
��
�

Alzheimer´s disease-associated Aβ42 peptide: expression and purification 

for NMR structural studies 

 

 

 

Montserrat Serra-Batiste,1� Raquel Garcia-Castellanos,1� Martí Ninot-Pedrosa,1 

Bernat Serra-Vidal,1 Nicholas Simon Berrow,1 Natàlia Carulla1 

 

 

1Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of 

Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain 

 

 

 

 

� Both authors contributed equally to this work 

 

*Corresponding author: 

Natàlia Carulla, Baldiri Reixac 10, Barcelona 08028, Spain, telephone: +34 93 

4037123, fax: +34 93 4037126, e-mail: natalia.carulla@irbbarcelona.org 

 

 

Running title: A straightforward strategy to obtain Aβ42 for NMR studies 

  



��
�

ABSTRACT 

The aggregation of the amyloid-beta peptide (Aβ) in the brain is strongly associated 

with Alzheimer´s disease (AD). However, the heterogeneous and transient nature of this 

process has prevented identification of the exact molecular form of Aβ responsible for 

the neurotoxicity observed in this disease. Therefore, characterizing Aβ aggregation is 

of utmost importance in the field of AD. Nuclear magnetic resonance spectroscopy 

(NMR) is a technique that holds great potential to achieve this goal. However, it 

requires the use of specific labels introduced through recombinant expression of Aβ. In 

this paper, we report on a straightforward expression and purification protocol to obtain 

[U-15N] and [U-2H,13C,15N] Aβ42. Aβ42 is expressed fused to Small Ubiquitin-like 

Modifier (SUMO), which prevents Aβ42 aggregation. The solubilizing capacity of 

SUMO has allowed us to design a purification protocol involving immobilized metal 

affinity chromatography (IMAC), a desalting step, and two size exclusion 

chromatography (SEC) purifications. This approach, which does not require the use of 

costly and time-consuming reversed phase high performance liquid chromatography 

(RP-HPLC), offers a much straightforward strategy to those previously described to 

obtain [U-15N] Aβ42 and it is the first protocol through which to achieve [U-2H,13C,15N] 

Aβ42. The peptides obtained are of high purity and have the required isotope 

enrichment to support NMR-based structural studies. 
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INTRODUCTION 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that robs us of 

our most human qualities. Beyond its devastating effects on patients, AD is also a major 

burden for patients’ families and implies enormous healthcare costs [1]. To date, no 

disease-modifying treatment is available, and therefore research on the molecular basis 

of AD must continue. The aggregation of the amyloid-beta peptide (Aβ) in the brain is 

strongly associated with AD [2]. Aβ is obtained from the transmembrane amyloid 

precursor protein (APP) through the sequential cleavage of β- and γ-secretase. γ-

secretase cleavage is not specific, leading to Aβ peptides of different lengths, Aβ38 to 

Aβ43, ranging from 38 to 43 residues. Among them, Aβ42 is considered to be the 

peptide most strongly linked to AD, as levels of this variant are an indication of AD 

progression [3], and several familial AD (fAD) mutations that give rise to early AD 

alter the Aβ40/Aβ42 ratio in favor of Aβ42 production [4]. Upon release from the 

membrane into the extracellular media, the Aβ peptide has a strong tendency to 

aggregate. This aggregation is a multistep process involving various aggregates that 

ultimately leads to the formation of amyloid fibrils. Due to the heterogeneity and 

transient nature of this process, the exact molecular form of Aβ responsible for the 

neurotoxicity observed in AD is not known. Therefore, characterizing Aβ aggregation is 

of utmost importance in the AD field. One of the techniques with the potential to 

characterize this process is nuclear magnetic resonance spectroscopy (NMR) [5-12], 

which requires the use of specific labels introduced through recombinant expression of 

Aβ.  

A large number of strategies have been developed to produce recombinant Aβ42. 

However, due to the aggregation-prone nature of Aβ42, initial approaches resulted in 

the production of modified Aβ42 sequences rather than of the wild type. Modifications 
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included oxidation on the methionine 35 side chain of Aβ42 to methionine sulfoxide 

(Met-35(ox)Aβ42) [6,13], Aβ42 fused to a tag [14-16], and Aβ42 containing unnatural 

mutations in its sequence [6,17] or additional N-terminal residues [18-21]. More 

recently, several strategies have led to the production of wild-type Aβ42 with 

satisfactory yields [22-28], as well as isotopically labeled 15N and 15N, 13C Aβ42 

[29,30]. One particularly attractive strategy initially proposed by Satakarni and Curtis 

relies on the expression of Aβ42 fused to Small Ubiquitin-like Modifier (SUMO) [27]. 

They showed that SUMO solubilizes Aβ42, since the SUMO-Aβ42 fusion protein was 

obtained from both soluble and insoluble cell lysates. However, in spite of the 

solubilizing power shown by SUMO, Weber et al. have recently reported on a 

purification protocol to obtain 15N and 15N, 13C Aβ42 starting from SUMO-Aβ42 

accumulated in inclusion bodies, and thus used denaturing buffers for the lysis and 

initial purification steps [29].  

Working under denaturing conditions makes proteins more vulnerable to chemical 

modifications, leading, for example, to the oxidation of the methionine side chain to 

methionine sulfoxide. Aβ42 has a methionine in position 35 (Met-35). Indeed, there is 

much controversy in the literature regarding the role of Met-35(ox)Aβ42 in AD [31,32]. 

Therefore, in any Aβ42 purification strategy, it is critical to separate Met-35(ox)Aβ42 

from Aβ42. Since these molecules differ in hydrophobicity, the most efficient method to 

separate them relies on the use of costly and time-consuming preparative reversed phase 

high performance liquid chromatography (RP-HPLC). Indeed, most Aβ42 purification 

protocols use this technique during the purification steps [22-28] [29,30]. 

In this paper, and inspired by the work of Satakarni and Curtis [27], we exploit the 

capacity of SUMO to solubilize Aβ42 when these two molecules are fused and thus 

establish a new and efficient purification protocol. Rather than using highly denaturing 
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conditions, our approach requires mild conditions for the lysis and initial immobilized 

metal affinity chromatography (IMAC) purification steps, which are followed by a 

desalting step, cleavage of Aβ42 from SUMO using the efficient SUMO protease 

(Ulp1), and two size exclusion chromatography (SEC) steps. Using this approach, no 

oxidation of Met-35 was observed and therefore RP-HPLC was not required. This 

strategy afforded 6 mg of [U-15N] Aβ42 and 2 mg [U-2H,13C,15N] Aβ42 per L of 

culture. The chemical purity of the final product was assessed by analytical RP-HPLC, 

and the isotope incorporation of the labeled samples was determined by high-resolution 

mass spectrometry (HRMS). Both techniques indicated that the strategy provides 

peptides of sufficiently high purity and isotope enrichment to support NMR-based 

structural studies. 

MATERIALS AND METHODS 

Reagents 

The following labeled compounds were used: 15NH4Cl (99%, Cambridge Isotope 

Laboratories), D-glucose-13C6, 1,2,3,4,5,6,6-d7 (97-98% D, 99% 13C, Euriso-top) and 

D2O (99.9%, Euriso-top). All reagents were purchased from Sigma-Aldrich unless 

otherwise specified. 

Cloning 

The DNA encoding Aβ42 was synthesized by PCR with KOD polymerase 

(Novagen) methods and following the modular approach previously described [20], but 

with the following primers to add the 15 bp on each side for the In-Fusion method: 

Fw 5’-GCGAACAGATCGGTGGTGATGCGGAGTTCCGTCATGATTCAG-3’ 

and  
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Rev 5’-

ATGGTCTAGAAAGCTTTATTACGCTATGACAACACCACCCACCATGAGTCCA

ATGATGGCACC-3’ 

The amplified fragment was further purified and cloned into a pOPINS vector [33] 

previously cut with KpnI and HindIII (New England Biolabs) restriction enzymes using 

the In-Fusion cloning method (Clontech). This yielded a plasmid for expression of 

Aβ42 in the Escherichia coli (E. coli) cytoplasm as a fusion protein with an N-terminal 

hexahistidine SUMO affinity tag (MGSSHHHHHHGSDSE 

VNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGK

EMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGG↓-Aβ42), where ↓ 

represents the SUMO protease cleavage site).  

Stock solutions  

 [U-15N] Aβ42 was produced using auto-induction. The following stock solutions 

were required. The 20x 15N-NPS and 50x 5052 solutions were prepared as previously 

described [34]. Briefly, the 20x 15N-NPS solution contained 142 g Na2HPO4, 136 g 

KH2PO4, 50 g 15NH4Cl and 14.2 g Na2SO4 per L and the 50x 5052 solution contained 

250 g glycerol, 25 g D-glucose and 100 g α-lactose per L. The 500x trace metal solution 

was also prepared based on previous descriptions with small adjustments [35]. Briefly, 

1 L of 500x trace metal solution contained 8 mL 5 M HCl, 5 g FeCl2·4H2O, 184 mg 

CaCl2·2H2O, 64 mg H3BO3, 18 mg CoCl2·6H2O, 4 mg CuCl2·2H2O, 340 mg ZnCl2, 605 

mg Na2MoO4·2H2O, and 40 mg MnCl2·4H2O. These three solutions were heat-

sterilized and stored at room temperature until use. The 100x vitamin solution was 

prepared by dissolving 50 mg thiamine hydrochloride, 10 mg D-biotin, 10 mg choline 

chloride, 10 mg folic acid, 10 mg niacin, 10 mg pantothenic acid, 10 mg pyridoxal, and 

1 mg riboflavin in 100 mL MilliQ water. This solution was sterilized using a 0.2-µm 



��
�

filter, wrapped in aluminum foil, and stored at -20ºC until use. 

 [U-2H,13C,15N] Aβ42 was produced using M9 minimal media. Various stock 

solutions were required: the 30x salt solution was prepared as a 50-mL aliquot of D2O 

containing 10.2 g anhydrous Na2HPO4, 4.5 g anhydrous KH2PO4, 0.75 g NaCl and 0.37 

g MgSO4; the 100x vitamin solution and the 500x trace metal solution were prepared as 

detailed above using D2O instead of H2O. 

Media for growth and expression 

For the production of [U-15N] Aβ42, 15N-labeled P-5052 medium for auto-induction 

was prepared from 2 mL of 1 M MgSO4 solution, 50 mL of the 20x 15N-NPS, 20 mL of 

the 50x  5052, 2 mL of the 500x trace metal solution and 916 mL heat-sterilized MilliQ 

water. The resulting medium was heat-sterilized and subsequently 10 mL of the 

previously filtered 100x vitamin solution was added to it. 

For the production of [U-2H,13C,15N] Aβ42, M9 minimal media was prepared from 

33.3 mL of the 30x salt solution, 10 mL of the 100x vitamin solution, 1 g NH4Cl, and 4 

g D-glucose and brought to 1 L with 50% H2O/50% D2O or 100% D2O for the pre-

cultures. For the final culture, 1 g 15NH4Cl and 2 g D-glucose-13C6, 1,2,3,4,5,6,6-d7 

were used in 100% D2O. The resulting solutions were sterilized by filtering them 

through a 0.2-µm filter. Afterwards, 2 mL of heat-sterilized 500x trace metal solution, 

freeze-dried and resuspended in D2O, were added to each of them. 

Protein expression  

Rosetta (DE3) pLysS E. coli cells (Novagen) were transformed with the expression 

vector and grown overnight at 37°C on Luria Bertani (LB)-agar plates containing 1% 

glucose. All cell cultures were also supplemented with 35 µg/mL chloramphenicol and 

50 µg/mL kanamycin. 

For [U-15N] Aβ42 expression, the following auto-induction procedure was applied, 
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adapted from a previously described protocol [34]. Single colonies were picked and 

grown overnight in 2 x 12.5 mL LB, 1% glucose. The pre-cultures were centrifuged at 

3,000 g for 10 min at 25ºC. Each pellet was transferred to 0.5 L 15N-labeled P-5052 

auto-inducing media with the appropriate antibiotics using a 3-L Erlenmeyer flask. The 

resulting cultures were grown for 6 h at 37ºC and 180 rpm. The temperature was then 

lowered to 25ºC, and the culture was incubated 22 h more at 180 rpm. The cells were 

then harvested by centrifugation at 9,000 g for 15 min at 4ºC and then frozen at -80°C.  

For [U-2H,13C,15N] Aβ42 expression, single colonies were picked and grown 

overnight in 4 x 3 mL LB, 1% glucose. The LB pre-cultures were centrifuged at 3,000 g 

for 10 min at 25ºC. The pellets were then transferred to 120 mL M9 medium, containing 

50% H2O/50 % D2O and the corresponding antibiotics. The 50% D2O pre-culture was 

grown for 7 h at 37ºC and centrifuged at 2,000 g for 20 min. The pellet was re-

suspended and inoculated in 240 mL M9 medium in 100% D2O. The 100% D2O pre-

culture was grown overnight. The next morning, the pre-culture was centrifuged at 

2,000 g for 20 min, and the pellet was re-suspended and inoculated in 1 L M9 100% 

D2O medium, containing 1 g/L 15NH4Cl and 2 g/L D-glucose-13C6, 1,2,3,4,5,6,6-d7 

glucose. The culture was grown at 37°C and 180 rpm and induced at OD600 ~0.8 by the 

addition of IPTG to a final concentration of 0.5 mM. After further growth for 3 h, the 

cells were harvested by centrifugation at 9,000 g for 15 min at 4ºC and then frozen at -

80°C.  

Protein isolation from the soluble and insoluble fractions 

20 mg of cell pellet was resuspended in 1 mL buffer A (300 mM NaCl, 50 mM 

sodium phosphate, 20 mM imidazole, 1% Tween-20 and 1 mM tris(2-

carboxyethyl)phosphine (TCEP) pH 8.0), supplemented with half a pill of 

ethylenediaminetetraacetic acid  (EDTA)-free Complete protease inhibitor (Roche) and 
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1 mg DNAse (Roche). The resuspended cells were lysed using a 3-mm tapered microtip 

sonicator (VCX 750 Ultrasonic Processor, Sonics) for 10 min in an ice water bath. The 

cell extract was diluted with buffer A and then centrifuged at 15,000 g for 10 min at 

4ºC, and the supernatant corresponding to the soluble fraction was kept. The pellet was 

resolubilized in buffer A containing 8 M urea using the same volume of the previously 

collected supernatant. The resulting solution was then sonicated in a bath (Bransonic® 

Ultrasonic cleaner B1510E) for 5 min and then centrifuged at 15,000 g for 10 min at 

4ºC. The supernatant obtained, corresponding to the insoluble fraction, as well as that 

corresponding to the soluble fraction, were analyzed by Western Blot (WB). 

Protein purification 

The cell pellet was resuspended in 6 mL buffer A per g of cells, supplemented with 1 

EDTA-free Complete protease inhibitor pill (Roche) and 1 spatula of DNAse (Roche) 

per 50 mL of buffer. The resuspended cells were lysed using a cell disruptor (Constant 

Systems Ltd. U.K.) operating at 20,000 psi. The cell extract was then centrifuged at 

30,000 g for 30 min at 4ºC, the supernatant filtered using a 0.45 µm and subsequently 

purified by IMAC. The supernatant was loaded at 1 mL/min onto a HisTrap HP 5-mL 

Ni column (GE Healthcare), which was previously equilibrated with 5 column volumes 

of buffer A. After the loading step, the resin was washed with buffer B (300 mM NaCl, 

50 mM sodium phosphate, 40 mM imidazole, 0.05% Tween-20 and 1 mM TCEP pH 

8.0) for 10-15 column volumes, until UV absorbance was stable. The fusion protein was 

eluted at 2-5 mL/min using the following 3-step elution method: (a) a 15 mL linear 

gradient from 0 to 15% of buffer C (300 mM NaCl, 50 mM sodium phosphate, 500 mM 

imidazole, 0.05% Tween-20 and 1 mM TCEP pH 8.0), followed by (b) a 20 mL 

isocratic step at 15% buffer C and (c) a second isocratic step at 100% buffer C until UV 

absorbance was stable. IMAC fractions were analyzed by sodium dodecyl sulfate 
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polyacrylamide gel electrophoresis (SDS-PAGE), and those containing the fusion 

protein were pooled in batches of 10 mL. Subsequently, buffer was exchanged using a 

HiPrep 26/10 desalting column (GE Healthcare) equilibrated with 50 mM ammonium 

carbonate and 1 mM TCEP. Afterwards, the concentration and purity of protein was 

determined by nanodrop and RP-HPLC, respectively. Afterwards, to cleave Aβ42 from 

the SUMO fusion tag, samples were incubated overnight at 4ºC with SUMO protease 

(Ulp1) [33] in a 1:50 protease:protein ratio. The concentration of Aβ42 peptide after the 

cleavage was determined by RP-HPLC analysis. Subsequently, aliquots containing 3.75 

mg Aβ42 were prepared and freeze-dried. Each of these aliquots was solubilized with 

6.8 M guanidinium thiocyanate (GdnSCN) to 2.5 mg Aβ42/mL and sonicated for 5 min 

in an ice bath. Afterwards, the sample was further diluted with MilliQ water to 1.5 mg 

Aβ42/mL and 4 M GdnSCN, and centrifuged at 10,000 g for 6 min at 4ºC. Finally, 2.5 

mL of the 1.5 mg Aβ42/mL was injected into a HiLoad Superdex 30 prep grade column 

(GE Healthcare), previously equilibrated with 50 mM ammonium carbonate, and eluted 

at 4ºC at a flow rate of 1 mL/min. The peaks corresponding to SUMO and monomeric 

Aβ42 were collected separately and their purity and concentration were determined by 

RP-HPLC. Both pools were freeze-dried, and the Aβ42 pool was subjected to the same 

GdnSCN solubilization protocol and SEC fractionation, as described. Pure Aβ42 was 

obtained after the two SEC steps. It was then aliquoted in the desired amounts, freeze-

dried, and kept at -20ºC until use. 

SDS-PAGE and WB 

Samples for Fig. 1 were analyzed as follows: 10 µL of 3X sample buffer (SB) was 

added to 20 µL of supernatant and reconstituted pellet, boiled for 5 min at 95ºC. 20 µL 

of each of the resulting samples was electrophoresed using Mini-protean tetracell® 

system (Bio-Rad) in 0.75 mm-thick SDS-PAGE containing 15% acrylamide. Gels were 
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run at 120 V and stained with Coomassie Blue. For WB protein samples, SDS-PAGE 

gels were transferred to a 0.22 µm nitrocellulose (GE Healthcare) at 100 V for 2 h at 

4ºC. Next, the membranes were washed in Tris-buffered saline and 0.1% Tween 20 

(TBST), blocked in 5% (w/v) non-fat dried milk overnight at 4ºC, and incubated with 

primary antibody 6E10 (Covance) in 5% (w/v) non-fat dried milk overnight at 4ºC. 

Blots were treated with secondary horseradish peroxidase-conjugated mouse secondary 

antibody (GE Healthcare) using the chemiluminescence Immobilon ECL detection 

system (Millipore) and exposed to X-ray films (Super RX Medical X-Ray, Fujifilm), 

which were developed using the Hyper processor automatic film developer (Amersham 

Pharmacia Biotech). 

Samples for Fig. 3A were analyzed as follows: 5µL of NuPAGE® LDS Sample 

Buffer (4X) were added to 15µL of both uncleaved and cleaved samples, and boiled for 

2 min at 95ºC. 15µL of each of the resulting samples were electrophoresed using 

NuPAGE® Novex™ 10% Bis-Tris Midi Protein SDS-PAGE gels using NuPAGE® 2-

(N-morpholino)ethanesulfonic acid (MES) SDS running buffer supplemented with 

NuPAGE® antioxidant (all NuPAGE® products are from Thermo Fisher Scientific). 

Gels were run at 200 V and stained with Coomassie Blue. 

RP-HPLC  

10-50 µL of sample obtained after desalting, Aβ42 cleaved from SUMO-Aβ42, and 

different fractions obtained after either of the two SEC steps were injected into a RP-

HPLC (Waters Alliance 2695 equipped with 2998 photodiode array detector). Samples 

were analyzed using a Symmetry 300 C4 column (4.6 × 150 mm, 5 µm, 300 Å; Waters) 

at a flow rate of 1 mL/min and a linear gradient from 0 to 60% B in 15 min (A = 

0.045% trifluoroacetic acid (TFA) in water, and B = 0.036% TFA in acetonitrile) at 

60ºC. The concentration of monomeric Aβ42 was determined by RP-HPLC using the 
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above-described conditions. A calibration curve was generated on the basis of an Aβ42 

solution that had previously been quantified by amino acid analysis. 

Mass spectrometry 

The retention time of Met-35(ox)Aβ42 relative to that of Aβ42 in RP-HPLC was 

determined by analyzing a mixture of them by liquid chromatography coupled to MS 

(LC-MS). The sample was examined using a BioSuite pPhenyl 1000 RPC analytical 

column (10 µm, 2 × 75 mm; Waters) at a flow rate of 100 µl/min comprising a linear 

gradient running from 5 to 80% B in 60 min (A= 0.1% formic acid (FA) in water, B= 

0.1% FA in acetonitrile). The column outlet was directly connected to an Advion 

TriVersa NanoMate, which was used as a splitter and as the nanospray source (250 

nl/min) of an LTQ-FT Ultra mass spectrometer (Thermo Scientific). Positive polarity 

was used with a spray voltage in the NanoMate source set to 1.7 kV. The capillary 

voltage, capillary temperature, and tube lens on the LTQ-FT were tuned to 44 V, 200°C, 

and 100 V, respectively. 

The molecular weight of the labeled Aβ42 samples was determined by LC-MS. 

Briefly, aliquots of pure [U-15N] Aβ42 and [U-2H,13C,15N] Aβ42 obtained after SEC 

fractionation were diluted 1/10 with H2O and 1% FA. 10 µL of the resulting samples 

(20 pmols in column) were used for LC-MS analysis. Samples were injected to a 

BioSuite pPhenyl 1000 column (10 µm RPC 2.0 mm x 75 mm; Waters) at a flow rate of 

100 µl/min using an Acquity UPLC system (Waters) provided with a Binary Solvent 

Manager and an autosampler. Peptides were eluted using a linear gradient from 5% to 

80% B in 60 min (A = 0.1% FA in water, B = 0.1% FA in acetonitrile). The column 

outlet was directly introduced into the electrospray ionization (ESI) source of an LCT-

Premier XE mass spectrometer (Waters). Capillary voltage, cone voltage, cone gas flow 

and desolvation gas flow were set to 3000 V, 100 V, 50 L/h and 600 L/h, respectively. 
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Desolvation and source temperatures were set to 350ºC and 120ºC, respectively. The 

mass spectrometer acquired full MS scans (400-4000 m/z) working in positive polarity 

and TOF-V mode. Data was acquired with MassLynx software, V4.1. (Waters). MS 

spectra corresponding to the chromatographic peak were summed. Charged protein 

species in the resulting spectrum were deconvoluted to their zero charged average 

masses using the integrated MaxEnt1 (maximum entropy) algorithm. 

NMR spectroscopy 

2D 1H-15N Heteronuclear Single Quantum Coherence (HSQC) spectra were recorded 

on 400 µM [U-15N] SUMO dissolved in 50 mM sodium phosphate, pH 7.4, 90% 

H2O/10% D2O at 25ºC and on 150 µM [U-15N] Aβ42 dissolved in 95% 

dimethylsulfoxide-d6 (DMSO-d6) (Euriso-top), 5% D2O at pH* 4.6 (adjusted with 

dichloroacetic acid-d2) and 25ºC on a Bruker 800 and 600 MHz spectrometer, 

respectively, equipped with a cryogenic probe head. All data were processed and 

analyzed using TopSpin software from Bruker. 

RESULTS AND DISCUSSION 

SUMO solubilizes Aβ42 when the two molecules are fused 

The expression of [U-15N] SUMO-Aβ42 fusion protein was accomplished through 

two steps, including an LB pre-culture and a final culture in 15N-labeled P-5052 auto-

inducing media. Approximately 7-10 g (wet weight) of cells was obtained per L of 

culture. The use of auto-induction to produce [U-2H,13C,15N] Aβ42 required lactose-d14 

and glycerol-d5 as metabolic precursors. The cost of these reagents is prohibitively 

expensive so we opted for IPTG induction, which required the less expensive D-

glucose-13C6, 1,2,3,4,5,6,6-d7. The expression of [U-2H,13C,15N] SUMO-Aβ42 required 

four steps to adapt the cells to D2O media. These included a first pre-culture in LB, a 

second pre-culture in M9 minimal media containing 50% H2O/50% D2O, a third pre-
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culture in 100% D2O, and a final culture in 100% D2O containing 1 g/L 15NH4Cl and 2 

g/L D-glucose-13C6, 1,2,3,4,5,6,6-d7 glucose. We obtained approximately 3-5 g (wet 

weight) of cells per L of culture.  

Satakarni and Curtis previously reported on the capacity of SUMO to solubilize 

Aβ42 when fused to it [27]. To examine this property under our expression conditions, 

we analyzed the supernatant corresponding to the soluble fraction, as well as the 

insoluble pellet resuspended in the same volume as that of the previously collected 

supernatant, by WB using 6E10, an antibody that recognizes residues 3 to 8 of the Aβ 

sequence (Fig. 1). Our results indicated that SUMO-Aβ42 was predominantly expressed 

in the soluble fraction. This finding contrasts with that described by Satakarni and 

Curtis, who reported obtaining the same volumetric productivity of SUMO-Aβ42 after 

IMAC purification of the soluble supernatant and the insoluble pellet [27]. These 

differences can be explained by the fact that we produced SUMO-Aβ42 using minimal 

media while they used richer LB media. Given that protein expression yields are usually 

lower in the former media and that aggregation is highly dependent on protein 

concentration, it is likely that the concentrations of SUMO-Aβ42 produced in minimal 

media are not high enough to promote extensive aggregation and accumulation of the 

fusion protein in inclusion bodies. This explanation is supported by a report describing 

the expression and purification of the 50-amino acid protein medin [36]. Similar to 

Aβ42, medin forms amyloid fibrils, which are the major protein component of Aortic 

Medial Amyloid. In the aforementioned report, the authors describe the successful 

expression and purification of [U-13C,15N] medin fused to His6-SUMO. As in the case 

of SUMO-Aβ42, the SUMO-medin construct expressed in minimal media gives rise to a 

high level expression in the soluble fraction (90%). Notably, the final volumetric yield 
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of [U-13C,15N] medin obtained from the soluble fraction is the same as the one we report 

here for [U-15N] Aβ42. 

Oxidation of methionine 35 is not observed during purification 

Next, to design the purification strategy, we took into account various considerations. 

First, under the minimal media, SUMO-Aβ42 is predominantly expressed in the soluble 

fraction. Second, the use of highly denaturing conditions makes proteins vulnerable to 

chemical modifications, including methionine oxidation. Third, the most widely 

reported undesired side product during Aβ purification is oxidized Met-35. Fourth, Met-

35(ox)Aβ42 and Aβ42 differ mainly in terms of hydrophobicity, so the most efficient 

method to separate them is via costly and time-consuming preparative RP-HPLC. Given 

these considerations, we chose to focus on the purification of the soluble SUMO-Aβ42 

fraction of the cell lysates, which allowed us to design a purification protocol that did 

not require the use of highly denaturing conditions in the stages of the purification when 

Aβ42 was still fused to SUMO. In doing so, our aim was to avoid Met-35 oxidation and 

thus the use of RP-HPLC. To ensure that Met-35 was not oxidized during the different 

stages of the Aβ42 purification, we used analytical RP-HPLC. Analysis of a mixture of 

Met-35(ox)Aβ42 and Aβ42 by analytical RP-HPLC and LC-MS revealed that Met-

35(ox)Aβ42 elutes earlier than the reduced form (Fig. 2). This result supports the 

capacity of this method to detect the presence of Met-35(ox)Aβ42 in Aβ42 samples.  

The first step of the purification relied on the (His)6 tag present at the N-terminal of 

SUMO, which allowed a simple purification of SUMO-Aβ42 by IMAC using non-

denaturing, degassed buffers in the presence of TCEP. Next, to cleave the SUMO-Aβ42 

construct, the IMAC buffer was replaced by 50 mM ammonium carbonate and 1 mM 

TCEP at pH 9.0. This buffer allowed us to resolve the following two issues, namely to 

cleave Aβ42 from SUMO under basic pH—conditions reported to slow down Aβ42 



���
�

aggregation [37], and to subsequently lyophilize the sample, yielding a lyophilized 

powder free of insoluble salts. When present, the latter can promote Aβ42 aggregation 

upon subsequent resuspension. Under the 50 mM ammonium carbonate and 1 mM 

TCEP buffer, the cleavage of SUMO-Aβ42 using SUMO protease (Ulp1) [33] was 

highly effective, leading to SUMO and Aβ42, as analyzed by SDS-PAGE (Fig. 3A) and 

RP-HPLC (Fig. 3C). The two bands detected in the SDS-PAGE analysis of SUMO-

Aβ42 (Fig. 3A, lane 1) were assigned to two populations of SUMO-Aβ42 caused by 

either an incomplete denaturation of SUMO-Aβ42 prior to sample separation or 

subsequent partial renaturation during the separation. Products of incomplete translation 

during synthesis, and/or partial degradation during lysis, and/or sample processing of 

both SUMO and Aβ42 moieties were excluded as these would be evident in both the 

SDS-PAGE gels and the RP-HPLC profiles of the downstream SUMO protease-cleaved 

products (Fig. 3A and 3C). 

Since the molecular weight of SUMO (12.4 kDa) is almost three-fold larger than that 

of Aβ42 (4.5 kDa), we proceeded with their separation by means of SEC (Fig. 3B). To 

obtain the best yield for monomeric Aβ42, it was critical to ensure the absence of Aβ42 

aggregates at the time of injection. To this end, we resuspended the lyophilized powder 

obtained after SUMO protease cleavage at 2.5 mg/mL Aβ42 in 6.8 M GdnSCN. This 

strong chaotropic reagent is able to solubilize plaque cores from the brains of AD 

patients [2]. Therefore, performing this step ensured complete solubilization of the 

sample containing Aβ42 and SUMO. To minimize Aβ42 aggregation during elution 

from the column, SEC was performed at 4ºC. At this temperature, 6.8 M GdnSCN 

precipitates. To avoid this, the sample containing Aβ42 and SUMO was diluted to 4 M 

GdnSCN and 1.5 mg/mL Aβ42 before subjecting it into the SEC apparatus. To prevent 

the oxidation of Met-35, SEC was carried out using carefully degassed 50 mM 
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ammonium carbonate at pH 9.0. Again, we chose this buffer because its basic pH has 

been reported to minimize Aβ42 aggregation [37] and because its volatility allowed 

subsequent lyophilization of the fractions containing Aβ42 without leaving any 

insoluble salts in the lyophilized powder. To completely separate Aβ42 from SUMO, a 

second SEC purification was required (Fig. 3B). After this second SEC, the purity of the 

peptide and the absence of Met-35(ox)Aβ42 (compare to Fig. 2A) was confirmed by 

RP-HPLC (Fig. 3C). This expression and purification strategy allowed us to obtain 6 

mg [U-15N] Aβ42 and 2 mg [U-2H,13C,15N] Aβ42 per L of culture. The purity of labeled 

peptides was determined by RP-HPLC and found to be > 98% (Fig. 4A). Moreover, 

their identity and label incorporation was determined by HRMS analysis (Fig. 4B) and 

reported in Table 1. 

The labeled Aβ42 is amenable to NMR-based structural studies 

Notably, apart from obtaining pure [U-15N] Aβ42 and [U-2H,13C,15N] Aβ42, the 

expression and purification strategy simultaneously allowed us to obtain pure [U-15N] 

SUMO and [U-2H,13C,15N] SUMO after the first SEC purification. Soluble and well-

folded proteins are useful as standards to set up NMR experiments and are usually 

purchased from commercial sources. For example, 5 mg [U-15N] ubiquitin costs more 

than 1,000 € and 550 µL 0.5 mM [U-2H, 13C, 15N] maltose binding protein more than 

6,000 €. Since SUMO is a soluble, well-folded protein, the [U-15N] SUMO and [U-

2H,13C,15N] SUMO obtained from this strategy could be useful for setting up NMR 

experiments (Fig. 5A).  

[U-15N] Aβ42 and [U-2H,13C,15N] Aβ42 peptides will be useful to characterize Aβ42 

aggregation by means of NMR spectroscopy. As an example of a possible application, 

we measured 1H-15N HSQC NMR spectrum of monomeric Aβ42, obtained after 

dissolving [U-15N] Aβ42 in 95% DMSO-d6, 5% D2O at pH* 4.6 (Fig. 5B). This buffer 
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has been reported to disaggregate Aβ into its constituent monomers while preserving 

hydrogen deuterium exchange (HDX) information [6,38-42]. HDX experiments are 

among the techniques most used in the literature to obtain structural information about 

amyloid fibrils [6,38,39,41] and also about aggregates formed during fibril formation 

[42]. Under these conditions, we observed at least 37-38 N-H cross-peaks 

corresponding to the amides of the Aβ42 backbone. Among them, six peaks appeared at 

the characteristic chemical shifts of glycines, consistent with the six glycines present in 

the Aβ42 sequence. Moreover, we expect that the [U-2H,13C,15N] Aβ42 sample will 

pave the way for NMR studies of Aβ42 in the form of high molecular weight 

complexes, including those formed in a membrane environment. 

Conclusions 

We have produced [U-15N] Aβ42 and [U-2H,13C,15N] Aβ42 using a novel and 

efficient expression and purification protocol (Figure 6). Our purification protocol 

involves an IMAC, a desalting step, and two SEC purifications. The ease of the 

purification strategy is based on the expression of Aβ42 fused to SUMO, which 

prevents Aβ42 aggregation. This strategy circumvents the requirement of denaturing 

conditions in the initial stages of purification, thus preventing the formation of Met-

35(ox)Aβ42 and the need for costly and time-consuming preparative RP-HPLC 

purification. Consequently, recombinant expression of labeled Aβ42 is now accessible 

to many protein laboratories, including those that do not have access to preparative-RP-

HPLC. Indeed, all the purification steps reported can be performed with the generally 

accessible fast protein liquid chromatography system (FPLC). Indeed, the cost of the 

reagents to produce 6 mg [U-15N] Aβ42 using this protocol is negligible; in this regard, 

we calculated it to be less than €15-20 per mg, thus being much cheaper than 

commercially available recombinant [U-15N] Aβ42, which is sold at $695 per mg 
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(https://www.rpeptide.com/products/labeled-peptides-and-proteins/beta-amyloid-

labeled-peptides-recombinant/). The SUMO protease used in this study was prepared in-

house, the methodology is very simple and can be performed by any lab wishing to 

produce large quantities of the enzyme to reduce costs [43]. SUMO protease is also 

available commercially as 100,000 U for €600 (less than one cent per unit) and, as we 

estimate that 5,000-10,000 U should be sufficient to cut 25mg of the SUMO-Aß42 

fusion overnight, this digestion step should not therefore be seen as prohibitively 

expensive. Additionally, even in the case that a laboratory would need to invest in the 

required FPLC columns—we assume possession of an FPLC system—the cost of the 

columns would be recovered in the first Aβ42 purification, and the columns themselves, 

especially Superdex 30, can be used for many other purifications. Therefore, the 

expression and purification protocol described herein offers an alternative inexpensive 

approach to previously described methods to obtain [U-15N] Aβ42 [29,30] and the first 

method to achieve [U-2H,13C,15N] Aβ42. 
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Tables: 

Medium 

Theoretical 

Mass 

(mono-

isotopic) 

Observed 

Mass 

Theoretical 

number of 

isotopic 

substitution

s 

Observed 

number of 

isotopic 

substitutions 

Isotopic 

incorporation 

(%) 

P-5052  

(15N)  
4566.1 4566.1 54.8 54.8 100.0 

M9D2O 

(2H,13C,15N) 
5014.3 

5004.6 

5002.9 

4996.7 

503.043 

493.3 

491.6 

485.4 

98.1 

97.7 

96.5 

 

Table 1. Isotopic incorporation percentages. The theoretical monoisotopic masses were 

calculated using the Molecular Mass Calculator tool from the Biological Magnetic 

Resonance Data Bank website 

(http://www.bmrb.wisc.edu/metabolomics/mol_mass.php?formula=C210H321N56O61

S2&subaction=Natural+Composition&updateIsoComp=1). In the case of [U-15N] Aβ42, 

they were obtained assuming 100% substitution of 14N isotopes for 15N and in the case 

of [U-2H,13C,15N] Aβ42 assuming 100% substitution of 12C, 14N and non-labile 1H 

isotopes for 13C, 15N and 2H. The theoretical and observed number of isotopic 

substitutions account for the difference between the theoretical mono-isotopic mass and 

the theoretical or observed mass of the different isotopically labeled Aβ42 peptides. 

Therefore, the theoretical and observed number of isotopic substitutions indicate the 

increase in mass due to the theoretical and experimental incorporation of 15N  and 2H, 

13C or 15N isotopes in [U-15N] Aβ42 and [U-2H,13C,15N] Aβ42, respectively. 
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Figure Legends: 

 

Fig. 1. SUMO-Aβ42 is predominantly expressed in the soluble fraction. WB analysis 

of the supernatants corresponding to the soluble (lane 1) and insoluble (lane 2) fraction 

of a crude lysate. Samples were blotted with 6E10 monoclonal antibody, which 

recognizes residues 3-8 of Aβ. 
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Fig. 2. Characterization of the retention time of Met-35(ox)Aβ42 and Aβ42 on RP-

HPLC. (A) RP-HPLC chromatogram obtained for a sample containing Met-35(ox)Aβ42 

(highlighted in red) and Aβ42 (highlighted in green). (B) LC-MS chromatogram 

obtained for the same sample containing Met-35(ox)Aβ42 (highlighted in red) and 

Aβ42 (highlighted in green). ESI-mass spectrum corresponding to the (C) first and the 
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(D) second peaks detected by LC-MS, assigned to Met-35(ox)Aβ42 and Aβ42, 

respectively. Mw theor refers to the theoretical monoisotopic mass and Mw exp to the 

experimental monoisotopic mass. 
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Fig. 3. Aβ42 purification. (A) SDS-PAGE analysis of SUMO-Aβ42 fusion protein 

before (lane 1) and after (lane 2) cleavage with SUMO protease (Ulp1). (B) SEC 

chromatograms corresponding to the first (black) and second (light gray) purification 

step of the SUMO and Aβ42 sample obtained after cleavage. SUMO and Aβ42 eluted at 

50.5 mL and 57.1 mL, respectively. (C) RP-HPLC chromatograms at different stages of 

the Aβ42 purification: SUMO-Aβ42 before (black) and SUMO Aβ42 after cleavage 

(dark gray), and pure Aβ42 (light gray) obtained after the second SEC. SUMO-Aβ42, 

SUMO and Aβ42 eluted at 9.9 min, 9.3 min and 9.8 min, respectively. 
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Fig. 4. Purity and identity of [U-15N] Aβ42 and [U-2H,13C,15N] Aβ42. RP-HPLC 

analysis of (A) [U-15N] Aβ42 and (B) [U-2H,13C,15N] Aβ42. HRMS analysis of (C) [U-

15N] Aβ42 and (D) [U-2H,13C,15N] Aβ42. ESI-mass spectrum (right) and deconvoluted 

mass spectrum showing the mass of the peptides (left). 
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Fig. 5. Labeled SUMO and Aβ42 are suitable for NMR studies. (A) 1H-15N HSQC 

NMR spectra of 400 µM [U-15N] SUMO in 50 mM sodium phosphate, pH 7.4, 90% 

H2O/10% D2O and (B) 150 µM [U-15N] Aβ42 in 100% DMSO-d6, 5% H2O at pH* 4.6. 

The dotted circle indicates the position of the peaks appearing in the region 

characteristic of the glycine residues. 
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Fig. 6. Schematic diagram for purification of recombinant Aβ42. (A) Previous strategies 

report accumulation of the fusion-Aβ42 protein in inclusion bodies. This requires the 

use of denaturing conditions in the initial stages of purification, which leads to the 

formation of Met-35(ox)Aβ42. To separate Met-35(ox)Aβ42 from Aβ42, costly and 

time-consuming preparative RP-HPLC purification is required. (B) Proposed strategy 

based on the expression of Aβ42 fused to SUMO, which prevents Aβ42 aggregation. 

The solubility of SUMO-Aβ42 circumvents the requirement of denaturing conditions in 

the initial stages of purification, thereby preventing the formation of Met-35(ox)Aβ42. 

This protocol allows all the purification steps to be performed with the generally 

accessible fast protein liquid chromatography system (FPLC). 

 


