

Eco-Auditoría de la EcoPlaza Gastronómica "El Refugio"

Autor: Ing. Andrés Lara N

Tutor: Dra. Mercè Segarra

Curs acadèmic: 2016-2017

Màster en Energies Renovables i Sostenibilitat Energètica

AGRADECIMIENTOS:

Quiero expresar mis agradecimientos a:

Mis padres y hermanos por brindarme su apoyo incondicional y estar pendientes siempre de mi desarrollo personal y profesional.

Mi tutora, Dra. Mercè Segarra, por su colaboración, dedicación y supervisión durante el transcurso del desarrollo de este trabajo.

Mis amigos y compañeros, que estuvieron siempre pendientes de mi progreso, brindándome su ayuda cuando la necesitaba y compartiendo experiencias y momentos durante el transcurso de esta maestría.

"El Refugio Ecoplaza Gastronómica", los socios y personal vinculado por su colaboración para brindar con toda disposición la información necesaria para la elaboración de este trabajo.

INDICE

1.	Intr	oduc	cción	1
2.	Obj	jetivo	OS	3
2	.1.	Obj	etivos específicos.	3
3.	Me	todo	logía: Cálculo del consumo energético y huella de carbono	3
3	.1.	CES	S Edupack 2016.	. 7
4.	Eco	o-auc	litoría: análisis y resultados	. 8
4	.1.	Inve	entario de materiales.	8
4	.2.	Ider	ntificación de materiales.	10
4	.3.	Des	arrollo De Materiales.	10
4	.4.	Eco	-Auditoría	13
	4.4	.1.	Materiales.	13
	4.4	.2.	Fabricación.	15
	4.4	.3.	Transporte	18
	4.4	.4.	Uso	20
	4.4	.5.	Final del ciclo de vida.	21
4	.5.	Res	ultados	22
	4.5	.1.	Consumo energético y huella de carbono con materiales nuevos	23
	4.5	.2.	Consumo energético y huella de carbono con materiales reutilizados	6 O
	reci	iclad	os (caso real).	24
	4.5	.3.	Consumo energético y huella de carbono en construcción tradicional	26
5.	Ana	álisis	s de resultados.	27
6.	Coı	nclus	siones y recomendaciones	29
7.	Ref	eren	cias Bibliográficas	31
Q	Δn	evos		33

INDICE DE ANEXOS

Anexo 1. Energía y huella de CO_2 en el transporte de un material o producto tomado de
la base de datos del CES Edupack 2016
Anexo 2. Energías equivalentes y huellas de CO ₂ para la fase de uso
Anexo 3. Calculo de materiales
Anexo 4. Materiales Utilizados en la Construcción de " El Refugio Ecoplaza
Gastronómica" por uso y peso
Anexo 5. Materiales utilizados por el CES Edupack 2016
Anexo 6. Lista de peso y uso de los materiales utilizados en la construcción de " El
Refugio Ecoplaza"
Anexo 7. Cálculos de potencial de reutilización y reaprovechamiento de los materiales
de " El Refugio"
Anexo 8. Cálculos de la fase de uso de "El Refugio Ecoplaza Gastronómica"
Anexo 9. Calculo de la Fase de Uso con Eco-Audit de CES Edupack para "El Refugio
Ecoplaza Gastronómica"
Anexo 10. Cálculos Eco-auditoría de los materiales CES Edupack 2016
Anexo 11. Calculo Eco-Auditoría de Construcción Tradicional con el CES Edupack . 51

Resumen.

"El Refugio Ecoplaza Gastronómica" se encuentra ubicada en el valle de los Chillos en Quito-Ecuador y para su construcción el grupo inversor planteó la necesidad de tener una plaza de restauración y esparcimiento con un diseño moderno, industrial y ecológico, basado en la reutilización y reintroducción de materiales teniendo como base para la construcción contenedores marítimos.

El presente trabajo tiene como objetivo el conocer la demanda energética y la huella de carbono (CO2) que generaría la plaza en su construcción y a lo largo de su vida útil para promocionar a "El Refugio" como un sitio amigable con el medio ambiente.

Al realizar la eco-auditoría de "El Refugio", se podrá identificar la fase en la que existe la mayor demanda energética o la mayor huella de carbono. El procedimiento para realizar una eco-auditoría parte de las entradas del usuario y los datos obtenidos de los materiales utilizados en la construcción para poder realizar los cálculos para cada fase de la eco-auditoría que va de la fase material, a la fabricación, al transporte, el uso y la eliminación al final de la vida útil.

En la fase de material se calcula la cantidad de energía y la huella de carbono que se generan al producir cada material, energía en MJ/kg y huella de CO2 en kg/kg.

En la fase de fabricación, se calcula la energía del procesado de un material (Hp); el procesado primario es el que más energía consume y tiene la huella de CO2 más elevada.

La fase de transporte hace referencia al movimiento del material desde el sitio de su fabricación hasta el sitio de su uso. Esta fase dependerá mucho del tipo de transporte utilizado, el peso del material y la distancia.

La fase de uso es importante ya que sirve para conocer el consumo de energía y huella de CO2 que generara la plaza durante su funcionamiento, para finalmente, en la fase de eliminación decidir qué se va hacer con los materiales al final de la vida útil de "El Refugio Ecoplaza Gastronómica".

Para realizar la eco-auditoría se utiliza la herramienta eco-audit del CES Edupack 2016, en la cual se puede introducir la información de los materiales y obtener valores de demanda energética y huella de CO2 para cada fase de vida del producto; para la eco-auditoría de la Plaza se plantearon 3 casos, si la construcción de la plaza hubiese sido con contenedores y materiales nuevos, si la construcción de la plaza fue con contenedores y materiales reutilizados y si la construcción de la plaza hubiese sido sin contenedores y con materiales tradicionales.

Al analizar los 3 casos se puede observar que la reutilización de materiales permite tener ahorros ambientales muy considerables, pese a que los materiales tradicionales tienen un bajo nivel de energía incorporada, la cantidad de material necesario para construir hace que su demanda energética y huella de CO2 sea más elevada que al reutilizar materiales.

La construcción de la plaza con materiales reutilizados y con un diseño eficiente es la que mejor colabora con la disminución del consumo energético, la generación de emisiones y por ello es el más amigable con el medio ambiente.

Abstract.

"El Refugio Ecoplaza Gastronómica" is located in the Chillos valley in Quito-Ecuador and for its construction the investor group raised the need to have a place of restoration and recreation with a modern, industrial and ecological design, based on reused and reintroduction of materials based on marine containers for construction.

The objective of the present work is to know the energy demand and the CO2 footprint that would generate the square in its construction and throughout its useful life to promote "El Refugio" as an environmentally friendly site.

When the eco-audit of "El Refugio" is carried out, it will be possible to identify the phase in which there is the greatest energy demand or the greatest carbon footprint, the procedure to carry out an eco-audit, part of the user inputs and data obtained of the materials used in the construction to be able to perform the calculations for each phase

of the eco-audit that goes from the material phase to manufacturing, transportation, use and disposal at the end of lifecycle.

In the material phase the amount of energy and carbon footprint generated by each of the materials in MJ / kg and the CO2 footprint in kg / kg are calculated.

In the manufacturing phase, the energy of the processing of a material (Hp) is calculated; the primary processing is the one that consumes the most energy and has the highest CO₂ footprint.

The transport phase refers to the movement of the material from the site of its manufacture to the site of its use. This phase will depend a lot on the type of transport used, the weight of the material and the distance.

The use phase is important since it serves to know the energy consumption and CO2 footprint that will generate the square during its operation, and finally, in the elimination phase decide that it will be done with the materials at the end of the useful life of "The shelter".

In order to carry out the eco-audit, the eco-audit tool of the CES Edupack 2016 is used, in which the information of the materials can be entered and obtain values of energy demand and CO2 footprint for each phase of life of the product; For the eco-audit of the square, 3 cases were raised, if the construction of the square had been with containers and new materials, if the construction of the square was with containers and materials reused and if the construction of the square had been without containers and with traditional materials.

When analyzing the 3 cases it can be observed that the reuse of materials allows very considerable environmental savings, although traditional materials have a low level of energy incorporated but the amount of material needed to build makes their energy demand and CO2 footprint higher than when reusing materials.

The construction of the square with materials reused and with an efficient design is the one that best collaborates with the reduction of the energy consumption, the generation of emissions and for that reason it is the most friendly with the environment.

1. Introducción.

En Ecuador, en el Valle de los Chillos (occidente de Quito), se encuentran diferentes sitios de ocio y esparcimiento, pero ninguno toma en cuenta el impacto ambiental que genera en el entorno en el que se ubica. Pensando en esto Larnovi Asociados proyectó la construcción de una plaza en donde funcionen locales comerciales de servicios de comida y bebidas junto con áreas de esparcimiento para atención al público en general, basado en un diseño contemporáneo e industrial y con un enfoque ecológico, utilizando materiales que proporcionen el menor impacto, teniendo en cuenta siempre la reutilización de materiales, tomando como base para la construcción de los locales, la reutilización de contenedores marítimos.

La plaza cuenta con diez locales comerciales, ocho destinados a comida y dos para bebidas, servicios higiénicos diferenciados, una cancha de Paintball "Extreme Paintball Field", 40 plazas de aparcamiento, áreas verdes y zona de juegos para niños. Cada local dispone de $9,20 \ m^2$ de espacio interior, con 4 metros de frente a la plaza, una ventana de atención y una puerta posterior de servicio.

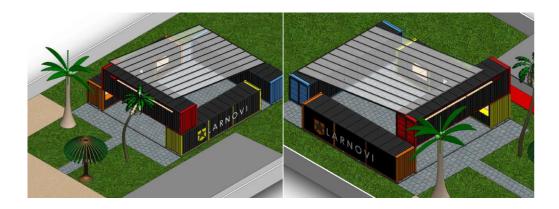


Figura 1. Propuesta final de diseño y color de "El Refugio Ecoplaza Gastronómica". Primer diseño, autoría propia.

La plaza se encuentra ubicada en la Av. Ilalo S1-107 y Galaxias, a 20 minutos del centro de Quito, en el valle de los Chillos, siendo uno de los ejes con mayor crecimiento comercial, rodeado de conjuntos residenciales, urbanizaciones, colegios y empresas.

Figura 2. Imagen del valle de los Chillos, occidente de Quito, Tomado de GoogleMaps

La plaza abrió al público el 19 de noviembre del 2016 bajo el nombre de "El Refugio Ecoplaza gastronómica".

Figura 3. Fotografía frontal e interior "El Refugio Ecoplaza Gastronómica".

En la construcción de "El Refugio EcoPlaza Gastronómica", se buscó un enfoque ecológico, modernista y además que brinde ocio y confort a las personas, lo cual fue plenamente conseguido, pero no se tiene una cuantía que permita conocer en qué proporción "El Refugio Ecoplaza Gastronómica" ha colaborado con el medio ambiente.

Por este motivo se plantea la realización de este trabajo de eco-auditoría que permita conocer de manera más específica cual es la colaboración de "El Refugio Ecoplaza Gastronómica" con el Medio Ambiente; cabe destacar que este trabajo permitirá promocionar a "El Refugio", como un sitio amigable con el medio ambiente, promocionará la reutilización de materiales y ser un ejemplo de construcción y desarrollo urbano sostenible.

2. Objetivos.

El principal objetivo de este trabajo es realizar una Eco-auditoría de la vida útil de "El Refugio EcoPlaza Gastronómica" para conocer de manera muy aproximada el consumo energético y la huella de carbono durante su construcción y los 5 años de funcionamiento planteado inicialmente en el proyecto.

2.1. Objetivos específicos.

- Conocer la demanda energética y la huella de carbono de la construcción de "El Refugio Ecoplaza Gastronómica".
- Conocer la demanda energética y la huella de carbono que se generara durante la vida útil de "El Refugio EcoPlaza Gastronómica" lo más aproximado posible.
- Realizar una comparación entre el impacto que se hubiera generado si la plaza se hubiese construido con materiales nuevos o en construcción tradicional.

3. Metodología: Cálculo del consumo energético y huella de carbono.

El ciclo de vida de un producto, abarca todas las fases de vida del mismo, los productos tienen fases y vida limitada, sin embargo, muchos productos pueden ser reutilizados y tener una segunda vida o un potencial al final de su vida útil. El potencial de estos productos permite que al final de su ciclo de vida (*EoL*, por sus siglas en inglés), los materiales que lo componen puedan ser utilizados o introducidos en nuevos materiales o nuevos productos, con lo cual se colabora con la disminución de la energía necesaria

para obtener estos materiales desde cero (energía incorporada) o bien disminuir la energía necesaria para procesarlos en nuevos productos.

El ciclo de vida (*lifecycle*) va desde la fase de diseño hasta la eliminación del producto, por lo cual, dependiendo del diseño, del consumo de materiales y de los procesos de manufactura a los que sea sometido, va a tener un mayor o menor impacto ambiental.

Una forma de poder conocer este impacto ambiental es mediante la realización de ecoauditorías, que es una evaluación inicial rápida de las demandas energéticas y de la
huella de carbono de la vida de un producto permitiendo al diseñador el generar
cuantificaciones a los consumos de un producto desde la fase de extracción de material
y su energía incorporada (*Embodied energy*, Hm) hasta su fase final de eliminación o
potencial de segunda vida para poder realizar comparaciones de diseño, conocer el
posible impacto ambiental y mejorar el desempeño del producto.

Como la eco-auditoría, es una herramienta rápida de estimación de energía y emisiones, se recomienda suficiente con explicar los componentes que constituyen el 95% de la masa del producto y solamente tener en cuenta aquellos materiales que se consideren "especiales" o raros como ciertos metales o compuestos que, aunque su proporción en masa puede ser mínima, su energía incorporada (Hm) es muy elevada.

Para realizar una eco-auditoría se parte de las entradas del usuario y los datos obtenidos de los materiales para generar un inventario de los materiales que se utilizaron para crear el producto. Para la elaboración del inventario de materiales es necesario recolectar datos de los materiales de catálogos de fabricantes o bien de bases de datos de programas especializados en materiales.

Una vez que se tienen el inventario de materiales se puede comenzar la eco-auditoría, la cual tiene las siguientes fases:

- 1. Material.
- 2. Fabricación.
- 3. Transporte.
- 4. Uso.
- 5. Eliminación.

Material

En la fase de material se calcula la cantidad de energía y la huella de carbono que se generan para poder producir cada uno de los materiales. Para la energía del material se utiliza la energía incorporada (Hm) que es la energía necesaria para obtener un quilogramo de material (MJ/kg) y se la multiplica por la masa del material; de igual manera, la huella de CO2 en (kg/kg) del material se calcula multiplicando la masa del material por su huella incorporada que es la cantidad de CO2 emitidos para producir un quilogramo de material.

Fabricación

La energía de fabricación o procesado de un material (Hp) es la energía necesaria para el conformado del material en un producto, normalmente el procesado primario es el que más energía consume en el proceso, de igual manera, la Huella de CO2 del procesado se calcula en base a la huella de CO2 de cada proceso, multiplicándolo por la masa del material. Para algunos materiales como las cerámicas, cementos y maderas, la energía asociada al procesado primario suele estar incluida en el valor para producir el material (Hm/CO2 *footprint*).

Transporte

En el mundo actual, un producto es desarrollado en diferentes lugares, ya que el mercado global permite a las personas el acceder a diferentes proveedores y obtener el material o producto que mejor se adapte a sus necesidades. El transporte de un material es un proceso de conversión de energía primaria a energía mecánica el cual se calcula como la energía consumida por tonelada y quilómetro (MJ/Tm·km), que también lleva asociada una huella de carbono en (kg/Tm·km). La eficiencia del transporte varía dependiendo del tipo de transporte y del tipo de combustible que se utilice, como se ve en el ANEXO 1 (Granta Ces Edupack, 2016) los valores utilizados para el cálculo del transporte son promedios para diferentes segmentos del transporte de bienes.

Fase de Uso

Muchos productos a lo largo de su vida útil consumen energía para su funcionamiento, la cual puede venir de un sistema eléctrico (para productos estáticos), o bien de un combustible (si el producto es móvil) como un vehículo. Para el cálculo de la energía

utilizada y emisiones de CO2 equivalentes en el uso (Granta Ces Edupack, 2016) se tiene:

Energia Utilizada (J) = ratio de energia (w) * ciclos de trabajo(s) *
$$\frac{Equiv. energetica \left(\frac{MJ}{MJ}\right)}{Eficiencia del Producto}$$
(1)
$$CO2 en el Uso (kg) = \frac{ratio de energia (w) * ciclos de trabajo(s)}{1x10^6} * \left(\frac{huella de CO2 \left(\frac{kg}{MJ}\right)}{Eficiencia del Producto}\right)$$
(2)

$$CO2 \ en \ el \ Uso \ (kg) = \frac{ratio \ de \ energia \ (w) * ciclos \ de \ trabajo(s)}{1x10^6} * \left(\frac{huella \ de \ CO2 \ \left(\frac{kg}{MJ}\right)}{Eficiencia \ del \ Producto}\right)$$
(2)

La información de equivalencias energéticas, huellas de CO2 y eficiencia del producto varía dependiendo del lugar y la tecnología que se ocupe, en el ANEXO 2 (Granta Ces Edupack, 2016) se muestran valores promedios para energías equivalentes y huellas de CO₂.

Fase de eliminación

El final de un producto es cuando el producto a cumplido con su tiempo de vida útil y debe decidirse cuál es la mejor opción para la eliminación del producto, en esta fase se distinguen 2 contribuciones distintas que son la disposición (disposal) o bien el potencial al final del ciclo de vida (EoL Potencial) del producto.

La disposición de un producto corresponde a cuando el material es llevado a un vertedero (landfill) hasta que se considere si puede existir algún otro uso para ese material, normalmente está incluido el costo de la recolección, transporte y selección del material para su vertido.

En el potencial al final del ciclo de vida de un producto se considera que se puede hacer con sus materiales, es decir poder darles otro uso y con esto poder contribuir con la disminución de energía y emisiones de CO2 necesarias para obtener material virgen. El potencial al final del ciclo de vida puede ser considerado como los ahorros que se tendrían en futuros ciclos con el uso de los materiales o componentes recuperados. Los procesos utilizados para evaluar el potencial Eol son combustión, degradación de uso (downcycle), reciclaje, re- manufactura y re-utilización del producto o del material.

Los cálculos utilizados para determinar la carga ambiental de los grados que contienen material reciclado (Granta Ces Edupack, 2016) son los siguientes:

$$H_{grade} = \left(\left(\frac{100 - Rf}{100} \right) * Hm + \left(\frac{Rf}{100} \right) * Hrc \right) \left(\frac{MJ}{kg} \right)$$
 (3)

$$CO_{2grade} = \left(\left(\frac{100 - Rf}{100} \right) * CO_{2m} + \left(\frac{Rf}{100} \right) * CO_{2cr} \right) \left(\frac{kg}{kg} \right)$$
(4)

Donde <u>Hm</u> es la energía incorporada en la producción primaria del material, <u>Rf</u> es la fracción reciclada, <u>Hrc</u> es la energía incorporada en el reciclaje, <u>CO2m</u> es la huella de carbono en la producción primaria y <u>CO2rc</u> es la huella de carbono en el reciclaje.

Los casos de EoL potencial (Granta Ces Edupack, 2016) que se utilizaran en este trabajo son:

Reutilización

$$H_{reutilizacion} = -H_{grade} * \frac{r}{100} \quad \left(\frac{MJ}{kg}\right) \tag{5}$$

$$CO_{2reutilizacion} = -CO_{2grade} * \frac{r}{100} \quad \left(\frac{MJ}{kg}\right) \tag{6}$$

Reproceso

$$H_{reproceso} = \beta \left(H_{rc} - H_{grade} \right) * \frac{r}{100} \left(\frac{MJ}{kg} \right) \tag{7}$$

$$CO_{2reproceso} = \beta \left(CO_{2rc} - CO_{2grade} \right) * \frac{r}{100} \left(\frac{MJ}{kg} \right) \tag{8}$$

Donde <u>Hgrade</u> es la energía incorporada del grado del material, <u>r</u> es el porcentaje de material recuperado, <u>CO2grade</u> es la huella de carbono del grado del material y $\underline{\beta}$ es el factor nominal de degradación (*downcycling*) siendo asignado el valor de 0,2 para termoplásticos y 0,5 para metales.

3.1.CES Edupack 2016.

CES Edupack 2016 es un programa utilizado para la enseñanza de materiales y los procesos relacionados con éstos, cuenta con una base de datos de más de 9000 materiales con características, propiedades e incluso con utilizaciones más comunes para cada tipo de material (Granta Ces Edupack, 2016).

ECO-AUDIT es una herramienta del CES que brinda al diseñador la capacidad de elaborar el estudio del ciclo de vida de un producto, al poder introducir los materiales utilizados para un producto, sus cantidades y los procesos a los que se sometió, junto con las bases de datos del programa, calcula la energía demandada y la huella de Carbono en todas las fases de vida del producto, incluyendo gráficas y reportes del estudio realizado; la utilización de esta herramienta será la base para la realización de los cálculos necesarios para el presente trabajo.

4. Eco-auditoría: análisis y resultados.

En el proyecto de la construcción de la plaza se planteó para la construcción la necesidad de reutilizar y reciclar la mayor cantidad de materiales basando los locales comerciales en contenedores marítimos, con el fin de construir un espacio que sea amigable con el medio ambiente, contemporáneo e industrial.

En tal virtud, para realizar el presente trabajo se planteó 3 casos, un caso real que permitirá conocer la demanda energética y la huella de carbono de la construcción de la plaza y su funcionamiento, y dos casos hipotéticos que permitirán hacer comparaciones y análisis de los resultados obtenidos, los casos de estudio son:

- Construccion de "El Refugio Ecoplaza Gastronómica" con materiales reutilizados y reciclados (caso real).
- Construccion de "El Refugio Ecoplaza Gastronómica" en diseño original, pero con materiales nuevos (caso hipotético)
- Construccion de "El Refugio Ecoplaza Gastronómica" con materiales tradicionales (caso hipotético).

4.1.Inventario de materiales.

Para la elaboración del inventario se recolecto información de los materiales utilizados de los planos de construcción, estructurales, eléctricos y sanitarios aprobados por el municipio de Quito, de los contratos de subcontratistas del proyecto y además se

realizaron cálculos de cantidades de ciertos materiales en base a la información de los planos y por hojas técnicas de los fabricantes de los materiales, ver ANEXO 3.

En el ANEXO 4, se describen los materiales (uso y peso) que fueron necesarios para la construcción de "El Refugio Ecoplaza", con el diseño original (será la base de materiales para los casos de estudio); en la figura 4, se poder observar una representación gráfica del peso de cada material en la construcción de "El Refugio Ecoplaza Gastronómica".

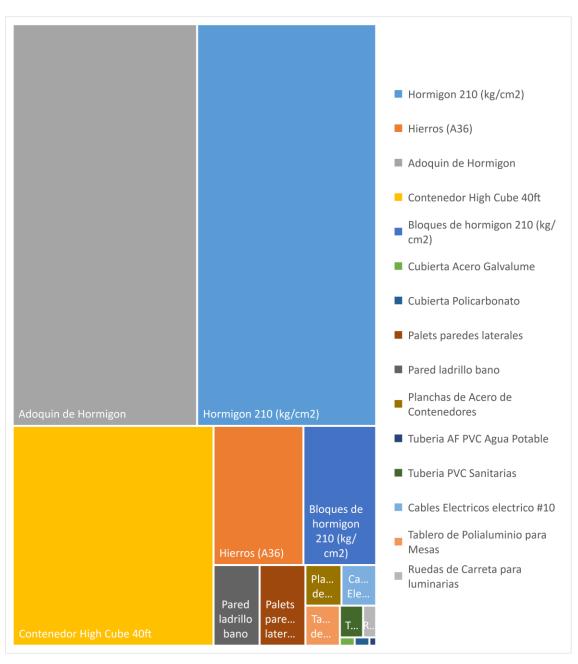


Figura 4. Peso de los materiales en la construcción de "El Refugio Ecoplaza".

4.2. Identificación de materiales.

Para la utilización de la herramienta Eco-audit del CES, es necesario identificar los materiales utilizados en la construccion, para poder ingresarlos en el programa y obtener los resultados deseados. En este caso se utilizó las características propias del programa el cual permite identificar materiales o sus equivalencias por características como el nombre comercial, nombre técnico, normativas aplicadas al material, propiedades del material y por la utilización más común que se le da a cada material. En el ANEXO 5 se puede ver el listado de materiales junto con el material utilizado en el CES como, por ejemplo, para la cubierta de policarbonato del techo de la plaza en el programa CES se seleccionó el PC (*low viscosity, molding and extrusión, flame retarding*) que en el programa CES tiene su utilización para láminas y techos.

4.3. Desarrollo De Materiales.

Existen materiales que, por su constitución o su reciente incorporación en procesos industriales, todavía no se encuentran registrados dentro de las bases de datos del CES y por ello es necesario el desarrollarlos o bien buscar materiales con equivalencias en propiedades para obtener un material con las propiedades lo más aproximadas a lo real. Los materiales a desarrollar para su utilización en el programa CES son:

- Acero Corten A de los contenedores.
- Acero Galvalume utilizado en la cubierta del techo de "El Refugio".
- Planchas de poli-aluminio para las mesas de "El Refugio".

Acero Corten A de los Contenedores

Los contenedores marítimos son realizados en aceros tipo corten debido a sus propiedades anticorrosivas, pese a eso no se encontró una equivalencia directa a este material con la base de datos del CES, por lo que se realizó la selección de un material equivalente alternativo basándose en las características del acero corten grado A. En las tablas 1 y 2 se describe la composición y características mecánicas del acero corten A (Nippon steel and Sumitomo Metal), valores que se introducirán en el programa CES para obtener un metal equivalente para su utilización en el estudio.

Tabla 1. Composición del Acero Corten A y B para construcción de contenedores marítimos.

Aceros Tipo Corten Contenido en Porcentaje										
Grado	C	Si	Mn	P	S	Al	Cr	Cu	V	Ni
Corten A	0,12	0,25-0,75	0,20-0,50	0,07-0,15	0,03	0,015-0,06	0,50-1,25	0,25-0,55	-	0,65

Tabla 2. Propiedades mecánicas del acero corten.

Propiedades Mecánicas Aceros Tipo Corten						
Límite de elasticidad Resistencia a la Tracción Elongación						
Grado	Mínimo (Mpa)	Mpa	Mínimo (%)			
Corten A	355	470-630	20			

Al ingresar el contenido y las propiedades del Acero Corten A en el programa (ver figura 5), el material que más se aproxima y por ende que debe de tener las características de comportamiento, demandas energéticas y huellas de carbono más aproximada a la del acero corten A es el acero al carbono ASME SA216 (TYPE WCC).

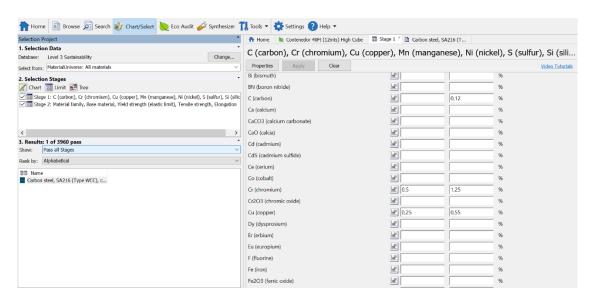


Figura 5. Pantalla de CES Edupack en la selección de características de materiales.

Acero Galvalume

Una forma de proteger a los metales es con recubrimientos como el galvanizado (recubrimiento de Zinc), que le brinda protección ante las condiciones climáticas. Para mejorar estas características de protección se ha desarrollado el galvalume, que es un recubrimiento compuesto por Aluminio en un 55%, Zinc en un 43-44% y un 1% de otros.

Para desarrollar las características ecológicas de este material, se utilizó la herramienta de síntesis (SYNTHESIZER) del CES, que permite predecir comportamientos de materiales o estructuras basado en las características estándar de materiales de las bases de datos del programa (Granta Ces Edupack, 2016). Para obtener las propiedades ecológicas del Galvalume se construyó un modelo multicapas (5), con un alma central de acero estándar (A36 o Equivalente SAE 1020) y a cada lado del acero una capa de Al y Zn.

En la figura 6 se pueden ver las características ecológicas obtenidas para el acero galvalume.

Zn-45% Aleacion Galvalume-Al-55% Aleacion Galvalume -Acero Base Ale					
Layout: Eco attributes only		~	≪ Show/Hide		
Primary material production: energy, C	CO2 and wat	er			
Embodied energy, primary production Sources	(i)	36,2	- 36,	2 MJ/kg	
CO2 footprint, primary production Sources	i	2,63	- 2,6	3 kg/kg	
Water usage	(i)	Not Applic	able	l/kg	

Figura 6. Propiedades ecológicas generadas con la herramienta Synthesizer del programa CES.

Poli-aluminio

El poli-aluminio es un material obtenido a partir de los cartones de *tetrapak*, que después de ser utilizados, son reprocesados quedando un material compuesto por polietileno de baja densidad con un 4% a 8% de aluminio. Este material puede ser reutilizado como refuerzo de otros materiales o bien como un material nuevo después de un proceso de limpieza, calentamiento y compresión para darle la forma que se desee.

Con la densidad del poli-aluminio y los porcentajes de contenido de material (Poligreen de Toluca, 2017), se obtiene la masa de polietileno y de aluminio para una plancha de 105x85x1,5 (cm), para poder ingresar la información en el Eco-audit.

4.4. Eco-Auditoría.

Como ya se mencionó, se van a realizar 3 casos de estudio, partiendo con el primer caso hipotético donde la plaza es construida con los materiales planteados (uso de contenedores) pero nuevos; seguido del caso real que es la construcción con materiales reutilizados o reciclados y terminando en un tercer caso hipotético de la construcción de la plaza con elementos tradicionales y no con el uso de contenedores.

4.4.1. Materiales.

En el ANEXO 6, se describen los materiales introducidos en el programa CES para la construcción de "El Refugio" junto con su uso y su peso. En la tabla 3, se presenta el cálculo de la energía y la huella de CO2 del acero galvalume, que no fue realizada con el programa CES debido a que no puede hacer los cálculos directamente por no tener el material en sus bases de datos o alguno equivalente.

Tabla 3. Calculo de energía y huella de CO2 para el acero Galvalume.

Cálculos ACV Acero Galvalume						
Proceso	Acero	Cantidad (kg)	T. Energía (MJ)	T. CO2 (kg)		
Material	Galvalume	449,100	16257	1181		

Caso 1: Posible construcción con materiales nuevos.

Debido a que se desea conocer el impacto que genero la plaza en el medio ambiente los cálculos iniciales se hicieron partiendo de la premisa que todos son materiales vírgenes sin contenido reciclado, se utilizó la lista de materiales del ANEXO 6.

Caso 2: Construcción real, materiales reutilizados o reciclados.

Es el caso real de la construcción de la plaza, se utiliza la misma base de materiales (ANEXO 6), pero ahora reconociendo aquellos que fueron reutilizados o incorporados en la construcción de la plaza, para conocer tanto la energía, así como la huella de CO2 ahorrada tanto en la obtención del material, así como en los procesos de fabricación.

Para hacer los cálculos de reaprovechamiento de los materiales, se obtuvo las propiedades del material del programa CES como se ve en la tabla 4, y se realizaron los

cálculos de demanda energética y huella de CO2 como se ve en la tabla 5 para cada material reaprovechado. La lista de todos los cálculos realizados se muestra en el ANEXO 7.

Tabla 4. Propiedades ecológicas del acero SA216 WCC.

	Carbon steel SA216 WCC	Min.	Max.	Promedio
	Embodied Energy, 1er Production (MJ/kg)	30,800	33,900	32,350
<u>ENERGIA</u>	CO2 Footprint, 1er Production (kg/kg)	2,260	2,490	2,375
<u>MATERIAL</u>	Embodied Energy, Recycling (MJ/kg)	8,100	8,960	8,530
	CO ₂ Footprint, Recycling	0,636	0,703	0,670
	(kg/kg)			

Tabla 5. Ejemplo de cálculos de reutilización o reprocesamiento de un material.

Estructura Contenedor								
Material	Carbon steel SA216 WCC	Cantidad	4,000					
Peso (kg)	2400,000	Total (kg)	9600,000					
	Energía Reutilización							
$H_{reutiliza}$	$H_{reutilizacion} = -H_{grade} * \frac{r}{100} \left(\frac{MJ}{kg}\right)$							
Rf	Hm	Hrc	Total (MJ/kg)					
0,000	32,350	8,530	32,350					
Hrc	Hgrade	r	Total(MJ/kg)					
8,530	32,350	100,000	-32,350					
Peso (kg)	9600,000	Energía (MJ)	-310560					
Hm	Embodied Energy, Primary production							
Hrc	Embodied energy Reciclyng							
Rf	Fracción Reciclada							
Huel	la de carbono Reutilización							
${\it CO}_{ m 2reutiliza}$	$d_{cion} = -CO_{2grade} * \frac{r}{100}$	$\left(\frac{MJ}{kg}\right)$						
Rf	CO2m	CO2rc	Total (MJ/kg)					
0,000	2,375	0,670	2,375					
CO2rc	CO2 grade	r	Total(MJ/kg)					
0,670	2,375	100,000	-2,375					
Peso (kg)	9600,000	CO ₂ (kg)	-22800					
CO2rc	CO ₂ footprint, recycling							
CO2m	CO2 footprint,	primary producti	on					
Rf	Fracci	ón reciclada						

Caso 3: Posible construcción tradicional.

Es el caso hipotético en el cual la plaza no se hubiese construido con contenedores, sino que los locales comerciales fueron construidos con elementos tradicionales como el bloque de hormigón y el cemento.

Para este caso se reemplazó todos los consumos de los contenedores y como se ve en la tabla 6, se creó una nueva lista de materiales para la construcción de paredes y losas para los locales con las mismas dimensiones que los locales en los contenedores.

Tabla 6. Materiales necesarios para una posible construcción tradicional de locales con las mismas características que los realizados en contenedores.

Área	Uso	Material	Inf. obtenida	Material CES	Peso (kg)
	Acero de Refuerzos de estructuras	Acero standart (A36) equiv. AISI 1020		carbon steel AISI 1020 normalized	1222,18
	Hormigón 210 paredes	Hormigón 210 (kg/cm2), cemento Portland	Arquitecto Freddy Pañega Ecuador		16543,78
	Hormigón 240 Losas	Hormigón 240 (kg/cm2), cemento Portland			24937,18
Locales	Bloque 20x15x40 para las paredes y techos	Bloques de hormigón 210 (kg/cm2)		Struct	Concrete Structural lightweight
	Bloques para las divisiones	Bloques de hormigón 210 (kg/cm2)			3685,50
	Hormigón para las divisiones	Hormigón 210 (kg/cm2), cemento Portland			1145,72

4.4.2. Fabricación.

De igual manera que en la fase de materiales, se realizó la identificación de los procesos que intervienen en el desarrollo de la construcción. En la tabla 7, se identifican los procesos primarios y secundarios necesarios para la construcción de "El Refugio".

Tabla 7. Procesos primarios y secundarios de los materiales para la construcción de " El Refugio Ecoplaza Gastronómica".

Uso	Material CES	Proceso Primario	Proceso Secundario
Suelo de hormigón	Concrete Structural lightweight	Incluido en el material	-
Refuerzos de losas	carbon steel AISI 1020 normalized	Desbastado (rough rolling)	-
Bloque adoquín para el suelo	Concrete Structural lightweight	Incluido en el material	Cortado

Contenedor HC 40ft	Carbon steel SA216(Type WCC)	Fundición	Cortado y maquinado
Suelo de Madera Contenedor	Pine (Pinus Palustris)	Incluido en el material	Cortado
Bloques para las divisiones	Concrete Structural lightweight	Incluido en el material	-
Hormigón para las divisiones	Concrete Structural lightweight	Incluido en el material	-
Refuerzos y uniones metálicas	carbon steel AISI 1020 normalized	Desbastado (rough rolling)	Cortado
Estructura metálica principal y soportes	carbon steel AISI 1020 normalized	Extrusión	Cortado
Cubierta ligera Acero Galvalume	Material Desarrollado	Incluido en el material	-
Cubierta ligera transparente	PC low viscosity, flame retarded	Moldeado de Polímeros	Cortado
Pallets en paredes	Pine (Pinus Palustris)	Incluido en el material	Cortado
Clavos de acero para madera	carbon steel AISI 1020 normalized	Fundición	Cortado
Ladrillo para pared de baño	Terracota	Incluido en el material	Cortado
Hormigón para pared de ladrillo	Concrete Structural lightweight	Incluido en el material	-
Pared Metálica baño de mujeres	Carbon steel SA216(Type WCC)	Fundición	Maquinado
Pared Metálica de quiosco exterior	Carbon steel SA216(Type WCC)	Fundición	Maquinado
Tuberías de agua potable	PP(random copolymer, low flow)	Extrusión de Polímeros	Cortado
Tuberías de aguas sanitarias	PVC (rigid, molding and extrusion)	Extrusión de Polímeros	Cortado
Sistema eléctrico locales	Cable (solo para Eco-audit)	Incluido en el material	-
Sistema eléctrico potencia	Cable (solo para Eco-audit)	Incluido en el material	-
Mesas Plaza	Material Desarrollado	Extrusión polímeros, fundición de aluminio	Cortado
Luminarias interior plaza	Guayacán (lignumvitae)	Incluido en el material	Cortado

En la tabla 8, se muestra los cálculos de fabricación del acero Galvalume debido a que el programa CES no los podía hacer directamente por no contar con el material en la base de datos.

Tabla 8. Cálculos de Energía y huella de CO2 del Acero Galvalume en la construcción de "El Refugio Ecoplaza Gastronómica".

Cálculos ACV Acero Galvalume						
Fase	Sujeciones	Cantidad (u)	T. Energía (MJ)	T. CO ₂ (kg)		
Fabricación	Pequeñas	90	2,520	0,189		

Caso 1: Posible Construcción con Materiales Nuevos.

Se lo podría considerar un caso base ya que se ocupó los procesos de la tabla 7 para los materiales de la construcción de "El Refugio" y se ingresó en el programa CES para la obtención de resultados.

Caso 2: Construcción Real, Materiales Reutilizados o Reciclados.

En el caso de la construcción de "El Refugio", como se ve en la tabla 9, la plaza reutilizo y reproceso un gran número de materiales por lo cual también hubo ahorros en la fabricación, como ejemplo el contenedor metálico HC utilizado no es necesario que vuelva a someterse a un proceso de laminado, doblado o soldado porque ya está construido y por ello genera un ahorro de energía y huella de CO2 en la fase de fabricación.

Tabla 9. Materiales reutilizados y reprocesados en la construcción de " El Refugio".

Área	Uso	Materiales Reutilizados
Suelo	Hormigón 210 (kg/cm2)	
	Hierros (A36)	
	Adoquín de Hormigón	X
Locales	Contenedor High Cube 40ft	X
	Bloques de hormigón 210 (kg/cm2)	
	Hormigón 210 (kg/cm2)	
Estructura	Placas de Acero (A36)	
Metálica	Perfiles G de Acero (A36)	
Cubierta	Cubierta Acero Galvalume	
Techos	Cubierta Policarbonato	
Paredes	Pallets paredes laterales	X
	Pallets pared interior superior	X
	Pallets en pared posterior superior	X
	Clavos de acero para madera	X
	Pared ladrillo baño	
	Hormigón 210 (kg/cm2)	
Áreas	Pared metálica baño de mujeres	X
Adicionales	Pared metálica Quiosco Ext.	X
Sanitarios	Tubería AF PVC 1"	
	Tubería AF PVC 3/4"	
	Tubería AF PVC 1/2"	
	Tubería PVC 6"	
	Tubería PVC 4"	
	Tubería PVC 3"	
	Tubería PVC 2"	

Instalaciones	Sistema eléctrico locales	
Eléctricas	Sistema eléctrico potencia	
Varios	Mesas poli-aluminio plaza	X
	Luminarias de ruedas de carreta	X

Caso 3: Posible construcción tradicional.

Como se ve en la tabla 10, si "El Refugio" se hubiese construido tradicional, sería necesario el generar la fase de fabricación para los elementos que reemplazarían al contenedor para construir los locales comerciales y sumarle los valores obtenidos para el resto de elementos ocupados en la construcción.

Tabla 10. Procesos necesarios para la construcción de locales comerciales de manera Tradicional.

Uso	Material CES	Proceso primario	Proceso secundario
Acero de Refuerzos de estructuras	carbon steel AISI 1020 normalized	Desbastado (rough rolling)	Cortado
Hormigón 210 paredes	Concrete (Structural lightweight	Incluido en el material	-
Hormigón 240 Losas	Concrete (Structural lightweight	Incluido en el material	-
Bloque (20x15x40 cm) para paredes y techos	Concrete (Structural lightweight	Incluido en el material	Cortado
Bloques (20x10x40cm) para las divisiones	Concrete (Structural lightweight	Incluido en el material	Cortado
Hormigón para las divisiones	Concrete (Structural lightweight	Incluido en el material	-

4.4.3. Transporte

Los materiales y productos se fabrican en diferentes lugares, por lo que el transporte es una fase importante en la construcción de la plaza, en la tabla 11, se muestra el tipo de transporte y la distancia promedio del transporte de cada material hasta "El Refugio Ecoplaza Gastronómica". En esta fase se considera que el transporte es el mismo para el caso 1 y el caso 2 ya que ambos casos comparten los mismos materiales.

Tabla 11. Transporte y distancia promedio de los materiales utilizados en "El Refugio Ecoplaza Gastronómica".

Uso	Material Ces	Ubicación	Transporte	Distancia (km)
Suelo de hormigón	Concrete (Structural lightweight			
Refuerzos	carbon steel AISI 1020 normalized	Distribuidor local	Camión 32 Tn	30
Bloque de adoquín para	Concrete (Structural			

el suelo	lightweight			
Contenedor HC 40ft	Carbon steel SA216(Type WCC)	China	Transporte Marítimo	16740
Suelo de Madera Contenedor	Pine (Pinus Palustris)	Puerto Guayaquil	Camión 32 Tn	1733
Bloques para las divisiones	Concrete Structural lightweight	Distribuidor	Camión 32	30
Hormigón para las divisiones	Concrete Structural lightweight	local	Tn	
Refuerzos y uniones metálicas	carbon steel AISI 1020 normalized	Contaction o	Canaldo 14	20
Estructura metálica principal y soportes	carbon steel AISI 1020 normalized	Contratista	Camión 14 Tn	30
Cubierta ligera Acero Galvalume	Material Desarrollado			
Cubierta ligera transparente	PC low viscosity, flame retarded	Distribuidos local	Camión 14 Tn	32
Pallets en paredes Clavos de acero para madera	Pine (Pinus Palustris) carbon steel AISI 1020 normalized	Distribuidor local	Camión 14 Tn	50
Ladrillo para pared de baño	Terracota	Distribuidor local	Camión 14 Tn	10
Hormigón para pared de ladrillo	Concrete Structural lightweight	Distribuidor local	Camión 14 Tn	10
Pared Metálica baño de mujeres Pared Metálica de	Carbon steel SA216(Type WCC) Carbon steel SA216(Type WCC)	Distribuidor local	Vehículo ligero	15
quiosco exterior Tuberías de agua potable	WCC) PP(random copolymer, low flow)	Distribuidor	Vehículo	5
Tuberías de aguas sanitarias	PVC (rigid, molding and extrusion)	local	ligero	
Sistema eléctrico locales	Cable (solo para Eco-audit)	Distrile 11	V-1./. 1.	15
Sistema eléctrico potencia	Cable (solo para Eco-audit)	Distribuidor local	Vehículo ligero	15
Mesas Plaza	Material Desarrollado	Distribuidor local	Camión 14 Tn	30
Luminarias interior plaza	Guayacán (lignumvitae)	Distribuidor local	Vehículo ligero	25

En la tabla 12, se muestra el cálculo de la fase de transporte para el acero Galvalume, debido a que no pudo calcularse directamente en el CES por no existir el material o un equivalente en su base de datos.

Tabla 12. Calculo del transporte para el acero Galvalume

Cálculos ACV Acero Galvalume					
Proceso	Vehículo	Cantidad (kg)	Distancia (Km)	T. Energía (MJ)	T. CO ₂ (kg)
Transporte	Trabajo Ligero	449,100	30,000	18,862	1,339

Caso 3: Posible construcción tradicional

Si "El Refugio" se hubiese construido con materiales tradicionales, sería necesario calcular el transporte para los materiales que reemplazarían al contenedor y sumarle los valores de los materiales compartidos. En la tabla 13, se muestra el transporte y la distancia para los materiales necesarios para construir los locales de manera tradicional.

Tabla 13. Ubicación, transporte y distancia para los materiales en construcción tradicional.

Uso	Material CES	Ubicación	Transporte	Distancia (km)
Acero de Refuerzos de estructuras	carbon steel AISI 1020 normalized	Distribuidor local	Camión 14 Tn	10
Hormigón 210 paredes	Concrete Structural lightweight	Hormigones del Valle	Camión 32 Tn	25
Hormigón 240 Losas	Concrete Structural lightweight	Hormigones del Valle	Camión 32 Tn	25
Bloque (20x15x40 cm) para las paredes y techos	Concrete Structural lightweight	Distribuidor local	Camión 32 Tn	15
Bloques (20x10x40cm) para las divisiones	Concrete Structural lightweight	Distribuidor local	Camión 32 Tn	30
Hormigón para las divisiones	Concrete Structural lightweight	Distribuidor local	Camión 32 Tn	30

4.4.4. Uso.

Muchos productos necesitan energía para su funcionamiento, y en gran cantidad de ocasiones suele ser en esta fase en la cual existe el mayor consumo energético. En la tabla 14 se muestra el consumo energético mensual promedio de "El Refugio" basado en el consumo de los 4 meses desde su apertura (planilla eléctrica); para obtener el promedio de energía necesario para los cálculos del consumo energético de la fase de uso de la eco-auditoría como se ve en el ANEXO 8.

Tabla 14. Consumo promedio de los últimos 4 meses de "El Refugio Ecoplaza Gastronómica".

Mes	Consumo (kWh/mes)	Días facturados
Diciembre	1450	29
Enero	1437,5	30
Febrero	950	27
Marzo	1699	33
Promedio	1384,125	29,750

En la tabla 15, se muestra el consumo energético y huella de CO2 en el uso de "El Refugio Ecoplaza Gastronómica" para un periodo de 5 años de funcionamiento, para los

cálculos se tomó el valor de 1,55 (MJ/MJ) y 0,058 (kg/MJ), que son los promedios para Latinoamérica de la equivalencia energética y huella de carbono respectivamente; finalmente, para la eficiencia del producto, se tomó un valor promedio de la transformación eléctrica a energía térmica, mecánica, química y radiación que dio un promedio igual a 0,89 (ANEXO 3).

Debido a que la fase uso hace referencia al consumo energético que tendría la plaza, esta no está relacionada directamente con los materiales en su construcción por lo cual el consumo energético y la huella de CO2 sería la misma para el caso 1, caso 2 y caso 3.

Tabla 15. Consumo energético en el uso de "El Refugio Ecoplaza Gastronómica".

Uso EcoPlaza "El Refugio"		
Energía en el uso (MJ)	550044,37	
CO2 en el uso (Tn)	20,582	

4.4.5. Final del ciclo de vida.

Al final de la vida útil es necesario el conocer que se va a realizar con los materiales, es decir saber si existe algún potencial de segunda vida o bien si estos van a vertedero. En la tabla 16, se muestra el final de vida de cada uno de los materiales de "El Refugio", tanto para el caso 1 (caso hipotético con materiales vírgenes) y el caso 2 (Caso real, construcción de la plaza con materiales reutilizados o reaprovechados).

Tabla 16. Final de vida de los materiales utilizados en la construcción de "El Refugio Ecoplaza Gastronómica".

Uso	Material Ces	Final de vida
Suelo de hormigón	Concrete Structural lightweight	Vertedero
Refuerzos	carbon steel AISI 1020 normalized	Vertedero
Bloque de adoquín para el suelo	Concrete Structural lightweight	Reutilización
Contenedor HC 40ft	Carbon steel SA216(Type WCC)	Reutilización
Suelo de Madera Contenedor	Pine (Pinus Palustris)	Reutilización
Bloques para las divisiones	Concrete Structural lightweight)	Vertedero
Hormigón para las divisiones	Concrete Structural lightweight)	Vertedero
Refuerzos y uniones metálicas	carbon steel AISI 1020 normalized	Reutilización
Estructura metálica principal y soportes	carbon steel AISI 1020 normalized	Reutilización
Cubierta ligera Acero Galvalume	Material Desarrollado	Reutilización
Cubierta ligera transparente	PC low viscosity, flame retarded	Reutilización
Pallets en paredes	Pine (Pinus Palustris)	Reutilización
Clavos de acero para madera	carbon steel AISI 1020 normalized	Reutilización

Ladrillo para pared de baño	Terracota	Vertedero
Hormigón para pared de ladrillo	Concrete Structural lightweight	Vertedero
Pared Metálica baño de mujeres	Carbon steel SA216(Type WCC)	Reutilización
Paredes Metálicas quiosco ext.	Carbon steel SA216(Type WCC)	Reutilización
Tuberías de agua potable	PP(random copolymer, low flow)	Vertedero
Tuberías de aguas sanitarias	PVC (rigid, molding and extrusion)	Vertedero
Sistema eléctrico locales	Cable (solo para Eco-audit)	Reutilización
Sistema eléctrico potencia	Cable (solo para Eco-audit)	Reutilización
Mesas Plaza	Material Desarrollado	Reutilización
Luminarias interior plaza	Guayacán (lignumvitae)	Reutilización

Caso 3: Posible construcción tradicional

Si "El Refugio Ecoplaza" se hubiese construido con materiales tradicionales para los locales en ves del uso de contenedores, al final de la vida útil del proyecto, será necesario el conocer cuál será el destino de los materiales utilizados. En la tabla 17, se presenta los materiales necesarios para la construcción tradicional de los locales, junto con el posible manejo de estos materiales al final de la vida útil de la plaza.

Tabla 17. Final de vida de los materiales que se hubiesen utilizado en "El Refugio Ecoplaza Gastronómica" en construcción tradicional.

Uso	Material CES	Final de vida
Acero de Refuerzos de estructuras	Carbon steel AISI 1020 normalized	Vertedero
Hormigón 210 paredes	Concrete Structural lightweight	Vertedero
Hormigón 240 Losas	Concrete Structural lightweight	Vertedero
Bloque (20x15x40 cm) para paredes y techos	Concrete Structural lightweight	Vertedero
Bloques (20x10x40cm) para divisiones	Concrete Structural lightweight	Vertedero
Hormigón para las divisiones	Concrete Structural lightweight	Vertedero

4.5. Resultados.

Una vez que se ha distinguido cada fase de la eco-auditoría junto con sus cálculos por medio del programa CES y también por medio de hojas de cálculo, se puede presentar los resultados para la construcción de "El Refugio Ecoplaza Gastronómica", en cada uno de los casos estudiados y que se los vuelve a describir para uso del presente capitulo.

 Caso 1: Posible construcción con materiales nuevos basado en contenedores (caso hipotético).

- Caso 2: Construcción real, materiales reutilizados o reciclados basado en contenedores (caso real).
- Caso 3: Posible construcción tradicional sin contenedores (caso hipotético).

El hecho de realizar estos 3 casos de estudio es para poder comparar la demanda energética y la huella de carbono producida si la plaza se hubiese construido de 3 maneras diferentes.

4.5.1. Consumo energético y huella de carbono con materiales nuevos.

En la tabla 18, se muestran los resultados de la demanda energética y huella de carbono de la construcción, al igual que en la tabla 19 se presenta los resultados de la eco-auditoría para el <u>caso 1</u> si "El Refugio Ecoplaza" se hubiese construido con materiales nuevos.

En la eco-auditoría se incluye la demanda energética y huella de CO2 de la plaza para un funcionamiento (fase de uso) de 5 años que es lo proyectado inicialmente por parte de los inversores.

Tabla 18. Demanda energética y huella de carbono para la Construcción de "El Refugio" si se hubiese utilizado materiales nuevos.

Construcción Con Materiales Nuevos		
Demanda Energética (GJ)	1183	
Huella de CO2 (Tn)	86,428	

Tabla 19. Energía utilizada y CO2 emitido por "El Refugio" en su vida útil si hubiese sido construido con materiales nuevos.

Eco-Auditoría Construcción Con Materiales Nuevos				
	Energía Utilizada (GJ)	Porcentaje	CO2 Emitido (Tn)	Porcentaje
Material	892	51,48	67,78	63,35
Fabricación	217	12,57	13,45	12,57
Transporte	56	3,28	4,03	3,77
Uso	550	31,72	20,58	19,23
Desecho	16	0,95	1,15	1,08
TOTAL	1733	100,00	107,01	100,00
Potencial	-738		-54,99	

En la figura 7, se puede ver como la fase de material es aquella que mayor demanda y Huella de CO2 generaría si la plaza hubiese sido construida con materiales nuevos, esto se debe a que muchos materiales requieren de mucha energía para su obtención eh incluso muchos materiales ya tienen incluida la energía de su fabricación dentro de su obtención ya que después de ser transformados de materia prima a material útil no requieren de mayores procesos.

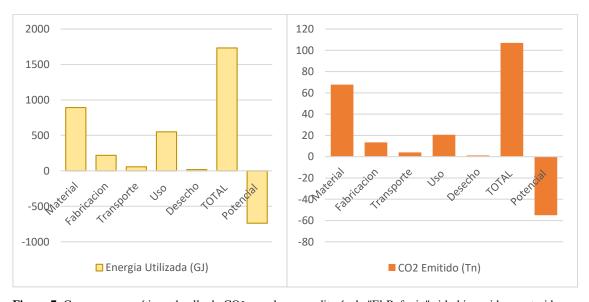


Figura 7. Consumo energético y huella de CO2 para la eco-auditoría de "El Refugio" si hubiese sido construida con materiales nuevos.

4.5.2. Consumo energético y huella de carbono con materiales reutilizados o reciclados (caso real).

En la tabla 20, se muestran los resultados de la demanda energética y huella de carbono, de la construcción, mientras que en la tabla 21, se presenta los resultados de la eco-auditoría para el <u>caso 2</u> si "El Refugio Ecoplaza" se hubiese construido con materiales reutilizados y reaprovechados, basando los locales comerciales en el uso de contenedores.

En la eco-auditoría se incluye la demanda energética y huella de CO2 de la plaza para un funcionamiento (fase de uso) de 5 años, proyectado inicialmente por parte de los inversores.

Tabla 20. Demanda energética y Huella de Carbono en la Construcción de "El Refugio" con materiales reutilizados.

construcción con materiales reutilizados		
Demanda Energética (GJ)	404	
Huella de CO2 (Tn)	31	

Tabla 21. Demanda Energética y huella de CO2 de la construcción de "El Refugio Ecoplaza Gastronómica".

Eco-Auditoría Construcción Con Materiales Reutilizados				
	Energía Utilizada (GJ)	Porcentaje	CO ₂ Emitido (Tn)	Porcentaje
Materia	3129	32,77	24,45	47,37
Fabricación	18	1,92	1,39	2,69
Transporte	56	5,95	4,03	7,81
Uso	550	57,61	20,58	39,87
Desecho	16	1,73	1,16	2,23
TOTAL	955	100	51,61	100
Potencial	-738		-55	

En la figura 8, se puede ver claramente que la mayor demanda de energía se daría en el funcionamiento de "El Refugio" (fase de uso); esto se debe a que como se reutilizo y se reproceso materiales para la construcción de la plaza se generan ahorros tanto en los materiales como en la construcción. Ahora bien, la huella de CO2 equivalente sigue siendo más elevada en la fase de materiales esto debido a que, aunque se reutilizan materiales, muchos otros materiales requieren de gran cantidad de energía para su obtención, en cambio la energía que requiere la plaza para su funcionamiento puede venir de energías renovables como hidroeléctricas en el caso de Ecuador con cero emisiones de carbono.

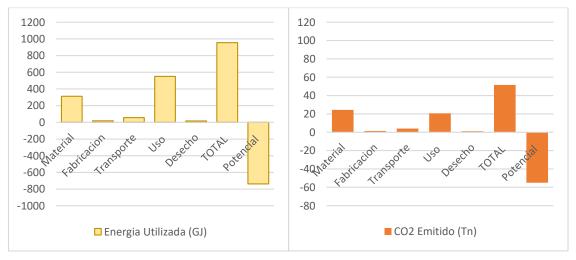


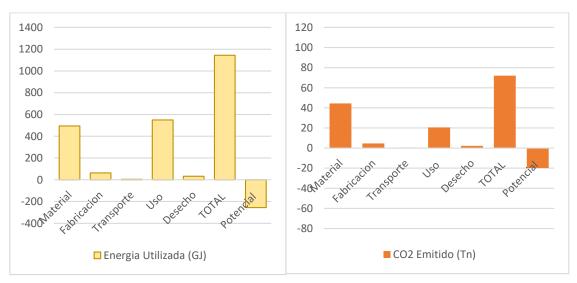
Figura 8. Demanda energética y huella de CO2 de la construcción de "El Refugio" para la vida útil del proyecto.

4.5.3. Consumo energético y huella de carbono en construcción tradicional.

En el Ecuador la gran mayoría de edificaciones es realizada en hormigón y bloque, esto debido a que son materiales muy económicos, con gran presencia en el mercado y además debido a la ubicación del país en la línea ecuatorial, no es necesario el considerar condiciones especiales porque no existen estaciones climáticas.

En la tabla 22, se muestran los resultados de la demanda energética y huella de carbono en la construcción, mientras que en la tabla 23, se presenta los resultados de la eco-auditoría para el <u>caso 3</u> si "El Refugio Ecoplaza" se hubiese construido con materiales tradicionales, es decir sin el uso de contenedores para la construcción de los locales comerciales.

En la eco-auditoría se incluye la demanda energética y huella de CO2 de la plaza para un funcionamiento (fase de uso) de 5 años, proyectado inicialmente por parte de los inversores.


Tabla 22. Demanda energética y huella de carbono para la construcción de "El Refugio" si se hubiese utilizado materiales tradicionales para los locales comerciales.

Construcción Tradicional		
Demanda Energética (GJ)	593	
Huella de CO2 (Tn)	51,47	

Tabla 23. Demanda energética y huella de carbono de "El Refugio Ecoplaza Gastronómica" si hubiese sido construida con materiales tradicionales.

Eco-Auditoría Construcción Tradicional				
	Energía Utilizada (GJ)	Porcentaje	CO2 Emitido (Tn)	Porcentaje
Materia	494	43,24	44,39	61,62
Fabricación	62	5,44	4,56	6,32
Transporte	4	0,40	0,33	0,46
Uso	550	48,08	20,58	28,56
Desecho	32	2,82	2,18	3,02
TOTAL	1143	100	72,05	100
Potencial	-256420		-19,78	

En la figura 9, se puede ver como la fase de uso, es la de mayor demanda energética a lo largo de su vida útil si hubiese sido construida con materiales tradicionales, esto debido a que los materiales tradicionales como los bloques, el hormigón eh incluso el acero A36 necesitan de menor energía para su obtención que otros materiales más especializados; pese a esto la mayor huella de CO2 se sigue generando en la fase de material debido a que la energía que consume la plaza para su funcionamiento proviene de energías renovables como las hidroeléctricas que es el sistema de generación más utilizado en Ecuador.

Figura 9. Demanda energética y huella de CO2 de "El Refugio Ecoplaza Gastronómica" en el caso que hubiese sido construida con materiales tradicionales.

5. Análisis de resultados.

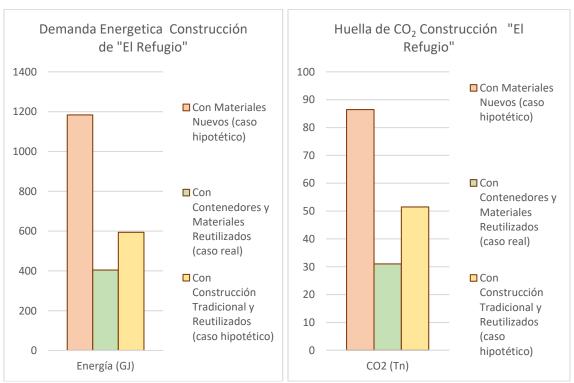
En la tabla 24, se muestran los valores tanto de demanda energética, así como de huella de CO2 de "El Refugio Ecoplaza Gastronómica" para los 3 casos de estudio.

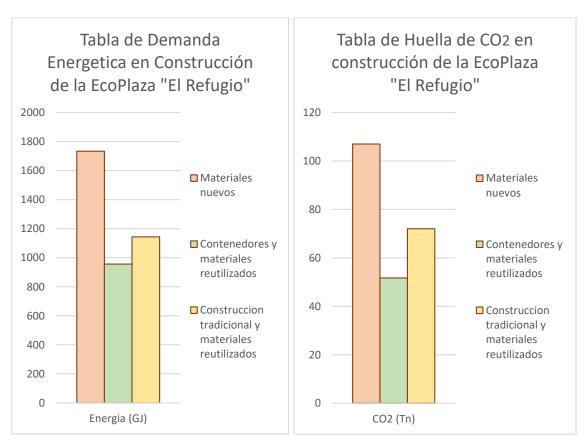
Tabla 24. Comparación entre los 3 casos de estudio de la Demanda energética y Huella de CO2 en la construcción de "El Refugio Ecoplaza".

Tabla de Consumos	Energía (GJ)	CO ₂ (Tn)
Con Materiales Nuevos (caso hipotético)	1183	86,42
Con Contenedores y Materiales Reutilizados (caso real)	404	31,03
Con Construcción Tradicional y Reutilizados (caso hipotético)	593	51,47

En la figura 10, se puede observar claramente que la construcción con materiales reutilizados y reciclados es aquella que tiene menor impacto ambiental. Se puede decir que basar las construcciones en contenedores y materiales reutilizados puede disminuir la demanda energética y la huella de CO2 en un 65 por ciento aproximadamente que si

se utilizase materiales nuevos y en un 35 por ciento que si se construyera de manera tradicional.




Figura 10. Demanda energética y huella de CO2 de la Construcción de "El Refugio Ecoplaza Gastronómica".

En la tabla 25, se muestran la demanda total y la huella de CO2 de la vida útil (ecoauditoría) de "El Refugio Ecoplaza Gastronómica" en los 3 casos de estudio.

Tabla 25. Comparación entre los 3 tipos de casos estudiados de demanda energética y huella de CO2 para "El Refugio Ecoplaza Gastronómica".

Tabla de Consumos	Energía (GJ)	CO ₂ (Tn)
Materiales nuevos (caso hipotético)	1733	107,01
Contenedores y materiales reutilizados (caso real)	955	51,72
Construcción tradicional y reutilizados (caso hipotético)	1143	72,05

En la figura 11, la construcción con materiales reutilizados y reprocesados (caso real), tiene la menor demanda energética y huella de CO2 durante toda la vida útil de la plaza (5 años) en comparación con los otros dos casos de estudio. La reutilización de materiales permite tener ahorros energéticos de hasta el 50 y 20 por ciento comparado con materiales nuevos y materiales tradicionales respectivamente, al igual que, la huella de CO2 tendrá una disminución de hasta un 50 por ciento comparado con materiales nuevos y un 30 por ciento comparado con materiales tradicionales.

Figura 11. Demanda energética y huella de CO₂ de la eco-auditoría de "El refugio Ecoplaza Gastronómica" para los 3 casos de estudio.

6. Conclusiones y recomendaciones.

- Se pudo comprobar que reutilizar materiales, permite tener grandes ahorros energéticos en la construcción y además que se puede contribuir notablemente con el medio ambiente; para "El Refugio Ecoplaza Gastronómica", la reutilización de materiales permite disminuir la demanda energética en hasta un 50 por ciento en comparación con otros casos de construcción estudiados.
- Las emisiones de CO2 disminuyen mientras mayor sea el contenido de materiales reutilizados en la construcción, para "El Refugio", construir con materiales reciclados genera una disminución en las emisiones de CO2 de hasta un 60 por ciento, gracias a los ahorros tanto en la fase de material como en la fase de fabricación.

- Durante la vida útil de "El Refugio Ecoplaza Gastronómica", se consumirán aproximadamente 955 GJ de energía y emitirá aproximadamente 52 toneladas de CO2; de las cuales 20 toneladas corresponden a las emisiones que se generarían en el uso de la misma. Estas 20 toneladas de CO2 se consideró como la misma para los 3 casos estudiados y además independiente del resto de fases de la eco-auditoría, ya que, por las condiciones climáticas de Quito, el uso de la plaza no variara de acuerdo al diseño y los materiales, sino, en base al consumo energético necesario para el funcionamiento de la plaza.
- El reutilizar materiales y componentes (darles una segunda vida), evita que sea necesario el seguir obteniendo materiales nuevos (vírgenes), para la creación de productos, disminuyendo el grado de explotación de los recursos y colaborando con el medio ambiente al disminuir las emisiones de CO2, "El Refugio Ecoplaza Gastronómica" colabora con el medio ambiente al disminuir la energía demandada y las emisiones generadas en la construcción de la plaza, llegando incluso al final de la vida útil del producto a tener un potencial de reutilización muy elevado de los materiales que se utilizó porque muchos de ellos pueden seguir ocupándose en futuros proyectos o diseños.
- Construcciones como la de "El Refugio Ecoplaza Gastronómica" permiten generar espacios sostenibles, económicos, de rápida implementación, eficientes, amigables con el medio ambiente y que demuestran que los materiales pueden ser reutilizados e inclusive tener usos diferentes a los de su diseño original. Mientras mejor se pueda reutilizar materiales y se los pueda incluir nuevamente en los ciclos de vida de nuevos materiales o productos, menor será la demanda de materiales nuevos que requiera el ser humano y mejor será el impacto que generara en el ambiente en el que vive.
- Los resultados obtenidos en esta Eco-auditoria, dan valores aproximados de las posibles demandas de energía y huella de carbono que implicaría la vida útil de la plaza. Estos valores, aunque no son exactos, ayudan a los diseñadores y personas interesadas a tener valores cuantitativos que permitan dimensionar el impacto y generar conciencia sobre la utilización de materiales y la importancia de reintroducir o reutilizar estos en nuevos ciclos de vida de diferentes productos para ser más amigables y colaboradores con el medio ambiente.

7. Referencias Bibliográficas.

- Ashby, M. F. (2013). *Materials and the Environment*. Elsevier.
- Ecuador, S. (2017). *Seteco Ecuador (Tejas Traslucidads PC)*. Obtenido de http://www.setecoecuador.com/policarbonato-arkos/tejas/flypage.tpl.html
- Ecuador, S. (2017). Seteco Tejas Traslucidas. Obtenido de http://www.setecoecuador.com/policarbonato-arkos/tejas/flypage.tpl.html
- Espinosa-Galindo Estudio de Diseño. (2016). Plano Instalaciones Sanitarias.
 Quito, Ecuador.
- Espinosa-Galindo Estudio de Diseño. (2016). Planos Electricos "El Refugio".
 Quito, Ecuador.
- Espinosa-Galindo Estudio de Diseño. (2016). Planos estructuras Metalicas "El Refugio". Quito, Ecuador.
- Espinosa-Galindo Estudio de Diseño. (2016). Planos generales "El Refugio".
 Quito, Ecuador.
- Granta Ces Edupack. (2016). Ces Edupack 2016.
- Hapag-Lloyd. (s.f.). Hapag-Lloyd Container specification. Obtenido de http://www.hapag-lloyd.com
- Inspiration, G. M. (2017). Granta CES Edupack Video Tutorials. Obtenido de http://www.grantadesign.com/education/resources/videotutorials/2016/individua l.htm#/?playlistId=0&videoId=3
- International, A. (2001). High-Strength, Low-Alloy Steels. American Technical Publishers.
- (s.f.).Kubiec-Conduit Kubimil. Kubiec del Ecuador, Quito.
- Metal, N. S. (s.f.). *COR-TEN*. Obtenido de http://www.nssmc.com/
- Pallets, T. (2016). Tropical Pallets Ecuador. Obtenido de http://www.tropicalpallets.com.ec/what-i-do/
- (s.f.).Perfiles Estructurales Correas "G". *DIPAC Productos Estructurales*. DIPAC Productos de Acero, Manta.
- Poligreen de Toluca. (2017). *Poligreen de Toluca*. Obtenido de http://poligreentoluca.com.mx/catalogo_lamina.html
- Searates. (marzo de 2017). Searates, Transporte y Logistica. Obtenido de https://www.searates.com

- Steel, B. (2012). *Beyond Steel Corten Properties*. Obtenido de http://beyond-steel.blogspot.com.es/2012/07/corten-steel-indonesia.html
- Unacem Ecuador. (2016). ficha Tecnica Selvalegre. Quito, Ecuador.

8. Anexos.

Anexo 1. Energía y huella de CO_2 en el transporte de un material o producto tomado de la base de datos del CES Edupack 2016.

Tipo de Transporte	Energía en el transporte (MJ/Tn/km)	Huella de CO ₂ en el transporte (kg/MJ)
Carga Marítima	0,16	0,071
Flete Fluvial	0,27	0,071
Tren	0,31	0,071
Camión de 32 Tn	0,46	0,071
Camión de 14 Tn	0,85	0,071
Vehículo ligero	1,4	0,071
Flete aéreo recorrido largo	8,3	0,067
Flete aéreo recorrido corto	15	0,067
Helicóptero	50	0,067

Anexo 2. Energías equivalentes y huellas de CO₂ para la fase de uso.

País	Energía equivalente (MJ/MJ)	Huella de CO ₂ (kg/MJ)
Mundo	2,18	0,131
Europa	2,07	0,113
Antigua USSR	2,32	0,14
Norteamérica	2,34	0,141
Latinoamérica	1,55	0,058
Asia	2,62	0,172
Oriente Medio	2,96	0,208

Tipos de entradas y salidas	Eficiencia del producto
Eléctrico a térmico	1
Eléctrico a mecánico (motores eléctricos)	0,89
Eléctrico a químico (baterías acidas)	0,83
Eléctrico a químico (baterías avanzadas)	0,89
Eléctrico a radiación (lámparas incandescentes)	0,17
Eléctrico a radiación (Leds)	0,86

Anexo 3. Calculo de materiales.

Suelos

Resumen de hormigón 210 kg/cm2 Suelos							
Elemento Volumen (m³) Densidad Peso (kg)							
Puntos	4	2098,4	8393,6	8,39			
Cabezales	2,34	2098,4	4910,2	4,91			
Cadenas	5,5	2098,4	11541,2	11,54			
TOTAL	11,84	2098,4	24845,1	24,84			

Resumen de hierros (A36)								
Diámetro longitud Cantidad (varillas de 12m) Peso (kg)								
8	824,4	69	325,64	0,32564				
10	264	22	162,89	0,16289				
14	1034	87	1249,07	1,24907				
	,	ГОТАL	1737,6	1,7376				

Adoquín suelo plaza									
Elemento m ² Adoquines/m ² total Peso (kg) Total (kg)									
Adoquines plaza	140	50	7000	3	21000				
Adoquines Entrada	39,67	50	1983,5	3	5950,5				
TO	8983,5		26950,5						

Locales Comerciales

Locales con contenedores HC						
Elemento Cantidad P. Unitario (kg) Peso (kg)						
Contenedores HC 40ft	4,000	3907,000	15628,000			
Plywood de Pino 200x110x2,5 (cm)	435,600					
TOTAL	16063,600					

Paredes Divisoras Locales							
Cantidad de Bloque/m2 12,500 Pared 2,4x2,7 6,480 m²							
Elemento	cantidad x pared	Numero de paredes	Cantidad	Peso (kg)	Total (kg)		
Bloque Concreto 40x20x10 (cm)	81,000	7,000	567,000	6,500	3685,500		

Hormigón 210 kg/cm2 Paredes Divisorias							
líneas Ancho Alto Largo Volumen (m3							
13,000	0,100	0,025	2,400	0,078			
Volumen (m3) /pared	Densidad (kg/m3)	Peso (kg)	No. Paredes	Total (kg)			
0,078	2098,400	163,675	7,000	1145,726			

Estructura Metálica.

ESTRUCTURA METALICA						
Resumen de						
Elemento	Cantidad	Peso Unitario (kg)	Peso (kg)	Peso (Tn)		
Placa Base	20,000	6,360	127,200	0,127		
Placas L en unión de columna-container 150x50x75x3	18,000	0,350	6,300	0,006		
placas en unión columna container 150x150x75x3	9,000	0,530	4,770	0,005		
Placas L en unión columna viga 150x50x50x4	18,000	0,470	8,460	0,008		
Placas L en unión viga correa 100x40x40x4	96,000	0,250	24,000	0,024		
Placas L en unión de container viga 150x50x50x4	12,000	0,470	5,640	0,006		
Placas L en unión Container Viga 150x100x100x4	6,000	0,940	5,640	0,006		
Placas triangular en unión container- espesor 10mm	20,000	0,350	350 7,000 0,			
Total			189,010	0,189		
Resumen de per	files tipo G					
Elementos	Peso (kg)	Peso (Tn)				
G 150X75X25X5 mm (columnas)	28080,000	12,450	349,596	0,350		
G 200X75X25X4 mm (vigas)	119844,000	11,700	1402,175	1,402		
G 150x50x15x3 (correas)	140760,000	6,130	862,859	0,863		
Total			2614,630	2,615		

Cubiertas Techo Plaza

Calculo Peso Policarbonato	onato Espesor Densi (m) (g/cr		Densidad (kg/m3)	Peso (kg/m2)			
	0,001	1 1,200 1200,000		1,200			
Cubierta							
Material	Área (m2)	Área Necesaria	Peso (kg/m2)	Peso (kg)			
Techo translucido Policarbonato	31,000	37,200	1,200	44,640			

CUBIERTA GALVALUME							
Material Necesaria Canas							Peso (kg)
Aleación Galvalume	3750,000	0,00002	125,000	150,000	11,250	2,000	22,500
Acero AISI1020	7900,000	0,00036	125,000	150,000	426,600	1,000	426,600
		TOTA	AL				449,100

<u>Paredes de Pallets.</u>

PAREDES DE PALETS						
Elemento	Cantidad	Peso Unitario (kg)	Peso (kg)			
Pallets Reciclados paredes laterales	30,000	24,000	720,000			
Pallets interior Container superior	10,000	24,000	240,000			
Pallets pared de fondo	16,000	24,000	384,000			
Clavos de Acero	3360,000	0,004	13,440			
Total	3416,000		1344,000			

Pared de ladrillo baño de mujeres.

Pared de Ladrillo Baño de Mujeres						
Elemento	Cantidad	Peso Unitario (kg)	Peso kg	Tn		
Pared ladrillo (200x270cm)	225,000	6,000	1350,000	1,350		

Concreto para Pared de 200x270 (cm)						
Líneas	Ancho	Alto	Largo	Volumen		
13,000	0,150	0,025	2,000	0,098		
Elemento	Volumen (m3)	Densidad	Peso (kg)	Tn		
Hormigón 210	0,098	2098,400	204,594	0,205		

Construcciones Adicionales.

Paredes Exteriores Baño de Mujeres						
Tipo/Material Estado Cantidad Peso (kg) Total (kg						
Planchas Acero corrugado	Reciclado	7,000	26,600	186,200		

Paredes Quiosco Exterior						
Tipo/Material	Estado	Cantidad	Peso (kg)	Total (kg)		
Planchas Acero corrugado	Reciclado	13,000	26,600	345,800		

Materiales Sanitarios

Materiales Sanitarios						
Tubería	Cantidad mts	Peso kg/m	Total (kg)			
Tubería AF PP 1"	30,00	0,25	7,50			
Tubería AF PP 3/4"	56,00	0,18	10,08			
Tubería AF PP 1/2"	36,00	0,08	2,88			
Tubería PVC 6"	30,00	3,35	100,50			
Tubería PVC 4"	82,00	1,57	128,74			
Tubería PVC 3"	25,00	1,08	27,00			
Tubería PVC 2"	22,00	0,53	11,66			
r	ГОТАL		288,36			

Materiales Sistema Eléctrico

Cableado Eléctrico Básico							
Material	mts	3 hilos	Peso kg/km	Total (kg)			
Cable eléctrico #10	463	1389	68,9	95,7021			
Cable Thin flex #2 AWG	184	552	757,2	417,9744			
Te	Total						

Materiales Para Elementos Varios.

Mesas de Poli-aluminio						
Tipo/Material	Estado	Info. Adicional	Cantidad	Peso (kg)	Total (kg)	
Tablero poli-aluminio Mesas	Reciclado	15mm	40	12,54	501,6	
P. Poli-aluminio (105x85x	(1,5 cm)	Porcentaje	e (%)	Peso x Ma	terial (kg)	
P. Poli-aluminio (105x85x Dens. Poli-aluminio (g/cm3)		Porcentaje Polietileno	Aluminio		ý	

LUMINARIAS PLAZA						
Ítem Tipo/Material Estado Cantidad Peso (kg) Total (kg)						
Luminarias	Ruedas carreta (Luminarias)	Reciclado	4,000	38,000	152,000	

Anexo 4. Materiales Utilizados en la Construcción de " El Refugio Ecoplaza Gastronómica" por uso y peso.

	CONSTRUCCION ECOPLAZA EL REFUGIO							
Área	Uso	Peso (kg)	Peso (Tn)	Peso (Tn)	%	%		
<u>Suelo</u>	Hormigón 210 (kg/cm2)	24845,06	24,85	53,53	30,22	65,11		
	Hierros (A36)	1737,60	1,74		2,11			
	Adoquín de Hormigón	26950,50	26,95		32,78			
<u>Locales</u>	Contenedor High Cube 40ft	16063,60	16,06	20,89	19,54	25,41		
	Bloques de hormigón 210 (kg/cm2)	3685,50	3,69		4,48			
	Hormigón 210 (kg/cm2)	1145,73	1,15		1,39			
Estructura	Placas de Acero (A36)	189,01	0,19	2,80	0,23	3,41		
<u>Metálica</u>	Perfiles G de Acero (A36)	2614,63	2,61		3,18			
<u>Cubierta</u>	Cubierta Acero Galvalume	44,64	0,04	0,09	0,05	0,11		
<u>Techos</u>	Cubierta Policarbonato	44,64	0,04		0,05			
<u>Paredes</u>	Pallets en paredes laterales	720,00	0,72	2,91	0,88	3,54		
	Pallets en pared int. contenedor superior	240,00	0,24		0,29			
	Pallets en pared posterior superior	384,00	0,38		0,47			

	Clavos de acero para madera	13,44	0,01		0,02	
	Pared ladrillo baño de mujeres	1350,00	1,35		1,64	
	Hormigón 210 (kg/cm2)	204,59	0,20		0,25	
<u>Áreas</u>	Planchas Acero de Baño Mujeres	186,20	0,19	0,53	0,23	0,65
<u>Adicionales</u>	Planchas de Acero Quiosco Ext.	345,80	0,35		0,42	
<u>Sanitarios</u>	Tubería AF PVC 1"	7,50	0,01	0,29	0,01	0,35
	Tubería AF PVC 3/4"	10,08	0,01		0,01	
	Tubería AF PVC 1/2"	2,88	0,00		0,00	
	Tubería PVC 6"	100,50	0,10		0,12	
	Tubería PVC 4"	128,74	0,13		0,16	
	Tubería PVC 3"	27,00	0,03		0,03	
	Tubería PVC 2"	11,66	0,01	1	0,01	
Instalaciones	Cable eléctrico #10	95,70	0,10	0,51	0,12	0,62
<u>Eléctricas</u>	Cable Thin flex #2 AWG	417,97	0,42	1	0,51	
Varios	Tablero de Poli-aluminio Mesas	501,60	0,50	0,65	0,61	0,79
	Ruedas de Carreta para luminarias	152,00	0,15]	0,18	
	TOTAL	82220,57	82,22	82,22	100	100

Anexo 5. Materiales utilizados por el CES Edupack 2016.

Materiales Ecoplaza "EL REFUGIO"					
Área	Uso	Material	Información obtenida	Material CES	
	suelo de hormigón	Hormigón 210 (kg/cm2), cemento Portland	Planos aprobados del	Concrete Structural lightweight	
<u>Suelo</u>	Refuerzos	Acero standart (A36) equiv. AISI 1020	municipio de Quito	carbon steel AISI 1020 normalized	
	bloque adoquín para el suelo	Hormigón ligero 210 (kg/cm2) cemento portland	Bloques Vipresa Ecuador	Concrete Structural lightweight	
	Contenedor HC 40ft	Aceros tipo Corten A,B, y HPS-A	CZQC Containers China	Carbon steel SA216(Type WCC)	
T 1	Suelo de Madera Contenedor	Suelo de Pino	CZQC Containers China	Pine (Pinus Palustris)	
<u>Locales</u>	bloques para las divisiones	Bloques de hormigón 210 (kg/cm2)	Bloques Vipresa Ecuador	Concrete Structural lightweight	
	Hormigón para las divisiones	Hormigón 210 (kg/cm2), cemento Portland	Arq. Freddy Pañega Ecuador	Concrete Structural lightweight	
Estructura	Refuerzos y uniones metálicas	Acero standart (A36) equiv. AISI 1020		carbon steel AISI 1020 normalized	
<u>Metálica</u>	Estructura metálica principal y soportes	Acero standart (A36) equiv. AISI 1020	Contrato con Construcciones	carbon steel AISI 1020 normalized	
Cubierta	Cubierta ligera Acero Galvalume	Acero Galvalume	Metálicas del valle, kubiec del ecuador	Material Desarrollado	
<u>Techos</u>	Cubierta ligera transparente	Policarbonato Traslucido	- Kubice dei cedadoi	PC(low viscosity, molding and extrusion, flame retarded)	
Davida	Pallets en paredes Laterales Pallets en contenedor superior Pallets en pared posterior superior	Pino Radiata	Empresa Tropical Pallets S.A.	Pine (Pinus Palustris) Pine (Pinus Palustris) Pine (Pinus Palustris)	
<u>Paredes</u>	Clavos de acero para madera	Acero standart (A36) equiv. AISI 1020	Ferretería Puruha	carbon steel AISI 1020 normalized	
	Ladrillo para pared de baño	ladrillo de terracota	Bloques Vipresa Ecuador	Terracota	
	Hormigón para pared de ladrillo	Hormigón 210 (kg/cm2), cemento Portland	Arq. Freddy Pañega Ecuador	Concrete Structural lightweight	
Áreas Adicionales	Paredes Metálicas baño de mujeres Paredes Metálicas de quiosco exterior	Aceros tipo Corten A,B, y HPS-A Aceros tipo Corten A,B, y HPS-A	CZQC Containers China	Carbon steel SA216(Type WCC) Carbon steel SA216(Type WCC)	
Conitor:	Tuberías de agua	Tubería AF PVC 1"	Tubos Plastigama y	PP(random copolymer, low flow)	
Sanitarios	potable	Tubería AF PVC 3/4"	planos aprobados por el municipio	PP(random copolymer, low flow)	

		Tubería AF PVC 1/2"		PP(random copolymer, low flow)
		Tubería PVC 6"		PVC (rigid, molding and extrusion)
	Tuberías de aguas	Tubería PVC 4"		PVC (rigid, molding and extrusion)
	sanitarias	Tubería PVC 3"		PVC (rigid, molding and extrusion)
		Tubería PVC 2"		PVC (rigid, molding and extrusion)
Instalaciones	Sistema eléctrico locales	Cable eléctrico #10	Información del programa CES para	Cable (solo para Eco- audit)
<u>Eléctricas</u>	Sistema eléctrico tomas de potencia	Cable Thin flex #2 AWG	estudio de Eco- Auditorías	Cable (solo para Ecoaudit)
Varios	Mesas Plaza	Poli-aluminio	Poligreen de Toluca, Fabricante Mexicano	Material Desarrollado
	Luminarias interior plaza	Madera de Guayacán (Lignus vitae)	Conocimiento General	Guayacán (lignumvitae)

Anexo 6. Lista de peso y uso de los materiales utilizados en la construcción de " El Refugio Ecoplaza".

Materiales Ecoplaza "EL REFUGIO"						
Área	Uso	Material CES	Peso (kg)			
	suelo de hormigón	Concrete (Structural lightweight	24845,056			
<u>Suelo</u>	Refuerzos	carbon steel AISI 1020 normalized	1737,6			
	bloque adoquín para el suelo	Concrete (Structural lightweight	26950,5			
	Contenedor HC 40ft	Carbon steel SA216(Type WCC)	15628			
Landan	Suelo de Madera Contenedor	Pine (Pinus Palustris)	435,6			
<u>Locales</u>	bloques para las divisiones	Concrete (Structural lightweight	3685,5			
	hormigón para las divisiones	Concrete (Structural lightweight	1145,7264			
<u>Estructura</u>	Refuerzos y uniones metálicas	carbon steel AISI 1020 normalized	189,01			
<u>Metálica</u>	Estructura metálica construcción	carbon steel AISI 1020 normalized	2614,6296			
<u>Cubierta</u>	Cubierta en acero Galvalume	Material Desarrollado	44,64			
<u>Techos</u>	Cubierta ligera transparente	PC low viscosity, flame retarded	44,64			
	Pallets en paredes Laterales	Pine (Pinus Palustris)	720			
	Pallets en contenedor superior	Pine (Pinus Palustris)	240			
Paredes	Pallets en pared posterior	Pine (Pinus Palustris)	384			
1 41 0000	Clavos de acero para madera	carbon steel AISI 1020 normalized	13,44			
	Ladrillo para pared de baño	Terracota	1350			
	Hormigón pared de ladrillo	Concrete (Structural lightweight	204,594			
<u>Áreas</u>	Pared metálica baño de mujeres	Carbon steel SA216(Type WCC)	186,2			
<u>Adicionales</u>	Pared metálica de quiosco ext.	Carbon steel SA216(Type WCC)	345,8			
		PP(random copolymer, low flow)	7,5			
	Tuberías de agua potable	PP(random copolymer, low flow)	10,08			
		PP(random copolymer, low flow)	2,88			
<u>Sanitarios</u>		PVC (rigid, molding and extrusion)	100,5			
	Tuborías do aguas conitarias	PVC (rigid, molding and extrusion)	128,74			
	Tuberías de aguas sanitarias	PVC (rigid, molding and extrusion)	27			
		PVC (rigid, molding and extrusion)	11,66			
<u>Instalaciones</u>	Sistema eléctrico locales	Cable (solo para Eco-audit)	95,7021			

<u>Eléctricas</u>	Sistema eléctrico potencia	Cable (solo para Eco-audit) 4	
<u>Varios</u>	Mesas Plaza	Material Desarrollado	501,6
	Luminarias interior plaza	Guayacán (lignum vitae)	152

Anexo 7. Cálculos de potencial de reutilización y reaprovechamiento de los materiales de " El Refugio".

Hm	Embodied Energy, Primary production
Hrc	Embodied energy reciclyng
Rf	Fraction recycled
CO ₂ rc	CO ₂ footprint, recycling
CO ₂ m	CO ₂ footprint, primary production
Rf	Fraction recycled

Suelo Plaza

A do suréu Dlorro						
	Adoquín Plaza	T	T			
Material	Hormigón Normal (Cemento Portland)	Cantidad	8983,00			
Peso (kg)	3	Total (kg)	26949,00			
	Potencial Energía al final del C	iclo de Vida				
Rf	Hm	Hrc	Total (MJ/kg)			
0,00	0,82	0,80	0,82			
Hrc	Hgrade	r	Total(MJ/kg)			
0,80	0,82	100,00	-0,82			
Peso (kg)	26949,00	Energía (MJ)	-22071,23			
	Potencial CO ₂ al final del Cicl	o de Vida				
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)			
0,00	0,12	0,07	0,12			
Hrc	CO ₂ grade	r	Total(MJ/kg)			
0,07	0,12	100,00	-0,12			
Peso (kg)	26949,00	CO ₂ (kg)	-3287,78			

Estructura Contenedor					
Material	Carbon steel SA216 WCC	Cantidad	4,000		
Peso (kg)	2400,000	Total (kg)	9600,000		
	Potencial Energía al final d	el Ciclo de Vida			
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	32,350	8,530	32,350		
Hrc	Hgrade	r	Total(MJ/kg)		
8,530	32,350	100,000	-32,350		
Peso (kg)	9600,000	Energía (MJ)	-310560,000		
	Potencial CO ₂ al final del	Ciclo de Vida			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	2,375	0,670	2,375		
Hrc	CO ₂ grade	r	Total(MJ/kg)		
	2,375	100,000	-2,375		
Peso (kg)	9600,000	CO ₂ (kg)	-22800,000		

	Paredes Conten	edor	
Material	Carbon steel SA216 WCC	Cantidad	4,000
Peso (kg)	1507,000	Total (kg)	6028,000
	Potencial Energía al final d	el Ciclo de Vida	
Rf	Hm	Hrc	Total (MJ/kg)
0,000	32,350	8,530	32,350
Hrc	Hgrade	r	Total(MJ/kg)
8,530	32,350	100,000	-32,350
Peso (kg)	6028,000	Energía (MJ)	-195005,800
	Potencial CO ₂ al final del	Ciclo de Vida	
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)
0,000	2,375	0,670	2,375
Hrc	CO ₂ grade	r	Total(MJ/kg)
	2,375	100,000	-2,375
Peso (kg)	6028,000	CO ₂ (kg)	-14316,500

Suelo Contenedor Plywood					
Material	Pino Palustris Long.	Cantidad	12,000		
Peso (kg)	36,30	0 Total (kg)	435,600		
	Potencial Energía al fi	nal del Ciclo de Vi	da		
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	11,05	0,000	11,050		
Hrc	Hgrade	r	Total(MJ/kg)		
0,000	11,05	0 100,000	-11,050		
Peso (kg)	435,60	0 Energía (MJ)	-4813,380		
	Potencial CO2 al fina	l del Ciclo de Vida			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	0,36	6 0,000	0,366		
Hrc	CO ₂ grade	r	Total(MJ/kg)		
	0,36	6 100,000	-0,366		
Peso (kg)	435,60	0 CO ₂ (kg)	-159,430		

Paredes de Pallets.

PALETS DE MADERA					
Material	Pino Radiata Long.	Cantidad	56,000		
Peso (kg)	24,000	Total (kg)	1344,000		
	Potencial Energía al f	inal del Ciclo de '	Vida		
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	12,200	0,000	12,200		
Hrc	Hgrade	r	Total(MJ/kg)		
0,000	12,200	100,000	-12,200		
Peso (kg)	1400,000	Energía (MJ)	-17080,000		
	Potencial CO ₂ al fin	al del Ciclo de Vi	da		
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	0,604	0,000	0,604		
Hrc	Hgrade	r	Total(MJ/kg)		
0,000	0,604	100,000	-0,604		
Peso (kg)	1344,000	CO ₂ (kg)	-811,104		

		CLAVO	S DE ACERO			
Material	Acero AISI 1020		Cantidad		,	3360,000
Peso (kg)		0,004	Total (kg)			13,440
	Potenc	ial Energía	al final del Ciclo d	le Vid	a	
Rf	Hm		Hrc		Total (MJ/kg)	
0,000		32,350	8	8,530		32,350
Hrc	Hgrade		r		Total(MJ/kg)	
8,530		32,350	100	0,000		-32,350
Peso (kg)		13,440	Energía (MJ)			-434,784
	Poter	ncial CO2 a	final del Ciclo de	Vida		
Rf	CO ₂ m		CO ₂ cr		Total (MJ/kg)	
0,000		2,375	(0,670		2,375
Hrc	Hgrade		r		Total(MJ/kg)	
		2,375	100	0,000		-2,375
Peso (kg)		13,440	CO ₂ (kg)		•	-31,920

Áreas Adicionales

Plancha Acero para Baño de Mujeres					
Material	Acero al carbon SA216 WCC	Cantidad	7,000		
Peso (kg)	26,600	Total (kg)	186,200		
	Potencial Energía al f	inal del Ciclo de Vid	la		
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	32,350	8,530	32,350		
Hrc	Hgrade	r	Total(MJ/kg)		
8,530	32,350	100,000	-32,350		
Peso (kg)	186,200	Energía (MJ)	-6023,570		
	Potencial CO ₂ al fir	al del Ciclo de Vida			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	2,375	0,670	2,375		
CO2rc	CO ₂ grade	r	Total(MJ/kg)		
0,670	2,375	100,000	-2,375		
Peso (kg)	186,200	CO ₂ (kg)	-442,225		

Plancha Acero Quiosco Exterior					
Material	Acero al carbon SA216 WCC	Cantidad	13,000		
Peso (kg)	26,600	Total (kg)	345,800		
	Potencial Energía al	final del Ciclo de Vida	a		
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	32,350	8,530	32,350		
Hrc	Hgrade	r	Total(MJ/kg)		
8,530	32,350	100,000	-32,350		
Peso (kg)	345,800	Energía (MJ)	-11186,630		
	Potencial CO ₂ al fi	nal del Ciclo de Vida			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	2,375	0,670	2,375		
CO ₂ rc	CO ₂ grade	r	Total(MJ/kg)		
0,670	2,375	100,000	-2,375		
Peso (kg)	345,800	CO ₂ (kg)	-821,275		

Planchas de Poli-Aluminio Para Mesas.

	Aluminio para uso con	Alimentos	
Material	Aluminio 514.0, sand cast, F	Cantidad	40,00
Peso (kg)	1,254	Total (kg)	50,16
P	otencial Energía al final del Ciclo d	e Vida (REPRO	CESO)
Rf	Hm	Hrc	Total (MJ/kg)
0,00	203,00	34,45	203,00
β	Hgrade	r	Total(MJ/kg)
0,50	203,00	100,00	-84,28
Peso (kg)	50,16	Energía (MJ)	-4227,23
	Potencial CO ₂ al final del Ciclo de	Vida (REPROC	ESO)
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)
0,00	14,20	2,71	14,20
β	CO ₂ grade	r	Total(MJ/kg)
0,50	14,20	100,00	-5,75
Peso (kg)	50,16	CO ₂ (kg)	-288,29

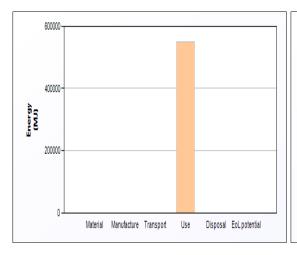
H	Polietileno de baja densidad para Comida (REPROCESO)					
Material	PE-LD (Molding and Extrucion)	Cantidad	40,00			
Peso (kg)	11,286	Total (kg)	451,44			
	Potencial Energía al final del	Ciclo de Vida				
Rf	Hm	Hrc	Total (MJ/kg)			
0,00	80,15	27,25	80,15			
β	Hgrade	r	Total(MJ/kg)			
0,20	80,15	100,00	-10,58			
Peso (kg)	451,44	Energía (MJ)	-4776,24			
	Potencial CO ₂ al final del Ciclo de V	ida (REPROCES	SO)			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)			
0,00	3,01	1,02	3,01			
β	CO ₂ grade	r	Total(MJ/kg)			
0,20	3,01	100,00	-0,40			
Peso (kg)	451,44	CO ₂ (kg)	-179,27			

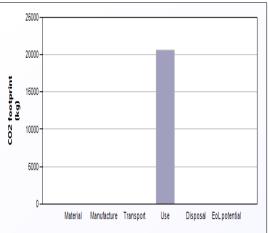
Ruedas de Carreta					
Material	Lignum Vitae L (Guayacan)	Cantidad	4,000		
Peso (kg)	38,000	Total (kg)	152,000		
	Potencial Energía al fina	del Ciclo de Vida			
Rf	Hm	Hrc	Total (MJ/kg)		
0,000	12,200		12,200		
Hrc	Hgrade	r	Total(MJ/kg)		
0,000	12,200	100,000	-12,200		
Peso (kg)	152,000	Energía (MJ)	-1854,400		
	Potencial CO2 al final o	lel Ciclo de Vida			
Rf	CO ₂ m	CO ₂ cr	Total (MJ/kg)		
0,000	0,604	0,000	0,604		
CO ₂ rc	CO2 grade	r	Total(MJ/kg)		
0,000	0,604	100,000	-0,604		
Peso (kg)	152,000	CO ₂ (kg)	-91,732		

Anexo 8. Cálculos de la fase de uso de "El Refugio Ecoplaza Gastronómica".

Consumo de Energía EcoPlaza "El Refugio"				
Mes	Consumo (kWh/mes)	Días Facturados		
Diciembre	1450	29		
Enero	1437,5	30		
Febrero	950	27		
Marzo	1699	33		
Promedio	1384,125	29,750		
Ratio	de Energía			
Consumo (kwh/día)	48,739)		
Horas al día	5			
ratio de energía (kW)	9,748			
Vida de la plaza estimada (anos)	5			
días por año	360			
Ciclos de trabajo (s)	32400000			

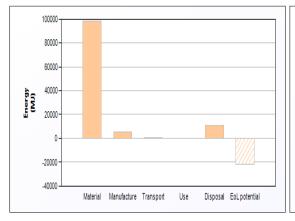
Energía en el Uso EcoPlaza "El Refugio"		CO2 en el Uso EcoPlaza "El Refugio"	
Ratio de Energía(w)	9747,89916	Ratio de Energía(w) 9747,8	
Ciclos de trabajo(s)	32400000	Ciclos de trabajo(s)	32400000
Energía Equivalente (MJ/MJ)	1,55	Huella CO ₂ (kg/MJ)	0,058
Eficiencia del producto	0,89	Eficiencia del producto	0,89
Energía en el Uso(J)	5,5004E+11	CO ₂ (kg)	20582,3057
ENERGIA EN EL USO (MJ)	550044,377	CO ₂ (Tn)	20,5823057

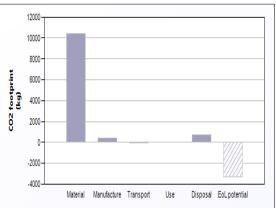

Fase de Uso EcoPlaza "El Refugio"			
Energía en el uso (MJ) 550044,3°			
CO ₂ en el uso (Tn)	20,5823057		


Anexo 9. Calculo de la Fase de Uso con Eco-Audit de CES Edupack para "El Refugio Ecoplaza Gastronómica".

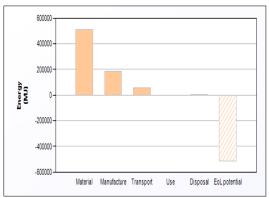
Energy input and output type	Electric to mechanical (electric motors)
Country of use	Latin America
Power rating (kW)	9,7
Usage (hours per day)	5
Usage (days per year)	3,6e+02
Product life (years)	5

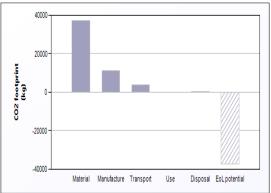
Mode	Energy (MJ)	%
Static	5,5e+05	100,0
Mobile	0	
Total	5,5e+05	100


Mode	CO2 footprint (kg)	%
Static	2,1e+04	100,0
Mobile	0	
Total	2,1e+04	100

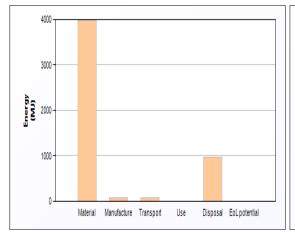


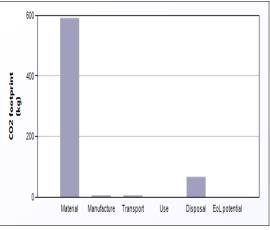
Anexo 10. Cálculos Eco-auditoría de los materiales CES Edupack 2016 <u>Suelo Plaza</u>


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	9,85e+04	85,3	1,04e+04	89,5
Manufacture	5,58e+03	4,8	418	3,6
Transport	739	0,6	52,4	0,5
Use	0	0,0	0	0,0
Disposal	1,07e+04	9,3	749	6,4
Total (for first life)	1,16e+05	100	1,17e+04	100
End of life potential	-2,2e+04		-3,28e+03	

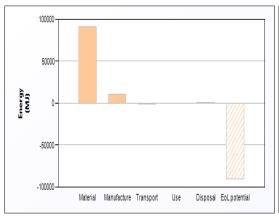


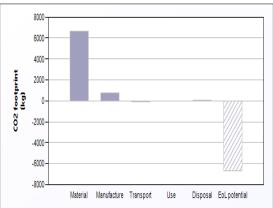
Locales Comerciales Contenedores HC


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	5,11e+05	67,6	3,73e+04	70,7
Manufacture	1,86e+05	24,6	1,12e+04	21,3
Transport	5,58e+04	7,4	3,96e+03	7,5
Use	0	0,0	0	0,0
Disposal	3,21e+03	0,4	225	0,4
Total (for first life)	7,56e+05	100	5,27e+04	100
End of life potential	-5,11e+05		-3,73e+04	

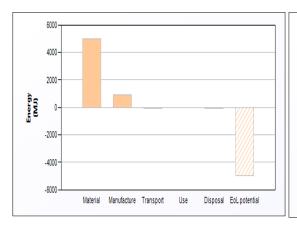


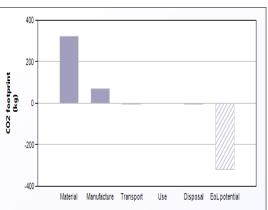
Locales Comerciales Paredes divisiones


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	3,98e+03	78,3	591	88,4
Manufacture	68,7	1,4	5,16	0,8
Transport	66,7	1,3	4,73	0,7
Use	0	0,0	0	0,0
Disposal	966	19,0	67,6	10,1
Total (for first life)	5,08e+03	100	668	100
End of life potential	0		0	

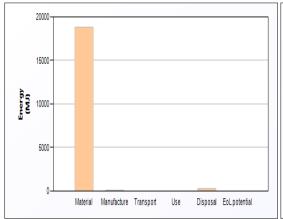


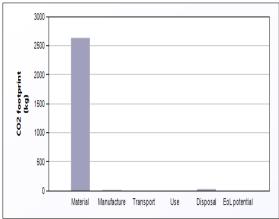
Estructura metálica


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	9,07e+04	89,5	6,66e+03	89,3
Manufacture	1e+04	9,9	754	10,1
Transport	71,5	0,1	5,08	0,1
Use	0	0,0	0	0,0
Disposal	561	0,6	39,3	0,5
Total (for first life)	1,01e+05	100	7,46e+03	100
End of life potential	-9,07e+04		-6,66e+03	

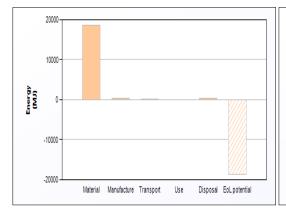


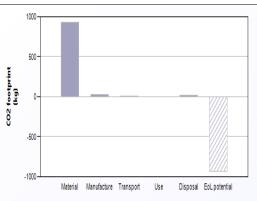
Cubierta techo policarbonato.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	4,97e+03	84,2	320	82,1
Manufacture	922	15,6	69,2	17,7
Transport	1,21	0,0	0,0862	0,0
Use	0	0,0	0	0,0
Disposal	8,93	0,2	0,625	0,2
Total (for first life)	5,91e+03	100	390	100
End of life potential	-4,97e+03		-320	

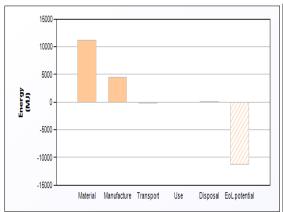


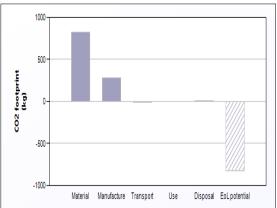
Pared de ladrillo baño de mujeres.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,88e+04	97,9	2,63e+03	98,6
Manufacture	78,3	0,4	14,6	0,5
Transport	13,2	0,1	0,938	0,0
Use	0	0,0	0	0,0
Disposal	311	1,6	21,8	0,8
Total (for first life)	1,92e+04	100	2,67e+03	100
End of life potential	0		0	

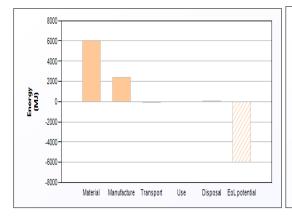


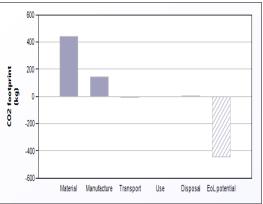
Paredes de pallets plaza.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,86e+04	96,8	933	95,4
Manufacture	296	1,5	22,3	2,3
Transport	57,7	0,3	4,1	0,4
Use	0	0,0	0	0,0
Disposal	271	1,4	19	1,9
Total (for first life)	1,93e+04	100	979	100
End of life potential	-1,86e+04		-933	

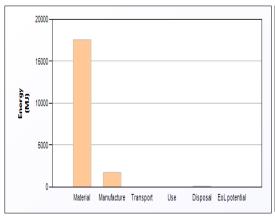


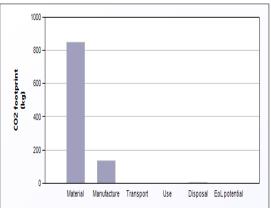
Paredes quiosco exterior.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,12e+04	71,1	823	74,4
Manufacture	4,48e+03	28,4	278	25,1
Transport	7,26	0,0	0,516	0,0
Use	0	0,0	0	0,0
Disposal	69,2	0,4	4,84	0,4
Total (for first life)	1,58e+04	100	1,11e+03	100
End of life potential	-1,12e+04		-823	

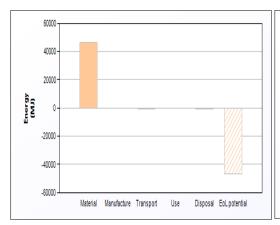


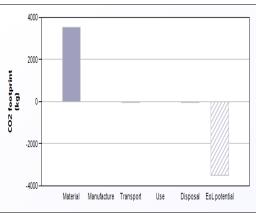
Paredes baño de mujeres.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	6,03e+03	71,3	443	74,7
Manufacture	2,38e+03	28,2	147	24,8
Transport	3,91	0,0	0,278	0,0
Use	0	0,0	0	0,0
Disposal	37,2	0,4	2,61	0,4
Total (for first life)	8,46e+03	100	593	100
End of life potential	-6,03e+03		-443	

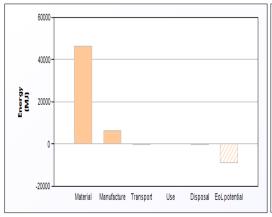


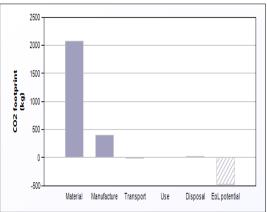
<u>Instalaciones sanitarias.</u>


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,76e+04	90,6	846	85,7
Manufacture	1,77e+03	9,1	137	13,9
Transport	2,02	0,0	0,143	0,0
Use	0	0,0	0	0,0
Disposal	57,7	0,3	4,04	0,4
Total (for first life)	1,94e+04	100	988	100
End of life potential	0		0	

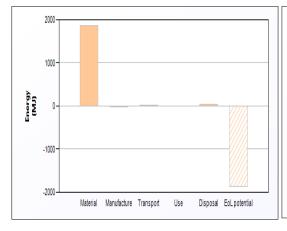


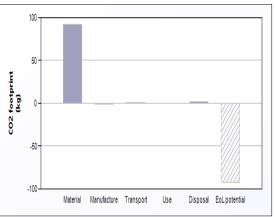
<u>Instalaciones eléctricas.</u>

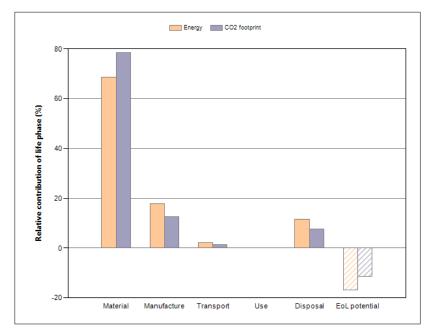

Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	4,67e+04	99,8	3,5e+03	99,8
Manufacture	0	0,0	0	0,0
Transport	10,8	0,0	0,766	0,0
Use	0	0,0	0	0,0
Disposal	103	0,2	7,19	0,2
Total (for first life)	4,68e+04	100	3,51e+03	100
End of life potential	-4,67e+04		-3,5e+03	



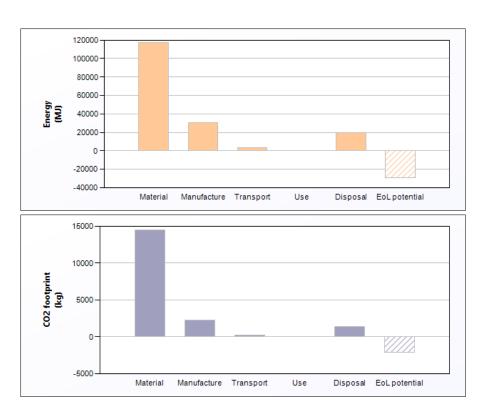
Mesa poli-aluminio.


Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	4,64e+04	87,5	2,07e+03	83,0
Manufacture	6,38e+03	12,0	406	16,3
Transport	12,8	0,0	0,908	0,0
Use	0	0,0	0	0,0
Disposal	251	0,5	17,6	0,7
Total (for first life)	5,3e+04	100	2,49e+03	100
End of life potential	-8,99e+03		-467	




Luminarias.

Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,86e+03	98,1	92,1	97,3
Manufacture	0,229	0,0	0,0176	0,0
Transport	5,32	0,3	0,378	0,4
Use	0	0,0	0	0,0
Disposal	30,4	1,6	2,13	2,2
Total (for first life)	1,9e+03	100	94,6	100
End of life potential	-1,86e+03		-92,1	



Anexo 11. Calculo Eco-Auditoría de Construcción Tradicional con el CES Edupack

Phase	Energy (MJ)	Energy (%)	CO2 footprint (kg)	CO2 footprint (%)
Material	1,17e+05	68,5	1,45e+04	78,5
Manufacture	3,04e+04	17,7	2,31e+03	12,5
Transport	3,7e+03	2,2	263	1,4
Use	0	0,0	0	0,0
Disposal	1,99e+04	11,6	1,39e+03	7,5
Total (for first life)	1,71e+05	100	1,84e+04	100
End of life potential	-2,91e+04		-2,08e+03	

