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ABSTRACT

We present a method to minimize, or even cancel out, the nuisance parameters affecting a
measurement. Our approach is general and can be applied to any experiment or observation
where systematic errors are a concern e.g. are larger than statistical errors. We compare it with
the Bayesian technique used to deal with nuisance parameters: marginalization, and show how
the method compares and improves by avoiding biases. We illustrate the method with several
examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations
(BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations
and dark matter detection. By applying the method we not only recover some known results
but also find some interesting new ones. For BAO experiments we show how to combine radial
and angular BAO measurements in order to completely eliminate the dependence on the sound
horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how
the uncertainty in the luminosity distance by a second parameter modelled as a metallicity
dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the
expansion rate of the universe, we demonstrate how a particular combination of observables
nearly removes the metallicity dependence of the galaxy on determining differential ages, thus
removing the age—metallicity degeneracy in stellar populations. We hope that these findings
will be useful in future surveys to obtain robust constraints on the dark energy equation of
state.
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1 INTRODUCTION

Itis often the case that measurements in an experiment are hampered
by systematic uncertainties or poorly known quantities that bias or
increase the error on the experimental quantity we wish to measure.
The usual way to deal with these quantities which we will refer to
as ‘nuisance parameters’ is to ‘marginalize’ over them, i.e. in the
Bayesian framework, to integrate the likelihood over the full range
allowed by the parameter space of the nuisance parameters. This has
the inconvenience that it makes the procedure explicitly dependent
on the choice of the prior adopted for the nuisance parameters, it
is not guaranteed to be unbiased and it is often non-optimal. A
trivial case where marginalization will fail at providing the optimal
solution is the following: imagine we obtain two measurements x
and y that depend on two quantities of interest 6, 6, and on a
nuisance parameter 7 in the following form x = 6,/n and y = nf,.
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It is obvious that the best way to remove the nuisance parameter n
is to form the product » = xy. This reduces the number of ‘data’
but removes completely the dependence of the best-fitting estimate
on the nuisance parameter thus removing the bias of the estimate.
In real life it will not always be the case that one can completely
eliminate the nuisance parameter because the functional form of the
observables might not allow one to do so, or because there are less
observables than nuisance parameters. It would be of value to have
a general prescription that describes whether the observables can
be combined in such a way as to completely eliminate one or more
nuisance parameters or, if exact cancellation is not possible, which
combination could minimize their impact on the final measurement.

Today, mitigation of the effect of systematic uncertainties is a
crucial issue. This is especially true in cosmology, where, in the era
of precision cosmology brought about by the avalanche of data of
the last decade, statistical errors keep shrinking, and the ultimate
error floor is often imposed by systematics or nuisance parameters.
In the literature, however, there is no generic prescription to ad-
dress this issue besides marginalization. Still, results obtained by
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marginalization are often not independent of the systematic effects
as we will show in concrete cases. The state of the art in mitigat-
ing the effect of systematic uncertainties is represented by some
specific examples worked out and applied only to specific cases.
For example Song & Percival (2009) noted that two quantities re-
lated to the growth of cosmological structures that can be measured
from galaxy redshift surveys are 8 = f/b and 03 g1 = bog . Here
f =dIné/dlna is the logarithmic growth rate of structures and de-
pends on key cosmological parameters that we want to measure, b
is the galaxy bias and our nuisance parameter as it is poorly known,
03,0a,m denotes the rms fluctuations of a sphere of 8 Mpc h~! for
the galaxies and dark matter, respectively, and cosmological infor-
mation through the growth factor is enclosed in og ,,. Similarly to
our example above, Song & Percival (2009) suggested to use the
combination Sog, to remove the bias. In reality, when looking in
detail at the equations governing redshift-space distortions in galaxy
redshift surveys, one finds that the full redshift-space power spec-
trum depends on different combinations of f, b and o 5, namely
fos.ms ﬂaa%_m, bo g m; thus the data themselves may allow one to
separate the various parameters. The use of ratios of observables
to cancel systematics has been widespread. The list of examples
also includes observables with unequal energy ranges so that the
ratio of observables cancels the dependences on systematic errors
in neutrino detectors (Villante, Fiorentini & Lisi 1999) or on the
theoretical distribution of dark matter particles (Fox, Kribs & Tait
2011a; Fox, Liu & Weiner 2011b); there are also specific methods
that apply in some particular models of dark energy (March et. al.
2011).

Another well-known example is the standard procedure to min-
imize the effect of noise bias in cosmic microwave background
(CMB) angular power spectra. The angular power spectrum com-
puted from the autocorrelation of a map produced by a given de-
tector is given by CP"*® = C,"™° + C1°¢, where CI°"* denotes the
power spectrum of the detector noise and is called ‘noise bias’: a
poor knowledge of the noise bias will bias the estimate of the CMB
power spectrum. On the other hand the cross power spectrum for
maps produced by different, uncorrelated, detectors does not have
noise bias.

In any other context a new prescription must be worked out
from scratch using detailed knowledge and intuition of the specific
problem.

The aim of this paper is to provide a general algorithm that mini-
mizes, in an unbiased way, the impact of systematic uncertainties if
they can be somewhat parametrized and poorly known quantities on
experimental measurements. The method is completely general and
can be applied to any experiment where the nuisance parameters
can be characterized (at least approximately). As described here our
approach is of straightforward use in cases where statistical errors
are negligible compared to systematic errors. Further development
is required in order to find the right balance between statistical
and systematic errors when this assumption does not hold. After
illustrating the approach and deriving the general prescription, we
present a suite of applications of different levels of complexity.
Though our approach is general we will consider for definiteness
cases for which the relevant quantities can be modelled as power
laws or linear functions. In order to illustrate the method, we con-
centrate to some problems in astronomy and cosmology and show
how the method reduces the impact of systematics. In particular
we address the following problems. (1) Measurements of the ex-
pansion history of the universe using baryonic acoustic oscillations
(BAO). Here we show how different measurement of the BAO scale
at different redshifts can be optimally combined to cancel out uncer-
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tainties in the sound horizon scale. (2) Solar neutrinos and the solar
metallicity problem. We discuss how to better minimize the impact
of uncertainties due to the solar abundances and due to theoretical
inputs like opacities and diffusion. (3) Cosmic clocks and how to
minimize the influence of systematic uncertainties in the metallic-
ity of galaxies while estimating their age. (4) Type la supernova
(SNIa) surveys to measure the expansion history of the universe
and how to minimize the dependence of the Hubble diagram on a
second parameter. We also recover some well-known results such
as the cancellation of the noise bias in the measurement of the CMB
angular power spectra and the cancellation of astrophysical inputs
in dark matter observations through the use of observables with
adjusted energy ranges.

2 A SYSTEMATIC APPROACH. ANALYSIS
AND RECIPE

We consider N observables O;, i = 1, ..., N that depend on m
accurate or interesting quantities u;, i =1, ..., m and n ‘unknown’
or ‘biased’ nuisance quantities v;, i = 1, ..., n,i.e. O;(l1, .. ., M,
Vi, ..., V). Our working assumption is that we are ignorant of the

mean values of the nuisance parameters D; and their errors (v;v;) and
(1;v;). Our goal is to find combinations of the observable quantities
Ji(Oyy ..., Op), k=1, ..., M such that they are not affected by our
ignorance of the nuisance parameters. This requirement implies that
(a) the variance of f; is independent of the variance and covariance
of the v;, guaranteed by the lack of explicit dependence of f; on
v; and (b) the mean value of f; should be independent of the mean
value of the v;, guaranteed by the null total derivative of f; with
respect to the v;. These conditions can be written explicitly as a set
of first-order partial differential equations:

Ji = fi(Oy, ..., Op), (1)
df,, X af 00

d = *k j: | =
n, E 20, v, 0 fori=1,...,n. ?2)

j=1
Note that even if the nuisance parameters have a distribution which
is very different from a Gaussian, the condition that f; have no
explicit dependence on v; guarantees that the correlation functions
involving an arbitrary number of solutions fi, i.e. (f]' .. .f3)") will be
independent of any correlation functions involving the nuisance pa-
rameters v;. If the distribution of the nuisance parameters is assumed
to be Gaussian, it is enough to require that the partial derivative of
fi with respect to v; vanishes, 0 f;/0v; =0fori=1,...,n,inor-
der to guarantee that the correlation functions of f; are independent
of correlations involving the nuisance parameters. Furthermore, in
the Gaussian case the correlations between the nuisance parameters
and the solutions will vanish (v;f;) = 0 due to the vanishing total
derivative, but in the general non-Gaussian case they are different
from zero (vfi) # 0.

A natural interpretation of the recipe defined by equation (2) is
the renormalization group equation (Wilson & Kogut 1974). In this
framework, the nuisance unknown quantities v; are interpreted as
setting the renormalization group scale. Physical quantities fi(v;,
0;(v)) are then defined as those functionals of the observables that
are invariant under arbitrary changes of the values of the nuisance,
i.e. as the ones satisfying the generalized renormalization group
equation:

0 )
(67,- +’3’*-"a70j> fewi, 0;(v)) =0, )
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with 8; ; = 90;/0v; the corresponding 8 functions. In other words,
by means of this recipe we identify the physics that is invariant
under arbitrary rescalings of the nuisance quantities. This nuisance-
independent physics is completely characterized by the nuisance
scaling dimensions f;; of the observables. In the limit case where
nuisance can be totally washed out this recipe will unravel the
underlying responsible scale invariance.

For definiteness, let us show the solutions for the case of N
observable quantities O; which are modelled by power laws of the
n nuisance parameters v; :

n
0; = 0; = gw [T, — 0, @)
j=1
where g is some function of g, a vector containing all other quanti-
ties on which the observables depend, a;; is known exponents and b;
is the true value of v;, which does not necessarily need to be known.
The solution to the system of the 2n first-order partial differential
equations is a power law of the observables:

N
A k
=T 0", ®)
i=1
which leads for each k to a system of j = 1, ..., n linear algebraic
equations for the i = 1, ..., N unknowns bf. Clearly there are k =
1,..., M = N — nnon-trivial independent solutions:

> aybf =0. (6)
i=1

After removing the nuisance parameters, we are left with N — n
observables. This means that we loose one observable per each nui-
sance parameter we eliminate and therefore that we can only elim-
inate N — 1 nuisance parameters. Compared to the case in which a
prior is imposed on the nuisance parameters and one marginalizes
over them, in this approach the resulting statistical errors on the ;
are expected to increase. However, we now obtain a set of observ-
ables which is independent of the systematics (and thus we do not
rely on any choice of prior for the v;). This is generally true and
does not depend on our assumption that the relevant quantities can
be modelled as power laws. Note also that any combination of so-
lutions to the differential equations, equation (2), is also a solution,
we simply need to find all independent solutions.

Exactly the same analysis can be repeated for the case in which
the observables can be modelled by linear combinations of the
nuisance parameters:

n

0i — 0; = g(p) + Zaij(vj — D), @)

j=1
such that the solution to the system of first-order differential equa-
tions is given by a linear combination of the observables,

N
fo=">_bi0; = 0. (8)
i=1

and we are once more led to a system of n linear algebraic equation
for the N unknowns b¥, with N — n non-trivial solutions,

m

> aybf=0. )
i=1

In Section 3 we discuss applications of equation (6) valid for the
linear and the power-law cases and present the non-trivial solutions
in cases where we have more observables than nuisance parameters.

Now we concentrate on problems with fewer observables than
nuisance parameters. In this case there is no exact solution for
the system of equation (2). However, in some specific cases that
are still of practical interest there may be approximate solutions.
In particular, we aim at problems where observables have similar
(but not identical) dependences on some of the nuisance parameters
(i.e. a; ~ ay for some i, j, [). The main difference from the exact
treatment above will be that we cannot impose the full condition
equation (2), but we should rather minimize the impact of systemat-
ics on the new observables. If we shift a given nuisance parameter v;
by Av; the change in f; is approximately given by dfi/dv; Av;. The
optimal f; should minimize the square of this quantity with respect
to the parameters. We avoid the trivial solution by using Lagrange
multipliers, which in the particular cases of observables modelled
by equation (4) or equation (7) leads to the function

n 2
Ly = Z} (2—3) AV = A <Z(bf)2 - A,§> , (10)
J= i

where A is a Lagrange multiplier to be solved for, A; is the norm of
the vector b* and Av; is the uncertainty on the j nuisance parameter.'
Let us start by studying the power-law case. In order to minimize
this function, we vary it with respect to b* using the expression for
fr as a power law of observables given in equation (5), which leads
to the eigenvalue equation

N n 2
k 2 Av; k k
;M,,bl = z{: {fk ; ( ) ) a[,a,,} bf = abt, (11)
where the first equality defines the matrix M. This is our central
equation. The Lagrange multiplier A;, which will be the eigenvalues
of the matrix M¥, measures how much the extremal (with respect
to the nuisance parameters) solution f; is affected by the nuisance
parameters. This can be seen by multiplying equation (11) by b,
summing over 7, and noticing that the left-hand side of the resulting
expression is precisely Y ;(dfi/dv;)* Av?, thus (Afi)* = M d_i(bh)*.
The eigenvectors correspond to independent combinations of ob-
servables, and, if we are interested in minimizing the impact of
nuisance parameters, we should choose those eigenvectors corre-
sponding to eigenvalues which are small with respect to typical
entries of the matrix. In fact, the existence of a small eigenvalue
is due to the similar dependence of the observables on a particular
nuisance parameter.

We can easily verify that this description is more general and
includes the previously discussed cases. If an eigenvalue is zero,
there is an independent non-trivial solution which is unaffected by
changes of the nuisance parameters. Indeed it can be easily seen
from equation (11) that there will always be N — n null eigenvalues
when n < N, and their eigenvectors span the space of solutions
of equation (6). Other eigenvalues are expected to be of the order
of typical entries of the matrix A ~ f2a?, representing a solution
for which the change under variations of the nuisance parameters
is large Af? ~ f?a*>";b?. In the case where n > N, even if all
the eigenvalues are different from zero, small eigenvalues of M

! Note that even though specifying a value for this uncertainty Av )j requires
a detailed knowledge of the problem and an inaccurate choice may in gen-
eral introduce a bias, those solutions which are completely independent of
the nuisance parameters (i.e. those corresponding to zero eigenvalues, see
below) do not depend on the value of Av; at all. In the same sense, those
solutions which are approximately independent of the nuisance parameters
(i.e. which correspond to small eigenvalues) are expected to depend only
mildly on the precise value of Av;.
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correspond to solutions which change only slightly under shifts of
the nuisance parameters and one can take these to be the approxi-
mately unbiased combinations. There will be as many independent
approximately unbiased quantities as there are small eigenvalues of
the matrix. These correspond to the instances where the nuisance
parameters appear in equation (4) with powers which are almost the
same for each O; (a; ~ a;).

We can repeat the analysis for the linear case. Minimizing the
function defined in equation (10) and using the expression for f; as
a linear combination of observables we now obtain the following
eigenvalue equation:

N n
S oMb =" | > (Av)ayay | bf = abf, (12)
=1

1 j=1

where now the matrix M has a different shape, but the same con-
siderations as above apply, i.e. we look for small eigenvalues and
their corresponding eigenvectors will be solutions that are mildly
influenced by the nuisance parameters.

Let us now remark that, in some problems, the nuisance param-
eters or the observables are constrained to satisfy ¢ relations, say
gy, ..,V O, ..., 0y) =0, fori =1, ..., ¢ This implies
that they are not independent. The way to treat these cases is again
through the use of Lagrange multipliers, such that when the nui-
sance parameters can be cancelled out exactly, the total derivative
equation must be replaced by the following one

d

dv; i=l
N 13)
where «; is the Lagrange multipliers. We will see an explicit example
of this case in Section 3.6. The way to do it in the formalism of
equation (10) is that instead of minimizing the function £ from
equation (10), one has to include the constraints in the following

way:

j=1 i

4
+ > 0igi(vi, sV, 01y, Oy, (14)
i=1

where «; is the Lagrange multipliers used to impose the conditions
gi = 0. One then minimizes £; with respect to bf.‘ , A and «;.

Before ending this section, let us make an important comment on
equation (10). If one imposes an infinite uncertainty on a nuisance
parameter, say Av; — oo for example, typical eigenvalues of the
matrix M will be infinite. However, if there are combinations of ob-
servables that are completely independent of v, some eigenvalues
will be finite since for those combinations dfi/dv, = 0, so that one
should restrict to the space spanned by eigenvectors corresponding
to those finite eigenvalues. In this sense looking for combinations
of observables which are completely independent of some nui-
sance parameter v, is equivalent to assigning an infinite uncertainty
tov;.

3 APPLICATIONS

In this section we illustrate several cases where our method is ap-
plicable. We start with the study of BAOs measurements where we
assume that the sound horizon at radiation drag, which is common to
all observations, is the only quantity affected by systematic effects.
In this case the dependence on the systematic can be cancelled out
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exactly. A similar problem is that of cancelling astrophysical inputs
in dark matter observations through the use of observables with ad-
justed energy ranges so that a nuisance function can be cancelled, as
done in Fox et al. (2011a,b). Next we consider a case where cancel-
lation of the nuisance parameters cannot be exact: we will then find
approximate unbiased combinations. This is the case for solar neu-
trino fluxes, where the neutrino flux predictions in detail depend on
many nuisance parameters but the dependences are similar enough
that approximate unbiased combinations can be found.

In the spirit of increasing complexity, in the next example we
consider a case where there is one systematic common to all ob-
servations and on top of that a correction to this main trend that
differs from observation to observation in a well known way. The
method will cancel out the dependence on the common systematic
and minimize that of the individual corrections. This is the case
of the cosmic clocks. A similar case is that of SNela where the
intrinsic magnitude of the SNe is unknown: its average value will
be constant and in common to all SNe but its actual value depends
on a hidden variable (probably metallicity of the host galaxy).

To conclude we consider a case that at first sight may go beyond
the scope of our method, where the interesting parameters and the
nuisance parameters are defined through correlation of the observ-
ables and not the observables themselves. This is the example of
the instrumental noise in CMB angular power spectrum, where the
observables are the temperature fluctuations (or their spherical har-
monic transform a,y,) but it is the angular power spectrum C, that
carries direct information on the cosmological parameters and is
affected by noise bias.

3.1 Measurement of the expansion history of the universe with
baryon acoustic oscillations

BAO experiments will, eventually, measure the acoustic scale in the
radial and perpendicular direction in the sky. Let us suppose that
one has measurements of the BAOs at N, different redshifts z;. The
observables produced by the astronomical surveys are

Da(zi) = Da(zi)/rs = 86/(1 + z2,), (15)

H(z) = H(z)r, = cAz. (16)

Here Da(z) denotes the angular diameter distance to redshift z,
H(z) the Hubble parameter at redshift z, 0 denotes the angular
measurement of the BAO scale, Az denotes the radial measurement
and r denotes the sound horizon at radiation drag, which is the BAO
‘standard ruler’. The sound horizon at radiation drag is determined
by CMB observations, for standard cosmologies it is affected by
a very small error but its estimate can be significantly biased for
non-standard models (e.g. Eisenstein & White 2004; de Bernardis
et al. 2009; Mangilli, Verde & Beltran 2010). This consideration
motivates us to consider 7 a nuisance parameter. From equation (4)
we see that we can write f; as a power law of the observables:

N, 2N, .
o _
fo=]]Da" [[ Hzj-n)", a7
i=1 j=N;+1

so that the values of the exponents b¥ will be given by solutions to
the system of linear equations (6) (or equivalently finding the kernel
space of the matrix in equation 11), which we write explicitly for
the particular case of two redshifts z;, z,,

;i

S

(b} + b5 — b5 — b)) = =0, (18)
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with solutions

fi = Daz)H(@)), (19)
fo = H(z)/H(z)). (20)
fs = Da(22)/Dalz1). @1

Any function of these quantities will also be a solution of the differ-
ential equation but will not contain new information. For example,
suppose that one adds f; = 5A(12)ﬁ1 (z») to the set of solutions, this
will simply be a combination of the solutions we listed, indeed f4 =
f1faf5. For the case of two redshifts, we obtain only 4 — 1 inde-
pendent quantities after eliminating our single nuisance parameter
rs from our four observables.
For measurements of BAOs at N, different redshifts, the 2N, —

1 solutlons Wlll be given by all the ratios g = DA(z,)/ DA (z1) and
h = H(z )/H(zl) plus the combination f = DA(ZI)H(Zl) Note
that although it may seem that we obtained that z; is the pivot
scale, this is purely arbitrary as one may point out that the same
quantities with any z; as the pivot scale is also solutions of the
differential equation. This is simply a consequence of the fact that
any combination of our solutions is also a solution. Any pivot is
equally good since the errors on the parameters will be independent
of the choice of pivot under the assumption that they are Gaussian.

3.1.1 Implications for cosmological parameter estimation

In this subsection we use the above findings to forecast errors for the
dark energy equation of state parameter wy(z) using the widely used
parametrization wy = wo + w,(1 — a). If the reader is not interested
in the details of this analysis, she or he can skip to Section 3.2. In
terms of this parametrization, the expansion rate and luminosity
distance can be written as

Quh?
1—Qy

H(z) =

[(1+2°(1 = Q) + Qx(1 + ) HuotvaeSuaz/ 4] /2
(22)

Da(z) =

c /
1+ /o “HD @
Note that although Qy appears explicitly in these expressions, flat-
ness has been assumed.? BAOs surveys measure combinations pro-
portional to Da(z)/rs and H(z)rs. Using the Fisher matrix formal-
ism, we can forecast errors for these combinations (Seo & Eisenstein
2007) combining measurements at five redshifts bins of width Az =
0.1 for z < 0.5 for a survey with specifics similar to those of Baryon
Oscillation Spectroscopic Survey (BOSS)-Sloan Digital Sky Sur-
vey III (SDSS-III)® and 15 redshifts bins at z > 0.5 for a survey with
specifics similar to those of Euclid.* We will compare three cases:
keeping the full set of observations DA(Z,)/I’S, H (z,)rS ( full’); keep-
ing only the ratios to some pivot scale DA(z, )/DA (zp), H(Z, )/H(Zp)
as is sgmetlmfis advocited ( rAatlos ) End our ‘unbiased’ combina-
tions Da(z;)/Da(zp), H(z:)/H(2p), Da(zp)H(zp). For the sake of
simplicity, we keep the cosmology fixed and take into account only

2 Although Qy + Qu, = 1, the present Hubble rate, parametrized by 4, is
still a free parameter. We follow Seo & Eisenstein (2007) in using Q2x and
Qmh? to parametrize the cosmology dependence.

3 http://www.sdss3.org/surveys/boss.php

4 http://arxiv.org/abs/0912.0914

errors on H, and r,. Using equations (22) and (23) one can use
the Fisher matrix for D (z;)/rs and H(z;)rs in order to compute the
Fisher matrix (and errors) for wg, w,, s, Hy. The results are given
in Table 1. In the ‘full’ case we must assume a prior error on r (for
example a CMB prior) which we take to have a 30 per cent error
since for some non-standard models the (systematic) error on rg can
be estimated to be as large as that e.g. Mangilli et al. (2010).

From the table we see that the statistical errors are always smaller
when using the ‘full” set as was to be expected (our method is throw-
ing away some information in order to obtain quantities which are
insensitive to systematic errors, this implies that the statistical errors
must grow). Let us remark that when we consider measurements
at 20 different redshifts as specified above, we obtain that the er-
rors on wy and w, change only by 0.4 and 1 per cent, respectively,
between the ‘full’ and ‘unbiased’ sets. Thus, one is insensitive to
systematic errors on 7 at the price of a modest increase in errors.
The precise estimate of how much information is lost depends on
how big the assumed uncertainty on r; is (or how big the systematic
errors are), as can be seen in the table for the case in which we
assume a 2 per cent error on r,. Finally, note that when one has mea-
surements at fewer redshifts the difference between the ‘ratios’ and
‘unbiased’ cases increases dramatically, this is due to the fact that
one is throwing away one observable from a set of just a handful of
them, thus loosing comparatively more information.

3.2 Dark matter

We discuss in this section another example of exact cancellation
of nuisance parameters, or in general of nuisance functions. In
particular, we consider energy-dependent observables, which have
been used to cancel the dependences on systematic errors in neutrino
detectors (Villante et al. 1999) or on the theoretical distribution of
dark matter particles (Fox et al. 2011a,b).

Let us consider observables O;(E) that depend on the integral
of some function f(x), that we may not know, within some known
range [x;,y;] as

Oi(Emin <E< Emax) = g(:ui)F(-xi(Emin)s Yi(Emax))- (24)

The function f(x) in the neutrino case is called the response
function and contains the convolution of the neutrino cross-section,
detector resolution and neutrino flux (Villante et al. 1999). The
function f(x) in the case of dark matter detection corresponds to
f(v)/|v], the ratio of the dark matter velocity distribution to the dark
matter speed when observing the recoil energy spectrum, and to the
integral of that function times the dark matter speed when observing
total rates (Fox et al. 2011a,b).

For simplicity, we concentrate on the case of two observables O,
and O,. Let us assume that the observables have an energy range
overlap such that we can find energies E,, Ej, E. and E, such that
xi1(Eq) = x2(E.) = x and y((Ep) = y2(Eg) =

Our observables can be rewritten as

O1(Eq < E < Ep) = g(u)F(x,y), (25)

Oy(E. < E < Ey) = g(u2)F(x, ). (26)

Following the lines discussed in the previous section, the depen-
dence on the nuisance function f(x, y) is removed by the combina-
tion O1(E, < E < E})/O,(E. < E < E,;), as advocated in the above
references.

© 2011 The Authors, MNRAS 419, 1040-1050
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Table 1. Fisher matrix analysis for the BAOs. We repeat the analysis for the cases in which the Fisher is computed from each
the ‘full” set of observables {Da(z;)/rs, H(zj)rs}, the ‘ratios’ {Da(z;)/Da(zp), H(zi)/H(zp)} including external priors on rg, and our
optimally ‘unbiased’ set {Da(zi)/Da(zp), H(zi)/H(zp), Da(zp)H(zp)}, as specified in the first column; we have not specified the pivot
redshift z, since any choice gives the same result. We have assumed a typical variance oy /rs of 0.02 or 0.3, as specified in the second
column. We show the case in which one has measurements at 20 redshifts up to redshift z ~ 2, and also the case in which one has
measurements at 10 redshifts up to redshift z ~ 0.8, as stated in the third column. In the fourth column we give the full Fisher matrix
with the order of the indexes given by 1 = wg,2 =w,,3 = Qx,4 = Qn h2, 5 = ry, thus for example the element in the first row and
second column of a matrix gives an estimate for the correlation between wq and w,. The 2 x 2 submatrix for wg, w, in the unbiased
and ratios cases never depends on the assumed variance for rg or Qp, h? by construction. For most of the cases we assumed a prior on
Qy of oqy /Qx = 0.01, except for the last two rows.

set or,/rs  redshifts FZ71 (wo,wa, Qx , Un b2, 75)
0.0579 —0.215 —0.00801 4.45 x 10~7 0.981
— 0.982 0.0371 —2.87 x 106 —6.34
full 0.3 20 — - 0.00146 —1.14 x 1077 —0.252
- — — 1.5 x 106 —0.000893
— — — — 57.6
0.0584 —0.218 —0.00813 0 0
— 1 0.0379 0 0
unbiased 0.3 20 - — 0.00149 0 0
— — — 1.5 x 10~ 0
— — — — 2025
0.0587 —0.216 —0.00821 0 0
— 1.01 0.0375 0 0
ratios 0.3 20 — — 0.00151 0 0
— — — 1.5 x 1076 0
— — — — 2025
0.0435 —0.121 —0.0043 0.0000136 0.133
— 0.38 0.0132 —0.0000877 —0.859
full 0.02 20 — — 0.000505 —3.49 x 10~%  —0.0341
— — — 1.49 x 106 —0.000121
— — — — 7.8142
0.198 —0.472 —0.00305 0 0
— 1.63 0.036 0 0
unbiased 0.3 10 — — 0.00201 0 0
— — — 1.5 x 1076 0
— — — — 2025
0.21 —0.454 —0.00303 0 0
— 1.66 0.0361 0 0
ratios 0.3 10 — — 0.00201 0 0
— — — 1.5 x 10~ 0
— — — — 2025
0.171 —0.738 —0.0285 2.05 x 106 4.53
— 3.41 0.132 —0.0000103 —22.8
full 0.3 20 — — 0.00519 —4.07 x 107 —0.897
- — — 1.5x 1070  —0.000842
— — — — 169
0.182 —0.793 —0.0307 0 0
— 3.69 0.143 0 0
unbiased 0.3 20 — — 0.00563 0 0
— — — 1.5 x 1076 0
— — — — 2025

© 2011 The Authors, MNRAS 419, 1040-1050
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3.3 Solar neutrinos

The standard solar model (SSM) depends on ~20 input parame-
ters, including the solar age and luminosity, the opacity, the rate of
diffusion, the zero-age abundances of key elements (He, C, N, O,
Ne, Mg, Si, S, Ar, Fe) and the nuclear cross-sections (S-factors)
for the pp chain and CN cycle reactions. The observable quantities
in this case are the solar neutrino fluxes® ¢;, in particular the "Be
or ®B neutrino fluxes, which have been independently measured by
the solar neutrino detectors. The observed neutrino fluxes depend
on elements abundances, solar structure parameters and on the S-
factors, but the quantities of interest are actually the S-factors and
the rest are poorly determined — nuisance — parameters.

To be more specific, the multidimensional set of variations in
SSM input parameters {Ag;} from the SSM best values { 75"}
often collapses to a one-dimensional dependence of the neutrino
fluxes on the solar core temperature (7.), where T is an implicit
function of the variations {ApB;} (Bahcall & Ulmer 1996). The
correlations between ¢, and 7' are strong but not exact.

The sensitivity to parameter variations can be expressed in terms
of the logarithmic partial derivatives «(i, j) evaluated for each neu-
trino flux ¢; and each SSM input parameter 3,

_ 0ln [ /7M]
~ 0l [B;/BM]”

where ¢ and B3 denote the SSM best values. This informa-
tion, in combination with the assigned uncertainties in the §;, then
provides an estimate of the uncertainty in the SSM prediction of ¢;.
Here we employ the logarithmic partial derivatives of Pena-Garay
& Serenelli (2008) and Serenelli, Haxton & Pena-Garay (2011),
corresponding to the higher metal composition (Grevesse & Sauval
1998) SSM,

¢('Be)
#('Be)SSM
_ {L3®.55801.267A0.7SGDO.136]
% [S;ll 07570441 0878500500 S;&.ooq

0.044 _0.057 .0.116 .0.083
Ne ‘Mg *si X

ali, j) 27)

f(Be) =

X X,

0.004,.0.002_.0.053
[x& 0y % x x

2’?14)5&2'7] ’
(28)
#(*B)
H(SB)SSM
_ [L830 02.702A1.380Do,280]

—2.73 q—0.427 q0.846 1.0 — 1.0 g0.005
X [Sll S5 7S5 USI7S S114]

fCB) =

x [xg‘OZng'omxg‘l11x°‘083x0‘106)60:211x°‘151x0‘°27x0‘510} ,

Ne Mg Si S Ar Fe
29

where each parameter on the left-hand side represents a /87"
The luminosity, opacity, solar age and the diffusion parameters are
denoted by L, O, A and D, while S and x denote S-factor and
abundance ratios. The errors assigned to the solar model inputs are
(04, 2.5, 044, 15.0, 0.9, 4.3, 5.1, 7.5, 2.0, 7.2, 29.7, 32.0, 38.7,
53.9,11.5, 11.5, 9.2, 49.6, 11.5) per cent (Serenelli et al. 2011) for
all the quantities Ly, O, A, D, S; x, in the order as they appear in
equations (28) and (29).

3 The index i here labels the nuclear reaction that produces the neutrinos.

A new re-evaluation of the solar composition (Asplund, Grevesse
& Sauval 2005), which leads to significantly smaller abundances
than previously estimated, has led to the lack of matching of he-
lioseismological data and SSM predictions. It is therefore relevant
to test observables that are weakly dependent both on solar com-
position and more theoretical inputs like diffusion and opacity. In
our analysis, we consider L), O, A, D and x as nuisance parame-
ters. The matrix Mf.‘, of equation (11) for the two combination of
observables f("Be) and f(®B) is

35.69 74.42
7442 15634 )
whose smaller eigenvalue (0.22) has the corresponding eigenvector

is proportional to (2.098, 1). Therefore the combination of observ-
ables,

f(7BC)2'10

fCB)
minimizes the impact of the errors due to composition, opacity and
diffusion inputs (0.47 per cent error) and therefore optimizes the
determination of nuclear cross-sections at solar core temperatures.

The formalism used here is very quick in testing the robustness
of the method to changes in the assumed errors on the nuisance
parameters. We have checked that the optimal observable does
not significantly change by modifying the errors on some of the
nuisance parameters. For example, if we double the errors on the
abundance ratios, the power in f(’Be) changes from 2.098 to 2.099
and the error from 0.47 to 0.92 per cent, while if we double the
errors in theoretical inputs like opacity and diffusion, the power
in f("Be) changes from 2.098 to 2.105 and the error from 0.47 to
0.48 per cent.

— [8?14855373049852;199651—71 .OSL{%OST&OW} , (30)

3.4 The expansion history of the universe from cosmic clocks

A direct method to determine the expansion history of the universe
is to use cosmic clocks (Jimenez & Loeb 2002). The determination
of the Hubble parameter is done by estimating the differential age
of ‘clocks’, namely passively evolving galaxies. In order to estimate
the differential age one approach is to use the spectral feature around
the 4000 A break (Moresco et al. 2011), although it is desirable to
exploit the whole galaxy spectrum (Jimenez et al. 2003; Simon,
Verde & Jimenez 2005; Stern et al. 2010). This feature, called
DA4000, depends both on the age and on metallicity of the stellar
population. Although the dependence of D4000 on the metallicity
is weaker than the dependence on age, the metallicity is usually
poorly known, and thus acts as a nuisance parameter in obtaining
the differential age. To a good approximation the D4000 feature can
be written as

D4000 o age® Z#, 31)

where Z is the metallicity of the ‘clock’ and «, § are the exponents of
the corresponding power laws. For spectra which have a poor signal-
to-noise ratio there will be a large systematic error on Z due to the
fact that spectral lines will be harder to identify. This systematic can
be modelled to be a signal-to-noise ratio dependent shift Zmeasured —
A(y)Z"™e, where y is the signal-to-noise ratio. Of course there might
be other systematics affecting what we have called Z™¢, but this is
beyond the scope of this paper. The biggest error is expected to be
the systematic shift in the estimated metallicity A(y), which we
model as a power law A(y) = ®y”, where we have parametrized
our ignorance with ® and b (Moresco et al. 2011). We can rewrite

© 2011 The Authors, MNRAS 419, 1040-1050
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Table 2. Measurements of the spectral fea-
ture around the 4000 A break for different
galaxies. These are examples of the types of
data that one should obtain, and the results
from actual measurements are expected to be
similarly distributed. We show the measured
value of the D4000 feature in the first col-
umn, the error on each measurement on the
second column as given by its dispersion, the
redshift z of the galaxy in the third column
and the signal-to-noise ratio of the spectrum
in the fourth column.

D4000 (o] 4 14

2.00 0.03 0.15 100
1.95 0.03 0.2 100
1.90 0.03 0.25 100
1.81 0.05 0.4 72
1.82 0.05 0.5 73
1.76 0.05 0.6 75
1.83 0.03 0.7 85
1.70 0.025 0.9 93
1.60 0.04 1.05 75
1.50 0.05 1.28 70

this as

Aly) = @B, (32)

where B = ¢”. We then describe the ‘cosmic clocks’ in the following
way:

d; = age? 7P (@ B"e)y for each i, (33)

where d; is the label corresponding to a given absorption line (the
DA4000 feature in this example), the index i runs over galaxies that
have approximately the same metallicity, Z is some central value of
the metallicity, y; is the signal-to-noise ratio of each measurement
and B is some known power — thus if the original sample shows a
wide range of metallicity it should be split in metallicity bins before
it can be described by equation (33). We now wish to find quantities
which are independent of the nuisance parameters: ® and B. In this
case the total derivative condition 2) becomes

dfe 0 fi

3 Zﬁ"@ 0 64
die f:—f log( d =0 (35)
aB = 22 5g, P1E Wy =0

which, if £, is a power law f; = [[;d%, is simply

N
Z bt =0, (36)
i=1

N
> bflog(y) =0. 37
i=1

We have done this explicitly for the example data in Table 2 for
10 galaxies. This sample has characteristics not too dissimilar from
those of the next H(z) release (Moresco et al., in preparation). The
resulting combinations are the eight that satisfy

1
= g(—30b1 — 30b, — 30b3 — 2bs — 3bs — 5bg — 15b; — 23by),

(38)

© 2011 The Authors, MNRAS 419, 1040-1050
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Table 3. Explicit solutions of equations (34) and (35) satisfying conditions
(38) and (39) for fi = [[; dk using the measurements given in Table 2. k

>

is the row index, and the column index i is ordered as in Table 2, i.e. i = 1
correspond to the first row in that table, i = 2 to the second and so on.
by by b3 by bs be b7 bg by bio
1 0 0 0 0 0 0 0 —6 5
0 1 0 0 0 0 0 0 -6 5
0 0 1 0 0 0 0 0 —6 5
0 0 0 1 0 0 0 0 =2/5 -3/5
0 0 0 0 1 0 0 0 =3/5 =2/5
0 0 0 0 0 1 0 0 —1 0
0 0 0 0 0 0 1 0 -3 2
0 0 0 0 0 0 0 1 —23/5 18/5
3b 2b. 18b
b, = 5by + 5by + 5by — 5“ 5‘ 27+ — i (39)

We explicitly give a set of eight independent solutions in Table 3.
One may then use these combinations to produce robust measure-
ments of the redshift as a function of cosmic time and apply it for
example to the case of dark energy. Of course this cancellation of
the systematics depends on the way we model them, but there is no
method to treat completely unknown systematic errors. This method
can be generalized to the more general case where the full spectrum
is used (Jimenez et al. 2003; Simon et al. 2005; Stern et al. 2010),
although in this case the effect of the metallicity as a systematic will
be smaller.

3.5 Hubble diagram from SN1a: removing second parameter
dependence

The above example was motivated by the cosmic clocks problem,
but to show that the solution found is general enough to be applied
in different contexts, we consider a different problem in this section.
SNela are considered to be standard candles, so that, for a sample
of SNe spanning a wide redshift interval their apparent magnitude
can be used to infer the luminosity distance as a function of redshift
and thus constrain cosmological parameters.

In reality, SNela are standardizable candles: an empirical algo-
rithm (Phillips 1993) relates peak luminosity and stretch of the light
curve. Using this procedure one can exploit SNela as if they were
standard candles; the scatter around the luminosity distance relation
gets dramatically reduced, and thus obtain a luminosity distance d;.
using the distance modulus p:

w=m—M=25+5logd,, (40)

where d; encloses the dependence on cosmological parameters, m
denotes the SN apparent magnitude and M the absolute magnitude.
The distance modulus is related to the peak SN magnitude in  band
by

Mpeak = Miang — a(s — 1) + H(Z) + K(s,2)+ A, (41)

where M,y is the standardized peak B absolute magnitude, « is
the Phillips (1993) parameter relating stretch and peak luminosity,
s is a typical stretch, pu(z) is the distance modulus, A, is the r-band
Milky Way extinction along the SN’s line of sight and K (s, z) is an
approximate K-correction to the r band at z = 0. Of course, one
could use any optical band besides r. All these corrections have
a residual scatter and there is evidence that some of the residual
scatter could be due to some ‘second parameter’ (e.g. Aubourg et al.
2008; Brandt et al. 2010; Sullivan et al. 2010) such as metallicity
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of the host galaxy. There are thus two sources of errors: (a) the
fact that, after all the corrections have been applied the average
absolute magnitude M, although common to all SNe in the sample,
is unknown and (b) that there is a residual scatter around M which
could, in principle, not be purely statistical but depends on extra
parameters. For future data this may become the limiting factor in
improving cosmological constraints from SNe observations.
Thus we can recast the above problem as

l’;’l,' =M+AM,+[L,, (42)

where i = 1, N runs over the SN in the sample, AM; includes
all residual systematic errors, 771; the (k-corrected, extinction cor-
rected, stretch corrected) observable quantities and p; enclose the
cosmological dependence and is the quantity of interest. As these
are logarithmic quantities, the reader will immediately realize that
this problem is similar to the cosmic clock one where log A =
AM;, Z = log M and loga = ;. One can completely cancel the
dependence on M by taking linear combinations f, = >_;b¥m; that
satisfy

> bf=0, (43)

similarly to the BAO case. One thus obtains combinations that are
robust under changes in the estimated value of /.

We can do even better and attempt to cancel the remaining sys-
tematics AM;. There are indications that the absolute magnitude
depends also on the metallicity of the SN (or host galaxy) and that
this is the leading contribution to AM;, so we will assume that AM;
depends on the host galaxy metallicity Z and model AM(Z) as a
polynomial® of some power £:

AM(Z) = O1(Z = Zo) + O(Z = Zo) + -+ + OUZ = Zo)',

(44)
where ®; fori =1, ..., ¢ and Z, is unknown parameter. This can
also be thought of as a Taylor expansion of the dependence of AM
on Z. This polynomial can be explicitly expanded and rewritten in
the following form:

AM(Z) =0y +6,Z+6,72>+--- 4+ 0,7, (45)

where ©; is combinations of ®; and Z. There is an ongoing effort
to measure the metallicities, so that here we take them to be part of
our space of observables. Therefore, our nuisance parameters will
be M and ©; fori =0, 1, ..., £. We find that the total derivative
conditions can then be written as

dfi dfi -0

2 _ =0, 46
a6, i > 2= o, (6)
df, Noof

k k

L2 Z, =0, 47
dé, ;ami @7
df, Noof

Jk k 52

== = Z; =0, 48
de, Zam,- i “48)

6 Although with present data there is only an indication of a trend of a
dependence of the magnitude on the metallicity, this dependence in detail
may be better quantified when more data become available. We assume here
it can be modelled by a polynomial, of course the degree of the polynomial
will depend on the nature and amount of the data and on the underlying —
yet unknown — M—Z relation.

N

dfk afk i
46, Z:] o @)

The solution to the set of differential equations is given by a linear
combination f; = Y, bi1;, where the coefficient b¥ is the N —
£ — 1 that satisfy the following conditions:

N
> bf=o0, (50)
i=1

N
> bfzi =0, (ShH
i=1

N
> bz} =0, (52)
i=1

N
> bfzi =o. (53)
i=1

We expect the results obtained here to be robust also under
changes in the ®,, M and Z,.

Now let us compare the solution provided by this method with
the standard approach. When analysing a SN sample it is customary
to marginalize over M as follows: for each choice of cosmological
parameters («) /u(z;) is computed and used to extract M(a); AM,;
then encloses the statistical error. One can see that this procedure
is equivalent to marginalize over H,. In fact one can rewrite the
apparent magnitude as

This procedure cannot be unbiased if the set of cosmological
models/parameters scanned does not include the true underlying
model. The solution provided by the present method instead cancels
out the dependence on M(c) providing an unbiased answer, and
can also mitigate the impact of remaining systematics (such as the
influence of the metallicity on the absolute magnitude). Of course
this cancellation of the remaining systematics depends on the way
we model them, but there is no way of treating completely unknown
systematic uncertainties.

3.6 CMB angular power spectrum

The angular power spectrum computed from the autocorrelation of
a map produced by a given detector is given by Cy** = C,"™ +
C™¢ where C1°¢ denotes the power spectrum of the detector noise
and is called ‘noise bias’: a poor knowledge of the noise bias will
bias the estimate of the CMB power spectrum. On the other hand the
cross power spectrum for maps produced by different, uncorrelated,
detectors does not have noise bias. In this subsection we wish to
reproduce this well-known fact in the light of our approach. This is
a simple example of a problem which is neither linear nor a power
law, and can thus show how to apply our approach in more general
cases.

Let us model this case as having two detectors that give two dif-
ferent measurements of the temperature perturbations of the CMB

© 2011 The Authors, MNRAS 419, 1040-1050
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with uncorrelated noise:

(1 (1
Ay = Aom + Ny, s
2 _ 2)
Ay = Aim + NZm’ (55)

where ag,‘,z) is the temperature anisotropies decomposed in spherical
harmonics measured by each detector, ay,, is the ‘true’ temperature
anisotropies and N 21,,’,2) is the noise of each detector. We wish to apply
the conditions given in equation (2) to this case. Since there is a dif-
ferent contribution of the noise per each m, it would appear that the
problem has no solution as there are as many nuisance parameters
as observables. However not all of them are independent since they
are uncorrelated among themselves and with the ‘true’ temperature
anisotropies, and must thus satisfy the following constraints:

> NN, =0, (56)
> Ny, =0, (57)
> Nilag, =0. (58)

m

One way to approach the problem is to use all these constraints in
order to remain only with independent quantities. Though this gives
the desired result, it is rather involved algebraically. We will instead
use Lagrange multipliers and impose that the total derivative of the
following function with respect to each NV, 2,‘12) be zero while keeping
all of them independent:

St S TNOING 405> Naw, + 15 NPaw,.,  (59)
m m m
which gives the following two equations:
0
gﬁ + Mag, + MN =0, (60)
tm
0 .
aa]:; + 2ay,, + AN = 0. (61)
m

Imposing that the f; depends explicitly only on aﬁ,’lz) implies A¥ =

Ak, = A%, and the differential equations can be rewritten as

3 fi

o+ e =0, (62)
Ay

3 fi

Yol Aall) =0, (63)
Ay

with the well-known solution

fo= =24 agag,. (©4)
where any value of A% is equally good since it is simply a global
factor. We have thus recovered the fact that the cross-correlations
are independent of the noise.

4 CONCLUSIONS

We have presented an algorithm to minimize, or even completely
cancel out, the effect of systematic uncertainties (nuisance parame-
ters) that can somehow be modelled, even if the modelling is very
rough or approximate. It is of use in interesting cases for which
systematic errors are larger than statistical ones. The method was
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inspired by renormalization group techniques, and this interpreta-
tion provides an elegant description of what nuisance parameters
are: we identify the physics that is invariant under arbitrary rescal-
ings of the nuisance quantities. This nuisance-independent physics
is completely characterized by the nuisance scaling dimensions of
the observables. In the limit case where nuisance can be totally
washed out this recipe will unravel the underlying responsible scale
invariance.

Our general approach is given in equations (1) and (2) and we
report explicit recipes for cases where the observables have power
law and linear dependences on nuisance parameters in equations
(11) and (12), respectively, which apply also if only an approxi-
mate cancellation of the nuisance parameter is possible. Additional
constraints on nuisance parameters or observables can be included
(equation 14). The algorithm is general and can be applied to any
experiment or observation. However, because of our own field of
expertise, we have chosen to illustrate the method with some ex-
amples drawn from astrophysics and cosmology. In doing so we
have discovered some interesting new results that can be used to
analyse observations from large-scale galaxy and SN surveys. For
the case of BAO experiments, we provide an optimal way to com-
bine the observed quantities to reduce systematic uncertainties in the
sound horizon scale r;. For SN surveys we have provided a method
to remove a dependence of the Hubble diagram of systematic un-
certainties due to metallicity variability of the SN (or, as a proxy,
that of the host galaxy). Finally, we show how for the cosmic clock
method the feared age—metallicity degeneracy can be completely
removed by choosing adequate combinations of the observed quan-
tities. We chose to focus on these techniques because they are the
most promising to unveil the nature of dark energy; removing or
minimizing the dependence of this methods on poorly constrained
systematics is crucial to be able to gain full advantage of the sig-
nificant observational effort that is being invested in observational
cosmology. Of course if a full knowledge of the central values of
the nuisance parameters and their errors is known, our approach
cannot be better than the Bayesian technique of marginalizing over
the distribution of the nuisance parameters. On the other hand, if
the central values and distributions of the nuisance parameters are
not known, the Bayesian approach with an inaccurate prior for the
nuisance parameters will introduce biases, while our technique aims
at cancelling or minimize these possible biases. As we have empha-
sized before our method is general and we hope it will be used in
other areas of the experimental sciences.
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APPENDIX A: THE GENERAL PROBLEM

In this appendix we wish to suggest an interpretation of equa-
tion (2) that might prove useful when solving more general prob-
lems. As in the main text, we consider N observables O;(t1, . . ., i,
Vi, ..., v,) that depend on m accurate or interesting quantities u;
and n ‘nuisance’ or ‘biased’ parameters v;. Let us keep the quantities
;i fixed at some value, and assume that there are more observables
than nuisance parameters N > n. The functions O;(vy, ..., v,)
then define a mapping between R" and RY, which under certain
smoothness assumptions defines a manifold (an n-dimensional hy-
persurface embedded in RY). If this manifold is orientable, there
will be at least one vector field v} orthogonal to it, and in general
there can be up to N — n such vector fields. The integrals of these
vector fields (which exist at least locally) will be constant on the
hypersurface:

N N

90; _ 3 aft00; _
! al)j o1 60, aU_,‘

v
i=1

0, (AD)

where f; is the integral of v¥. This is the same as equation (2). The
problem is then to find such vector fields and integrate them.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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