+𝑟(1−𝑏)

𝑁(1−𝑏−𝑁
−
1
𝑏𝛽𝑖)

)

 
 

]
 
 
 
 

𝑡

 

(66) 

 

𝑤𝑁𝐶(𝑡) = 𝑤0 𝑒[
 
 
 
 

𝑟−𝑁
𝑏−1
𝑏

(

 
 −𝜌+𝑟(1−𝑏)

𝑁(1−𝑏−𝑁
−
1
𝑏𝛽𝑖)

)

 
 

]
 
 
 
 

𝑡

 (67) 

 𝑐𝑁𝐶
∗

𝑤𝑁𝐶(𝑡)
= 𝑁−

1
𝑏
−𝜌+ 𝑟(1 − 𝑏)

𝑁 (1 − 𝑏−𝑁−
1
𝑏𝛽𝑖)

 

(68) 

 


