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Abstract 

The kinetics of the liquid phase dehydration of 1-octanol to di-n-octyl ether (DNOE) over Amberlyst 

70 was studied at 413-453K. Mechanistic rate models assuming water and 1-octanol adsorbed on the 

resin, and the free sites fraction negligible, were selected from 1-octanol dehydration experiments. 

Next, the influence of DNOE, water and 1,4-dioxane (solvent) concentration was evaluated. DNOE 

and 1,4-dioxane do not affect significantly the reaction rate, while water inhibits it strongly. Water 

effect was quantified by splitting the rate constant into a “true one” and a correction factor related to 

the fraction of active sites blocked by water. The best kinetic model stemmed from an Eley-Rideal 

mechanism with water adsorbed onto the resin and DNOE released directly to the liquid phase, with a 

correction factor for water inhibitory effect based on a Freundlich isotherm-like function; activation 

energy being 110±5 kJ·mol-1 based in line with literature data on homologous reactions. 
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Introduction 

In the last two decades European oil industry is making a big effort to adapt the production facilities 

to maximize the production of diesel and at the same time upgrading fuel quality, as a consequence 

of the following factors: 1) the quick rise in diesel vehicle fleet; 2) the limits in the amounts of 

pollutants on exhaust gases (particulate matter, smoke, CO, NOx, unburned hydrocarbons) set by the 

98/70/EC directive;1 3) the severe specifications imposed by the 2003/17/EC directive involving 

distillation curve, cetane number, sulphur content, viscosity, density and cold flow properties; and 4) 

the introduction of bio-compounds in the automobile fuels composition ruled by 2009/28/EC and 

2009/30/EC directives. Directive 2009/30/CE aims to reduce both the greenhouse gas emissions and 

the sulphur content of diesel fuels. New diesel fuel specifications set a limit value of 10 mg·kg-1 for 

sulphur content and a gradual reduction of life cycle greenhouse gas emissions per unit of energy 

from fuel and energy supplied up 10% by 31 December 2020, compared with the fuel baseline 

standard referred in 2010. As a result of those legislative changes, it is expected that future diesel 

fuels have a higher cetane index, lower density and a lower content on PAH (polycyclic aromatic 

hydrocarbons).2 At this time, diesel fuel reformulation with oxygenates is a good option to upgrade 

the quality of diesel and comply with European standards, similarly to that of gasolines by using 

suitable oxygenates in the 90’s. 

It is well known that the addition of linear ethers containing more than nine carbon atoms to 

commercial gasoil upgrades the quality of the diesel blend.3-5 Reformulated diesel fuels show higher 

cetane number as a result of the addition of C10 – C16 linear ethers of cetane number ranging from 

100 to 119; blends with linear ethers improve cold performance of commercial gasoil, and as boiling 

point of such ethers (from 453 to 528 K) coincides with the lower part of distillation curve of gasoil 

(443-633 K) its addition upgrades the vaporization of the blend. As a consequence of upgrading its 

quality, combustion of diesel blends is cleaner and the pollutants amount in exhaust gases decreases 

substantially. It is generally accepted that oxidative species will be present in the fuel during the 



3 
 

combustion as a result of adding compounds containing oxygen atoms to the fuel.1 Such oxidizing 

agents are thought to suppress the soot formation in the early stages of its formation, what avoids its 

growth and agglomeration towards the formation of exhausts particulates. PAH have an important 

role in particulates formation as well. For this reason, PAH and soot precursors, such as benzene, 

must be removed. Besides, the dilution effect by the introduction of linear ethers also contributes to 

reduce the content of aromatic polycyclic compounds and sulphur. 

Di-n-octyl ether (DNOE) is a good candidate to increase the oxygen content of diesel fuels: it has 

excellent cold fluid performance, blending cetane number of 119, and boiling point in the range of 

medium diesel fractions (Table 1). Therefore, adding DNOE to commercial diesel improves the fluid 

properties of blends, especially at low temperature, and their combustion since the ether avoids the 

formation of particles precursors. DNOE is produced by the dehydration reaction of 1-octanol. As 

linear primary alcohols can be obtained from hydroformylation of linear olefins, DNOE synthesis 

could be a way to revalue C7 cuts from FCC. But the fact that 1-octanol could be produced from 

renewable sources such as bioethanol, biobutanol or glucose, is more relevant in the medium and 

long term. Ethanol can lead to higher linear alcohols by the Guerbert reaction on basic catalysts, i.e. 

ethanol dimerizes to butanol over MgO at 723 K;7 and over nonstoichiometric hydroxyapatite at 673-

723 K; 1-hexanol and 1-octanol being the main byproducts.8,9 Moreover, Tsuchida et al. have  also 

reported that ethanol reacts with 1-hexanol on Ca-hydroxyapatite at 611 K to give huge amounts of 

1-octanol.9 On the other hand, promising work on obtaining ethanol, butanol and octanol from sugar-

derived compounds have recently shown that engineered Escherichia coli strain are effective at 

much milder experimental conditions.10 Therefore, it is foreseen that in the near future DNOE could 

be obtained from biomass-derived 1-octanol in sufficient quantity, and may be labelled as biofuel. 

TABLE 1 

Linear symmetrical ethers are produced by the bimolecular dehydration of the respective linear 1-

alkanols over acid catalysts. In general, industrial processes use sulfuric acid as catalyst.11 Typical 
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disadvantages of homogeneous catalytic processes are the separation of the catalyst and product after 

reaction, which leads to corrosive waste streams, and furthermore the reaction product is frequently 

blackened by the oxidizing power of sulfuric acid.12 A more attractive, and environmentally friendly, 

method for the preparation of ethers is the use of solid acid catalysts. Inorganic solid acids like -

alumina,13-alumina,14,15 ion-exchanged montmorillonites,16,17 and zeolites,14,18-20 have been used in 

the dehydration of 1-octanol. They are not very active and, in general, favored the production of 

olefins above 473K (Figure 1), with the exception of H-Beta.21 Organic acid solids like perfluoro-

alkanesulfonic acids (e.g. Nafion H) and sulfonic polystyrene-co-divinylbenzene (PS-DVB) resins 

are able to work with high selectivity and interesting reaction rates in the temperature range 413-

473K.22,23 Nafion catalysts are quite expensive so that thermally stable PS-DVB catalysts, e.g. 

Amberlyst 70, are interesting catalysts to dehydrate 1-octanol to DNOE.  

FIGURE 1 

Previous work shows that the dehydration of 1-octanol to ether proceeds selectively (≥ 90%) under 

453K with interesting reaction rates on Amberlyst 70.23 The reaction is reversible and alcohol 

equilibrium conversions higher than 93% can be achieved.24 This paper studies the kinetics of the 

reaction over Amberlyst70 in order to design a reactor for a potential process of DNOE synthesis. 

 

Materials and methods 

Materials 

1-octanol (Acros Organics, > 99.5 pure), 1,4-dioxane (Sigma Aldrich, > 99.8% pure) and DNOE 

(Sigma Aldrich, > 99% pure) were used without further purification. Deionised water (resistivity 18.2 

m·cm) obtained in our laboratory and 1-octene (Sigma Aldrich, 99% pure) were also used.  

The thermally stable ion-exchange resin Amberlyst 70 was used as the catalyst. It is a macroreticular 

PS-DVB ion-exchange resin with low cross-linking degree. In its synthesis, hydrogen atoms in the 
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polymer backbone are substituted by chlorine, and as a result the resin is thermally stable up to 473 K. 

The sulfonic groups (−SO3H), which are the active sites of the catalyst, are attached to benzene rings 

of polymer through treatment with sulphuric acid. Its physical characteristics are gathered in Table 2. 

TABLE 2 

Apparatus.  

Experiments were carried out in a 100 cm3 nominal stainless steel autoclave operated in batch mode 

at the temperature range 413-453 K. The temperature was controlled to within ± 0.1 K by an electrical 

furnace. The pressure was set at 2.5 MPa by means of N2 to maintain the liquid phase. A reactor outlet 

was connected directly to a sampling valve, which injected 0.1 µL of liquid into a GLC apparatus. The 

catalyst was injected from a pressurized vessel connected to the reactor. The reaction was controlled 

by a PC with a designed LabVIEW software program. Figure 2 shows a scheme of the experimental 

setup. More detailed information can be found elsewhere.23  

FIGURE 2  

Analysis.  

Liquid samples were analysed with a HP-6890 Gas Liquid Chromatograph (GLC) equipped with TCD 

(thermal conductivity detector). A HP Pona methyl siloxane (HP 190915-001) capillary column (50 m 

length × 200 μm I.D. × 0.5 μm width of stationary phase) was used to determine 1-octene, (2Z)-2-

octene, (2E)-2-octene, (3Z)-3-octene, (3E)-3-octene, 4-octene, 1-octanol, DNOE, water, and 1,4-

dioxane. The column was temperature programmed with a 10 K·min-1 initial ramp from 323 to 523 K 

and then held for 6 min. He (30 cm3·min-1) was the carrier gas. All of the species were identified by 

using a second GLC equipped with MS (Agilent GC/MS 5973) and chemical database software. 

Procedure. 

Amberlyst 70 was first dried at 383 K and 101 kPa for at least 1 h, and then overnight in a vacuum 

oven at 1 kPa. The reactor was loaded with 70 cm3 of 1-octanol, or 1-octanol/water/1,4-dioxane, or 1-
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octanol/DNOE mixtures. The liquid was then pressurized at 2.5 MPa and warmed up to the working 

temperature (413-453 K). A dried sample of resin was placed in the catalyst injector, pressurized and, 

once the working temperature was reached, quickly shifted into the reactor with N2 by pressure 

difference. The time of the catalyst injection was considered as the zero time of the experiment. Liquid 

samples were taken hourly to follow the reaction until the end of experiment for 6-7 h.  

1-Octanol conversion (XOcOH) and selectivity to DNOE with respect to 1-octanol (ܵை௖ைு
஽ேைா) were defined 

by equations 1 and 2, respectively. DNOE formation reaction rates (rDNOE) were calculated from the 

slope of mol DNOE produced vs. time plot and dry catalyst mass (W) by means of equation 3:  

ܺை௖ைு ൌ 	
ெ௢௟௘	௢௙	ଵି௢௖௧௔௡௢௟	௥௘௔௖௧௘ௗ

	ெ௢௟௘	௢௙	ଵି௢௖௧௔௡௢௟	௜௡௜௧௜௔௟௟௬
        (1) 

ܵை௖ைு
஽ேைா ൌ ெ௢௟௘	௢௙	ଵି௢௖௧௔௡௢௟	௥௘௔௖௧௘ௗ	௧௢	௚௜௩௘	஽ேைா

ெ௢௟௘	௢௙	ଵି௢௖௧௔௡௢௟	௥௘௔௖௧௘ௗ
	      (2) 

ሻݐ஽ேைாሺݎ	 ൌ
ଵ

ௐ
ቀௗ௡ವಿೀಶ

ௗ௧
ቁ
௧
         (3) 

In all the experiments mass balance was accomplished within ± 5%. 1-Octanol conversion is accurate 

within ± 2-3%, and DNOE formation rates within ± 5-8%. 

 

Results and discussion 

Preliminary experiments 

In order to select the operating conditions in which reaction rate is free from mass transfer effects, a 

number of preliminary experiments were carried out first to check the influence of the stirring speed 

(N) and particle size (dp) on the reaction rate measures. Since in previous studies on the kinetics of 

dehydration reactions of 1-pentanol to di-n-pentyl ether (DNPE) and 1-hexanol to di-n-hexyl ether 

(DNHE) over Amberlyst 70 carried out in the same set up, no spurious rate measures were observed 

if dry catalyst mass below 3 and 4 g were used, respectively,26,27 in the present study W ≤ 2 g has been 

used to ensure that the catalyst loading is adequate to prevent deceitful rate measurements due to solid 
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overload in the reactor. Preliminary experiments were carried out at the highest temperature in the 

working range (453 K), and the maximum DNOE synthesis rate in each experiment (initial reaction 

rates, r0
DNOE) was used for comparison, to assure that mass transfer did no influence reaction rate in 

the whole temperature and 1-octanol concentration ranges.  

The effect of diffusion was checked by performing a series of experiments with particles of different 

size. Amberlyst 70 was sieved into batches of bead mean size (dp,m) ranging from 0.12 to 0.9 mm. As 

Figure 3 shows, r0
DNOE does not change significanty with bead size within the limits of the experimental 

error at a 95%-probability level. On the other hand, the influence of external mass transfer was checked 

in a series of experiments in which stirring speed was changed between 100 and 800 rpm, and resin 

samples with the commercial distribution of particle size (dp,m = 0.57 mm) were used. As seen in Figure 

4, r0
DNOE hardly changes within the limits of the experimental error at a 95%-probability level. Thus, 

hereinafter, experiments were performed at 500 rpm and the commercial distribution of bead sizes of 

Amberlyst 70 was used.  

FIGURE 3; FIGURE 4 

Experiments performed  with 1-octanol. Kinetic study 

A first series of experiments was performed processing batches of 1-octanol at different temperatures 

in the range 413-453 K, with a mass of dry resin of 1 or 2g. As Figure 5 shows, 1-octanol conversions 

increased substantially with temperature: XOcOH rised from 8.9% (413K) to 60.1% (453K) with W=1g, 

but selectivity to DNOE decreased from 100% (413K) to 87% (453K) on increasing the temperature; 

octenes being the main byproduct (Figure 6). 

FIGURE 5; FIGURE 6 

Since alcohol-ether-water mixtures are highly non-ideal,24,26-31 the composition of liquid mixtures is 

well represented by the activities of 1-octanol, DNOE and water (aOcOH, aDNOE and aH2O, respectively), 

which were calculated by the UNIFAC-DORTMUND predictive method.32 As Figures 7 to 9 show, 
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rDNOE increased with aOcOH whereas it decreased on increasing aDNOE and aH2O, as expected. Reaction 

rate is highly sensitive to temperature, and it is doubled on increasing temperature 10 K. Arrhenius 

plot of r0
DNOE (aOcOH  1) is a good straight line in the whole temperature range (Figure 10). From the 

slope of the plot an apparent activation energy of 110 ± 6 kJ·mol-1 is estimated, in line with literature 

data on alcohol dehydration to linear ether over acidic resins.26,27 This fact also backs up that 

rୈ୒୓୉	measures are free from mass transfer effects at the working conditions selected 

FIGURE 7; FIGURE 8; FIGURE 9; FIGURE 10 

Reaction rate plots as a function of aOcOH, aDNOE and aH2O suggest that a hyperbolic model, based on a 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) or Eley-Rideal (ER) mechanism, might explain 

rate data satisfactorily. The fact that reaction rate increases with aOcOH suggest that 1-octanol mainly 

influences the driving force of such kinetic model. The decrease of reaction rate with increasing aDNOE 

and aH2O can be attributed to the adsorption of ether and water on the resin and, as DNOE and water 

are reaction products, to the approach to the chemical equilibrium. Based on the analysis of the reaction 

rate dependence on activities, considering the adsorption-reaction-desorption process and assuming 

that surface reaction is the rate-limiting step, the following kinetic models were obtained: 

஽ேைாݎ ൌ
௞෠ ᇱ௄ೌ,ೀ೎ೀಹ

మ ቂ௔ೀ೎ೀಹ
మ ି

ೌವಿೀಶ൉ೌಹమೀ
಼

ቃ

൫ଵା௄ೌ,ೀ೎ೀಹ൉௔ೀ೎ೀಹା௄ೌ,ವಿೀಶ൉௔ವಿೀಶା௄ೌ,ಹమೀ൉௔ಹమೀ൯
మ     (4) 

஽ேைாݎ ൌ
௞෠ ᇱ௄ೌ,ೀ೎ೀಹቂ௔ೀ೎ೀಹ

మ ି
ೌವಿೀಶ൉ೌಹమೀ

಼
ቃ

ଵା௄ೌ,ೀ೎ೀಹ൉௔ೀ೎ೀಹା௄ೌ,ವಿೀಶ൉௔ವಿೀಶ
       (5) 

஽ேைாݎ ൌ
௞෠ ᇱ௄ೌ,ೀ೎ೀಹቂ௔ೀ೎ೀಹ

మ ି
ೌವಿೀಶ൉ೌಹమೀ

಼
ቃ

ଵା௄ೌ,ೀ೎ೀಹ൉௔ೀ೎ೀಹା௄ೌ,ಹమೀ൉௔ಹమೀ
మ        (6) 

 

Equation 4 stems from a LHHW mechanism in which two 1-octanol molecules adsorbed on two 

adjacent sites react to give DNOE and water, both adsorbed on the resin surface. 
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  2

2 2

1 OcOH 1 OcOH·

2 1 OcOH· DNOE· H O·

DNOE· DNOE

H O· H O

   
    

 
 

 

Equation 5 is based on an ER mechanism in which a molecule of 1-octanol from solution reacts with 

a molecule of 1-octanol adsorbed on an active centre to give the ether adsorbed on the resin surface, 

the water being released instantaneously to the liquid phase. 

2

1 OcOH 1 OcOH·

1 OcOH· 1 OcOH DNOE· H O

DNOE· DNOE

   
   

 

 

Equation 6 stems from an analogous ER mechanism but water remains adsorbed and the ether is 

released to the bulk phase.  

2

2 2

1 OcOH 1 OcOH·

1 OcOH· 1 OcOH DNOE H O·

H O· H O

   
    

 

 

On the basis of equations 4, 5 and 6, all possible kinetic models derived by considering negligible one 

or more factors of adsorption term were fitted to rate data. A detailed schedule of models handled can 

be found elsewhere33. For fitting purposes, all the models were grouped into two classes, depending 

on the number of free active centers (see Table 3): 

(i) Class I, for which the number of free active centers is considered to be negligible compared to 

occupied ones. This fact implies that the unity present in the adsorption term is removed. 

(ii) Class II, where that hypothesis is rejected.  

TABLE 3 
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The number of acid sites taking part in the rate limiting step (n) is assumed that could be more than 1 

or 2  since, in the case of ion exchange resins, an active site can be a group or cluster of sulfonic groups 

rather than an isolated one.34 To the best of our knowledge, hyperbolic models with exponent in the 

denominator up to 3 are proposed often in the open literature for etherification reactions. Fité et al. 

reported that 3 active sites could take part in the rate-limiting step of ethanol addition to isobutene to 

yield ETBE,35 and Solà et al. described ETBE synthesis through an ER mechanism with 2 active sites 

involved.36 However, dehydration reactions of 1-pentanol to DNPE and 1-hexanol to DNHE proceed 

by means of ER mechanisms but only 1 active site is involved,26,27 just as the reaction of 1-octanol 

with ethanol to yield ethyl-octyl ether reported by Guilera et al.37 To achieve a good fit to rate data, n 

was varied from 1 to 3; n values higher than 1 for the ER mechanism, and 2 for the LHHW one, 

represent a scenario where additional active sites were required, for instance, to settle the long linear 

ether formed, or stabilize the reaction intermediate. 

As seen in Table 3, the surface rate coefficient, ෠݇ ᇱ, and the adsorption equilibrium constants, Ka,OcOH, 

Ka,DNOE, and Ka,H2O, have been grouped into factors for mathematical fitting purposes, called A, B, C 

and D. The particular way in which those constants are grouped depends on the mechanism (LHHW 

or ER) and the neglected adsorption term, if any. For class I models, factor A is equal to ෠݇ ᇱ/ܭ௔,ை௖ைு
௡ିଶ  

(LHHW models) or ෠݇ ᇱܭ௔,ை௖ைு
௡ିଵ  (ER models), whereas factors C and D are a quocient of adsorption 

equilibrium constants. Concerning class II models, A is equal to ෠݇ ᇱܭ௔,ை௖ைு
ଶ  (LHHW models) or 

෠݇ ᇱܭ௔,ை௖ைு (ER models); B, C, and D, are the adsorption equilibrium constants of alcohol, ether and 

water, respectively. The temperature dependence of factors A, B, C and D was defined by: 

,ܣ ,ܤ ,ܥ ܦ ൌ expሺܽଵ, ܾଵ, ܿଵ, ݀ଵሻ ൉ exp	ቂെሺܽଶ, ܾଶ, ܿଶ, ݀ଶሻ ൉ ቀ
ଵ

்
െ

ଵ
ത்ቁቃ    (7)  

Therefore, fitted parameters of the models of Table 3 were a’s, b’s, c’s and d’s. The subtraction of the 

reverse of mean experimental temperature, തܶ (433 K), was included to minimize the correlation 
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between fitted parameters (a1 and a2, b1 and b2, c1 and c2, d1 and d2, according to the respective factor). 

The equilibrium constant of the reaction, K, in the temperature range 413-453 K, is given by:24 

ܭ ൌ expሺ1.7ሻ ∙ exp	ሺ1629/ܶሻ        (8) 

To discriminate between rate models and obtain the parameters values, the sum of squares of lack of 

fit (RSSQ) between mesured reaction rates (rexp) and those estimated by the kinetic model (rcalc) was 

minimized by the Trust-Region-Reflective Least Square method.38,39 The objective function being: 

 
n 2

exp,i calc,i
T i 1

RSSQ r r
 

   
 

          (9) 

Ideally, from a mathematic point of view, the most suitable model is the one with the smallest RSSQ, 

random residuals and low parameter correlation, or alternately low parametrical error defined as the 

lowest root of sum of the squares of relative errors (RSSQRE):  

1
2 2p

pi

i 1 i

RSSQRE
p

  
   
   


         (10) 

pi is the uncertainty of parameter pi for a 95%-probability level (calculated by linear least squares). 

Besides, fitted parameters should have physicochemical meaning: rate coefficient should increase with 

temperature and adsorption equilibrium constant decrease, because activation energy is positive and 

adsorption enthalpies negative. 

Kinetic models of Table 3 were fitted to reaction rate data obtained at all temperatures together. From 

a statistical standpoint (random residuals, minimum RSSQ and low parameter uncertainty), Class I 

models type 4 (coded as I-4) and type 5 (I-5) were the best (equations 11 and 12, respectively). In 

addition, these models have physicochemical meaning (positive activation energy) 

஽ேைாݎ ൌ ܣ
ቂ௔ೀ೎ೀಹ
మ ି

ೌವಿೀಶ൉ೌಹమೀ
಼

ቃ

ሺ௔ೀ೎ೀಹା஼൉௔ವಿೀಶሻమ
         (11) 
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஽ேைாݎ ൌ ܣ
ቂ௔ೀ೎ೀಹ
మ ି

ೌವಿೀಶ൉ೌಹమೀ
಼

ቃ

൫௔ೀ೎ೀಹା஼൉௔ಹమೀ൯
మ          (12) 

I-4 and I-5 models have similar RSSQ but uncertainty of parameters of I-5 models (with n = 1, 2 and 

3) was lower than those of I-4 ones (with n = 1, 2 and 3). Parity plots (Figures S1 and S2, supplementary 

material) do not show significant differences when n varies from 1 to 3, but residuals dispersion of I-

4 models is higher than those of I-5 ones, especially for n = 2 and 3. Values of parameters a’s, c’s and 

d’s for these models are displayed in Table 4. 

TABLE 4; TABLE 5 

The frequency factor (A) and the activation energy (Ea) can be estimated from the values of a1 and a2, 

respectively, whereas adsorption entropy and enthalpy differences between DNOE and 1-octanol, and 

water and 1-octanol, can be obtained from c1 and c2, and d1 and d2 values, respectively, according to 

equations 11 and 12. Models I-4 and I-5 have similar frequency factor (4-5·1015 mol·h-1·kg-1) and 

apparent/true activation energy (120±7 kJ·mol-1) as Table 5 shows. It is not possible to discern if Ea 

value would correspond to the true activation energy by considering the relationship between KOcOH 

and the factor A unless the reaction mechanism (LHHW or ER) and the number of active sites involved 

in the rate-limiting step are previously known. Model I-5 with n=1 was the one which better fitted the 

kinetic data in terms of RSSQ, but the uncertainty associated to its parameters (RSSQRE) was higher 

than that of model I-5 with n=3. As for adsorption enthalpy and entropy differences, it is seen that 

adsorption of 1-octanol is more exothermic than that of water (I-5 models) and DNOE (I-4 models). 

The high uncertainty of c1 and c2, and d1 and d2 estimates resulted in poor adsorption entropy and 

enthalpy differences estimates which suggest little sensitivity of fits to factors C and D.  

Effect of water and DNOE on the reaction rate 

The type I-5 models showed simultaneously the smallest RSSQ and parameter uncertainty, however 

discriminate the best kinetic model of this group is not clear because the model with less RSSQ had 

greater parameter uncertainy (type I-5 with n=1) and vice versa. For this reason, a set of experiments 
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using 1-octanol/water and 1-octanol/DNOE mixtures was performed in order to extend the range of 

activities of alcohol, ether and water, and simultaneously stress the effect of DNOE and water on the 

reaction rate. In particular, the following set of experiments were carried out feeding:  

1) 1-Octanol/DNOE mixtures (2, 4, 16, 32 and 45 wt. % DNOE at 433K, equivalent to XOcOH from 

0.02 to 0.47; 10 and 20 wt. % DNOE at 453 K, equivalent to XOcOH = 0.11 and 0.22, respectively) 

to check the effect of DNOE on the reaction rate. 

2) 1-octanol/1,4-dioxane/water mixtures (55 wt.% 1,4-dioxane/1, 2 and 4 wt.% water at 433K, 

equivalent to XOcOH from 0.25 to 0.59; 55 wt.% 1,4-dioxane/0.5, 3 and 6 wt.% water at 453K, 

equivalent to XOcOH from 0.14 to 0.69) to check the effect of water. Since 1-octanol and water are 

poorly miscible, 1,4-dioxane was used as a solvent in alcohol/water mixtures to prevent separation 

of the reaction medium into two immiscible phases, organic and aqueous. 1,4-Dioxane is a suitable 

solvent for alcohol-ether-water systems as it does not react with the compounds in the mixture and 

does not affect the morphology of Amberlyst 70 (see Table 2).24,29 

3) 1-Octanol/1,4-dioxane mixtures (35, 45, 55 wt. % 1,4-dioxane at 423K) to check the effects of 1,4-

dioxane on the reaction rate, other than dilution of liquid reaction medium. 

஽ேைாݎ
଴  vs. the initial amount of DNOE plot (Figure 11) shows that the effect of the ether on the reaction 

rate is not remarkable irrespective of temperature, confirming that aDNOE hardly influences the term of 

adsorption of the rate model. The slight decrease of the initial reaction rate on increasing the initial wt. 

% of 1,4-dioxane (Figure 12) can be ascribed to the dilution of 1-octanol in the reaction mixture, 

confirming that 1,4-dioxane is a suitable solvent for this reaction system. On the contrary, as shown in 

Figure 13, ݎ஽ேைா
଴  decreased sharply on increasing the initial amount of water, and this effect is more 

noticeable as temperature rises. By comparing with rate data in the absence of water, on adding 0.5 

wt.% of water ݎ஽ேைா
଴  decreases by 76% at 453K, whereas it decreases by 34% at 433K. As initial 

amount of water increased (4-6%), reaction rates tended to the same value (~1 mol·h-1·kg-1), regardless 

the reaction temperature. The inhibitor effect of water has been also reported in reaction systems 



14 
 

catalysed by ion-exchange resins other than alcohol dehydration to linear ether, as the synthesis of 4-

methylpent-3-en-2-one (mesityl oxide) from acetone,40,41 TFH production,42 and TAME and ETBE 

syntheses from tert-amyl alcohol/methanol43 and tert-butyl alcohol/ethanol mixtures,44 respectively.  

FIGURE 11; FIGURE 12; FIGURE 13  

As a result of processing mixtures initially containing DNOE, water and 1,4-dioxane, the activities 

range of 1-octanol, DNOE and water increased, and models of Table 3 were fitted to the whole set of 

reaction rate data. Among thermodynamically consistent models, model I-5 with n=1 (equation 13) 

best represented the rate data in the entire range of activities: its RSSQ was 1301, clearly lower than 

that of the models I-5 with n=2 (3393) and with n=3 (17226). 

஽ேைாݎ  ൌ ܣ ൉
ቂ௔ೀ೎ೀಹ
మ ି

ೌವಿೀಶ൉ೌಹమೀ
಼

ቃ

௔ೀ೎ೀಹା஽൉௔ಹమೀ
       (13) 

Factor D (= Ka,H2O/Ka,OcOH) estimates ranged from 0.2 (413 K) to 1.5 (453K). Although they have a 

high statistical uncertainty, and their values are quite different from those in the open literature (a 

constant value of 23 for Ka,H2O/Ka,OcOH was reported in the synthesis of ethyl octyl ether from ethanol 

and 1-octanol over Amberlyst 70),35 the model I-5 (n=1) suggests a scenario where water adsorption 

plays a more important role as temperature rises. This fact is in line with the effect of the initial water 

amount on ݎ஽ேைா
଴  seen in Figure 13: the rate drop observed at 453 K, much sharper than at 433 K, 

suggests that water adsorption is kinetically more important as temperature increases.  

Modelling the water inhibitor effect 

Kinetic model I-5 (n=1) explains the inhibitory effect of water by competitive adsorption with 1-

octanol. However, the inhibitory effect can be explained alternatively by the preferential adsorption of 

water on the acid sites, blocking them and preventing 1-octanol adsorption. Rate inhibition would be 

very similar to a catalyst deactivation process. With this view, an usual procedure is to modify 
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empirically LHHW-ER kinetic models, by splitting the rate coefficient, ݇′෡ ,	into a “true” one, ෠݇଴
ᇱ , and a 

correction factor able to represent the rate decrease by the effect of water.26,27,45 

A first approach was developed by Fité et al. in an attempt to account for the effect of the reaction 

medium-resin interaction on the reaction rate.46 They proposed a correction factor, the parameter ψ, 

related to resin swelling and to the accessibility to resin sulfonic groups, which was useful in non-

aqueous reaction media, where resins are partly swollen. However, it was not useful to explain water 

inhibition in the dehydration reaction of 1-alkanol to ether because the resin is not gradually swollen 

over the reaction, but it is fully swollen at the beginning of the reaction by the interaction of 1-alkanol 

and the first amounts of water released.45 As Table 2 shows, Amberlyst 70 greatly swells in 1-octanol 

and water, which proves that the catalyst is completely swollen throughout the reaction of DNOE 

synthesis. As a consequence, this approach was discarded to explain the inhibition by water in the 

reaction of DNOE synthesis from 1-butanol. 

A second approach was proposed by du Toit et al. for ion-exchange resin catalysed reactions in 

aqueous media, and reactions releasing water as a reaction product.40,41  They consider that a part of 

the water released by reaction remains adsorbed on the resins preventing the access of reactants to the 

acid sites. Therefore, the rate coefficient would be proportional to the number of sites not blocked by 

water. As shown by Eq. 14, the correction factor is the fraction of free acid sites which depends on the 

water concentracion in the liquid phase and temperature, ݂ሺܽுଶை, ܶሻ. As proposed by Toit et al., the 

fraction of acid sites blocked by water molecules,	ߠுଶை, is well represented by the water adsorption 

isotherm. Thus, the rate coefficient can be expressed as: 

݇′෡ ൌ ෠݇
଴
ᇱ ൉ ݂ሺܽுଶை, ܶሻ ൌ 	 ෠݇଴

ᇱ ൉ ሺ1 െ  ுଶைሻ       (14)ߠ

Several exemples of the satisfactory use of this approach can be found in the open literature. Yang et 

al. used an inhibition term based on a Langmuir isotherm assuming adsorption of water molecules on 

a single site for the liquid phase synthesis of tert-amyl methyl ether from tert-amyl alcohol and 
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methanol,43 and an isotherm stemming from the adsorption of two water molecules onto an active site 

in the synthesis of tert-amyl ethyl ether from tert-amyl ether and ethanol.44 Limbeck at el. proposed an 

isotherm based on the adsorption of water onto two sites in the synthesis of THF by the cyclisation 

etherification of 1,4-butanediol.42 On the other hand, du Toit et al.41 proposed a Freundlich-like one in 

the acetone condensation to mesityl oxide, highlighting the inhibitory effect of water even at very small 

concentration. According to Eq. 14, some correction factors were assayed to find the best kinetic model 

for DNOE synthesis as shown in Table 6. Such correction factors were based on Langmuir (Eqs. 15-

17) or Freundlich (Eq. 19) isotherm-like functions. Finally, a correction factor based on the adsorption 

of z molecules of water on an active site was also considered (Eq. 18). In equations 15-19, the 

adsorption equilibrium constant for water, KH2O, was defined, similarly to Eq. 7, as: 

ுଶைܭ ൌ exp൫ܭுଶை,ଵ൯ ൉ exp	ቂെܭுଶை,ଶ ൉ ቀ
ଵ

்
െ ଵ

ത்ቁቃ      (20) 

TABLE 6 

Since Eq 13 (model I-5, n=1) which contain water in the adsorption term represent accurately enough 

the whole set of rate data, type models of Table 3 which adsorption term does not contain water (I-1, 

I-2, I-4, II-1, II-2 and II-4) were fitted again to rate data by splitting the rate coefficient according to 

equation 14, and using the correction factors listed in Table 6. The fit of models I-2, II-2, II-4, and I-1 

(n= 1 and 2)  with ݂ሺܽுଶை, ܶሻ defined by equations 15 to 19, and model II-1 (n=1) with ݂ሺܽுଶை, ܶሻ 

defined by equations 15 to 17, resulted in either negative activation energies and/or positive adsorption 

enthalpies/entropies, so that these models lack physicochemical meaning, and as a consequence they 

were discarded. 

In Figure 14, RSSQ of modified models having physicochemical meaning is compared to that of model 

I-5 with n=1 (equation 13), which assumes competitive adsorption of water and alcohol and does not 

incorporate correction factor. As seen, none of the models incorporating equations 15 and 16 as 

݂ሺܽுଶை, ܶሻ improved the fit with respect to equation 13, suggesting that factors based on Langmuir 
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isotherms where more than a water molecule is adsorbed on an active site are more suitable. In this 

way, when equations 17-19 were used as ݂ሺܽுଶை, ܶሻ, RSSQ was lower than that of equation 13. As 

seen, modified models II-2 with n=2 and 3 had the lowest RSSQ, but activation energy estimates were 

too low (20-70 kJ·mol-1) compared with those of analogous reactions of alcohols dehydration, and also 

with the value of 110±6 kJ·mol-1 found from ݎ஽ேைா
଴  values (section 3.2). Rate equations stemming 

from models I-1 (n=1) and I-4 (n=1), and include the correction factors defined by equations 17-19, 

show similar RSSQ. Therefore, modified I-1 model was selected since they have two less parameters 

than the models of the group I-4.  

FIGURE 14; TABLE 7 

As shown in Table 7, the correction factors defined by equations 17-19 greatly improve the fit of model 

I-1 (n=1) since RSSQ decreases by 75-78%. In addition, the modified models have lower RSSQ and 

parameter uncertainty (RSSQRE) than model I-5(n=1) (equation 13). Equation 17 is based on a 

Langmuir isotherm-like where two molecules of water adsorb on an active site. Equation 18 considers 

the number of molecules of water adsorbed (z) in a single active site as a parameter to fit. Model I-1 

(n=1) modified by this correction factor sets z=3.2 water molecules adsorbed each active site. Despite, 

z is strictly an empiric parameter; its value is close to the one found in resin drying experiments.47,48 

However, a correction factor based on a Freundlich isotherm-like function led to the smallest RSSQ 

(962) having the same number of parameters to fit. For this reason, model I-1 (n=1) with a correction 

factor defined by equation 19 was selected as the best model to represent the whole series of rate data 

of DNOE synthesis, whose final form is:  

஽ேைாݎ ൌ
஺൉ቂ௔ೀ೎ೀಹ

మ ି
ೌವಿೀಶ൉ೌಹమೀ

಼
ቃ

௔ೀ೎ೀಹ
൉ 	 ቂ1 െ ுଶைܽுଶைܭ

ଵ ఈൗ ቃ       (21) 

with ܣ ൌ ሺ2.79ሻ݌ݔ݁ ൉ ݌ݔ݁ ቂെ1.34 ൉ 10ସ ൉ ቀ
ଵ

்
െ

ଵ
ത்ቁቃ  

and  ܭுଶைܽுଶை
ଵ
∝ൗ ൌ ுଶைܽுଶைܭ

்
௄ഀൗ
ൌ exp	ሺ0.5ሻ ൉ exp	ቂെ3 ൉ 10ଷ ൉ ቀ

ଵ

்
െ

ଵ
ത்ቁቃ ܽுଶை

்
ଶ଻ଶൗ   
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The parity plot (Figure 15) shows that equation 21 well represents rate data as a whole, but in some 

experiments with low water content in the feed performed at 453K. 

FIGURE 15; TABLE 8 

According to equation 21 dehydration of 1-octanol to DNOE follows an Eley-Rideal mechanism where 

a molecule of 1-octanol adsorbed on a site reacts with a molecule of 1-octanol from the liquid phase. 

A first effect of introducing ݂ሺܽுଶை, ܶሻ as correction factor, and so finding the true rate coefficient is 

that activation energy decreases with regard to those of models I-4 and I-5 (120±7 kJ·mol-1). Activation 

energy for equation 21 is 110±5 kJ·mol-1, the same value found from the ݎ஽ேைா
଴  Arrhenius plot which 

proves that interaction of equation 21 parameters is low. As Table 8 shows, this value is a bit smaller 

that those of the reactions of dehydration of butanol to di-n-butyl ether (DNBE, 122±2 kJ·mol-1),49 of 

pentanol to DNPE (114±0,1 kJ·mol-1),26 and hexanol to DNHE (121±3 kJ·mol-1),27
 respectively, on 

Amberlyst 70. On the other hand, in the dehydration of ethanol and 1-octanol to ethyl octyl ether, 

DNOE synthesis is a side reaction with similar activation energy on Amberlyst 70 (99 kJ·mol-1) and 

on CT-482 (100 kJ·mol-1).50 Finally, activation energy is lower than on H-beta (150±12 kJ·mol-1) 

showing that Amberlyst 70 is more active in the temperature range explored 

FIGURE 16 

Figure 16 plots the values of the correction factor, 1 െ ுమைܽுమைܭ
ଵ ఈ⁄ , as used in equation 21 versus ܽுమை 

in the whole temperature range. The correction factor decreases on increasing the temperature and 

ܽுమை, therefore its effect is higher. It is to be noted that trends of correction factor and ݎ஽ேைா are similar 

for experiments processing 1-octanol feed wherein water is released. In this way, an amount of water 

equivalent to ܽுమை  between 0.6 at 453K and 0.8 at 413K inhibits practically the reaction (see Figure 

9). However the trends of correction factor and ݎ஽ேைா are alike for ܽுమை ൑ 0.25 in the experiments 

containing water initially since Figure 13 shows that for larger ܽுమை values, ݎ஽ேைா tend to a plateau 

which hardly changes with the initial water content, whereas the correction factor decreases 
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monotonically. This could be because Freundlich isotherm is usually valid for low and intermediate 

especies activities.  

On the other hand, the Freundlich isotherm approach expects that  decreases almost linearly with 

temperature and ܭுమை is non-dependent.40,51 Moreover,  should be larger than one. From values of 

 ுమை,ଶ (Table 7) it is seen that (a)  decreases with temperature and it is lower thanܭ ுమை,ଵ andܭ,∝ܭ

unity, and (b) ܭுమை at 453K is nearly twice that at 413K. Accordingly, ݂ሺܽுଶை, ܶሻ ൌ 1 െ ுమைܽுమைܭ
ଵ ఈ⁄ , 

decreases with temperature for the same ܽ ுଶை	value. These points suggests the the fitting improvement 

is due to the flexibility of the power expression for ߠுమைand to the fact that equation 21 involved more 

parameters rather than to a fundamental insight of the Freundlich isotherm-like function. Thus, the 

kinetic model (equation 21) is a pseudo-empirical model rather than a mechanistic one. However, if 

the correction factor is considered in terms of catalyst deactivation, ܭுమை can be considered as a 

deactivation constant. Consequently, from its temperature dependence a pseudoactivation energy for 

the water deactivation process of 25 kJ·mol-1 could be computed. 

FIGURE 17 

Correction factors based on the Freundlich isotherm has been successfully used to explain inhibition 

by water in the acetone dehydration to mesityl oxide on Amberlyst 16,40,41 and in the dehydration 

reaction of 1-alkanol to linear symmetrical ether on Amberlyst 70.26,27,45,49 Figure 17 compares the 

correction factors, 1 െ ுమைܽுమைܭ
ଵ ఈ⁄ , for the dehydration reactions of 1-pentanol to DNPE,26,45 1-hexanol 

to DNPE27 and 1-butanol to di-n-butyl ether (DNBE)49 at 443K found in our previous works. As seen, 

the inhibitory effect of water on the reaction rate is quite similar for the reactions of synthesis linear 

ether. The correction factor have similar values for low ܽ ுమை values, but they are quite different at high 

activity values according to its empirical character. However, in all those reactions reaction rate is well 

reprented and the inhibitory effect of water satisfactorily predicted, showing that even moderate 

amounts of water in the liquid phase could stop the reaction. Finally, as a consequence of the decisive 
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role of water in these reactions, in industrial practice it is advisable using reaction devices which allow 

removing water as it is formed 

Conclusions 

The kinetics of the liquid phase dehydration of 1-octanol to DNOE over Amberlyst 70 was studied at 

413-453 K and 2.5 MPa. Experiments were performed in a stirred tank reactor free of mass transfer 

limitation by working with 1-2 g of catalyst (commercial distribution of bead sizes) and stirring speed 

500 rpm. Kinetic equations based on LHHW-ER mechanisms were obtained by assuming that surface 

reaction was the rate-limiting step and fitted to rate data. Analysis of experiments performed with pure 

1-octanol revealed that models where 1-octanol and water adsorb preferentially on the resin and the 

fraction of free active sites is negligible were the best ones. Apparent activation energies of 120±7 

kJ·mol-1 were estimated for these models. Water, DNOE and solvent (1,4-dioxane) influence on the 

reaction rate was then evaluated. DNOE and 1,4-dioxane did not show significant effects on the 

reaction rate whereas water strongly inhibited the reaction rate. Its inhibitor effect can be explained by 

competitive adsorption of water and 1-octanol, or else by blocking of active sites by water. On the last 

assumption, since reaction rate is proportional to the number of accessible acid sites, LHHW-ER 

mechanistic models were modified by splitting off the rate coefficient into a “true” one and the fraction 

of active sites not blocked by water. The fraction of free acid sites is described by Langmuir or 

Freundlich isotherm-like functions. The best reaction model for the reaction of DNOE synthesis by 1-

octanol dehydration is based on an Eley-Rideal mechanism in which one molecule of 1-octanol 

adsorbed onto the resin reacts with another molecule of 1-octanol of the liquid phase; the deactivation-

like effect of water is satisfactorily represented by a Freundlich isotherm-like function. Activation 

energy estimated by fitting this model to the whole series of rate data was 110±5 kJ·mol-1. 
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Nomenclature 

A  Frequency factor, mol·h-1·kg-1 

A, B, C, D  Grouped factors for fitting purposes 

a1, b1, c1, d1  First fitting parameter of factors A, B, C and D 

a2, b2, c2, d2  Second fitting parameter of factors A, B, C and D, K 

aj   Activity of compound j 

dp   Particle diameter, mm 

dp,m  Mean particle diameter, mm 

Ea   Activation energy, kJ·mol-1 

f(aH2O)  Correction factor for water inhibition effect 

K   Chemical equilibrium constant 

Kα   Freundlich parameter, K 

Ka,j   Adsorption equilibrium constant of compound j 

KH2O   Adsorption equilibrium constant of water 

KH2O,1   First fitting parameter of KH2O 

KH2O,2    Second fitting parameter of KH2O, K 

෠݇′   Surface reaction rate coefficient, mol·h-1·kg-1  

෠݇
଴
ᇱ     “True” surface reaction rate coefficient, mol·h-1·kg-1  

N   Stirring speed, rpm 

n   Number of active centres involved in the chemical reaction 

nDNOE   Number of moles of DNOE, mol 
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pi   Fitting parameter i 

rcalc   Reaction rate computed by a rate model, mol·h-1·kg-1 

rexp  Reaction rate obtained from experimens, mol·h-1·kg-1 

rDNOE    DNOE formation rate, mol·h-1·kg-1 

r0
DNOE   Initial reaction rate of DNOE formation, mol·h-1·kg-1 

SBET   Surface area estimated by Brunauer-Emmett-Teller (BET) method, m2·g-1 

Sarea   Surface area estimated from ISEC data, m2·g-1 

ܵை௖ைு
஽ேைா  Selectivity to DNOE with regard to 1-octanol 

T   Temperature, K 

തܶ   Mean temperature, K 

t   Time, h 

W   Dry catalyst mass, kg 

XOcOH   1-Octanol conversion 

∆Ha,j   Adsorption enthalpy of compound j, kJ·mol-1 

∆Sa,j   Adsorption entropy of compound j, J·mol-1·K-1 

Greek symbols 

α   Fitting parameter in Freundlich isotherm 

εp   Uncertainty of pi 

θ   Catalyst porosity, %  

θH2O   Fraction of active sites blocked by water 

ρs   Skeletal density, g·cm-3 

  Active site 

Abbreviations 

BuOH  1-butanol 

DNBE  Di-n-butyl ether 
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DNHE  Di-n-hexyl-ether 

DNOE  Di-n-octyl-ether 

DNPE  Di-n-pentyl-ether 

HeOH  1-hexanol 

ISEC   Inverse steric exclusion chromatography 

LHHW-ER  Langmuir Hinshelwood Hougen Watson-Eley Rideal 

OcOH   1-Octanol 

PeOH  1-Pentanol 

PS-DVB  Polystyrene-co-divinylbenzene polymer. 

RSSQ   Residual sum of squares 

RSSQRE  Root of sum of squares of relative errors 
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FIGURE CAPTIONS 

Figure 1. Reaction scheme in the dehydration of 1-octanol to DNOE 

Figure 2. Experimental Setup 

Figure 3. Influence of bead size on initial DNOE formation rate. (70 cm3 1-octanol, W = 1 g, T = 453 

K, N = 500 rpm). Error bars indicate the confidence interval at a 95%-probability level. 

Figure 4. Influence of stirring speed (N) on initial DNOE formation rate (70 cm3 1-octanol, W = 1 g, 

dp,m = 0.57 mm, T = 453 K). Error bars indicate the confidence interval at a 95%-probability level. 

Figure 5. 1-Octanol conversion against contact time. 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 

mm, N =500 rpm, W = 1 (solid symbols) or 2 (open symbols) g. 

Figure 6. Selectivity to DNOE vs. conversion of 1-octanol. 70 cm3of 1-octanol, W = 1-2 g, dp,m = 

0.57 mm, N =500 rpm, W = 1 (solid symbols) or 2 (open symbols) g. 

Figure 7. Reaction rates of DNOE formation vs. 1-octanol activity at 413 K (+), 423 K (■), 433 K 

(♦), 443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 

Figure 8. Reaction rates of DNOE formation vs. DNOE activity at 413 K (+), 423 K (■), 433 K (♦), 

443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 

Figure 9. Reaction rates of DNOE formation vs. water activity at 413 K (+), 423 K (■), 433 K (♦), 

443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 

Figure 10. Arrhenius plot for initial DNOE formation rate (W = 1-2 g, dp,m = 0.57 mm, T = 413-453 

K, N = 500 rpm). 

Figure 11. Influence of initial DNOE amount (% wt) on initial reaction rate of DNOE formation at 

453K (■) and 433K () (70 cm3 of 1-octanol/DNOE mixture, W = 1 g, dp,m = 0.57 mm, N = 500 rpm). 

Error bars indicate the confidence interval at a 95%-probability level 

Figure 12. Effect of 1,4-dioxane amount (wt%) on initial reaction rate of DNOE formation at 423K 

(70 cm3 1-octanol/1,4-dioxane mixture, W = 1 g, dp,m = 0.57 mm, N = 500 rpm). Error bars indicate 

the confidence interval at a 95%-probability level 
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Figure 13. Influence of initial water amount (% wt) on initial reaction rate of DNOE formation at 

453K (■) and 433K () (70 cm3 1-octanol/water/1,4-dioxane mixtures, W = 1 g, dp,m = 0.57 mm, N = 

500 rpm). Error bars indicate the confidence interval at a 95%-probability level 

Figure 14. RSSQ for model I-5 with n=1, equation 13 (▬), and models I-1 with n=1 (■), II-1 with 

n=1 (■) n=2 (■) and n=3 (dotted bar), and I-4 with n=1 (□) with correction factors for inhibitor effect 

of water based on equations 15-19 

Figure 15. Parity plot for equation 21 (, experiments processing only OcOH; , OcOH-DNOE 

blends; , 1,4-dioxane/OcOH/water blends; , 1,4-dioxane/OcOH blends) 

Figure 16. Correction factor for the inhibitory effect of water based on the Freundlich isotherm vs. 

water activity at different temperatures within the range 413-453K. 

Figure 17. Correction factor for the inhibitory effect of water based on the Freundlich isotherm vs. 

aH2O in the reactions of synthesis of DNBE, DNPE, DNHE and DNOE, respectively, by dehydration 

of 1-alkanol at 443 K. 
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Table 1. Specifications for market fuels to be used for diesel fueled vehicles in force in Europe since 

2010 after the implementation of the directive 2009/30/EC,2 and properties of DNOE as diesel fuel.3 

 

Parameter  
Diesel fuel 

DNOE 

Minimum Maximum 

Cetane number 51  119 

Density at 288K, kg·m-3 820 845 807 

Boiling point, K   559 

Distillation: 

- 65% v/v recovered, K 

- 85% v/v recovered, K 

- 95% v/v recovered, K 

 

523 

 

 

623 

633 

 

Polycyclic aromatic hydrocarbons, % w/w  8.0  

Sulphur content, mg·kg-1  10.0  

Flash point, K 328  412a 

Cloud point (CP), K 263 273 256 

Cold flow plugging point (CFPP), K 263 273 258 

a) Estimated by means of COSMO-RS.6 
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Table 2. Physical and morphological properties of Amberlyst 70 

Catalyst Amberlyst 70 

Structure 

Divinylbenzene (%) 

Chlorinated 

Sulfonation type 

Skeletal density, s  (g·cm-3)a 

Acid capacity (mol H+·kg-1) b 

Maximum operating temperature (K) 

Macroreticular 

7-8 

Yes 

Monosulfonated 

1.52 

2.65 

463 

In dry state 

      Mean particle size, dp,m (mm)c 

 

0.57 

      Surface area (m2·g-1)d 

      Pore volume (cm3·g-1)d 

      Porosity, (vol. %) 

0.02  

0.0 

0.00 

In water swollen state 

      Mean particle size, dp,m (mm)c 

 

0.86 

     Surface area (m2·g-1)e 

     Pore volume (cm3·g-1)e 

     Volume of the swollen polymer phase, Vsp (cm3·g-1)e 

     Porosity, (vol. %) 

     Swelling (%) 

176 

0.36 

1.40 

62.5 

243 

In 1-octanol swollen state 

      Mean particle size, dp,m (mm)c 

 

0.84 

     Swelling (%) 220 

In 1,4-dioxane 

      Mean particle size, dp,m (mm)c 

 

0,56 

aDetermined by helium displacement 

bDetermined by titration against standard base following the Fischer-Kunin method25  

cDetermined by laser diffraction 
dFrom N2 adsorption-desorption at 77 K. Surface area by BET method. Pore volume from adsorption 

data at 99% relative pressure 
eFrom analysis of Inverse Steric Exclusion Chromatografy (ISEC) data in aqueous media 
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Table 3. Kinetic models fitted with n ranging from 1 to 3 

Type CLASS I CLASS II 

஽ேைாݎ 1 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽை௖ைுሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܤ ൉ ܽை௖ைுሻ௡
 

஽ேைாݎ 2 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽ஽ேைாሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܥ ൉ ܽ஽ேைாሻ௡
 

஽ேைாݎ 3 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽுଶைሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܦ ൉ ܽுଶைሻ௡
 

஽ேைாݎ 4 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽை௖ைு ൅ ܥ ൉ ܽ஽ேைாሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܤ ൉ ܽை௖ைு ൅ ܥ ൉ ܽ஽ேைாሻ௡
 

஽ேைாݎ 5 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽை௖ைு ൅ ܦ ൉ ܽுଶைሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܤ ൉ ܽை௖ைு ൅ ܦ ൉ ܽுଶைሻ௡
 

஽ேைாݎ 6 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽ஽ேைா ൅ ܦ ൉ ܽுଶைሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܥ ൉ ܽ஽ேைா ൅ ܦ ൉ ܽுଶைሻ௡
 

஽ேைாݎ 7 ൌ
ܣ ൉ ቂܽை௖ைு

ଶ െ
ܽ஽ேைா ൉ ܽுଶை

ܭ ቃ

ሺܽை௖ைு ൅ ܥ ൉ ܽ஽ேைா ൅ ܦ ൉ ܽுଶைሻ௡
஽ேைாݎ  ൌ

ܣ ൉ ቂܽை௖ைு
ଶ െ

ܽ஽ேைா ൉ ܽுଶை
ܭ ቃ

ሺ1 ൅ ܤ ൉ ܽை௖ைு ൅ ܥ ൉ ܽ஽ேைா ൅ ܦ ൉ ܽுଶைሻ௡
 

Relation between factors A, B, C and D, and rate coefficient and adsorption equilibrium constants 

Model Type A (LHHW) A (ER) B C D 

CLASS I ෠݇ ᇱ/ܭ௔,ை௖ைு
௡ିଶ  ෠݇ ᇱ/ܭ௔,ை௖ைு

௡ିଵ  ௔,ை௖ைுܭ/௔,ுଶ଴ܭ ௔,ை௖ைுܭ/௔,஽ேைாܭ  

CLASS II ෠݇ ᇱܭ௔,ை௖ைு
ଶ  ෠݇ ᇱܭ௔,ை௖ைு ܭ௔,ை௖ைு ܭ௔,஽ேைா ܭ௔,ுଶை 
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Table 4. RSSQ and RSSQRE of I-4 and I-5 models, and values of parameters a1, a2, c1, c2, d1 and d2.  

Model 

type 
n RSSQ RSSQRE a1 a2 · 10

-4 c1·10 c2·10-3 d1·10 d2·10-3 

I-4 

1 261 154 2.38±0.08 1.44±0.08 -0.04±6 9±6   

2 278 11.3 2.37±0.09 1.45±0.09) 0.3±3 7±3   

3 300 4.17 2.37±0.09 1.45±0.09 0.6±2 6±2   

I-5 

1 250 2.58 2.39±0.08 1.44±0.09 -2±6 7±6

2 257 1.62 2.39±0.09 1.45±0.09 -2±3 4±3

3 269 0.929 2.4±0.4 1.4±0.3  -1.9±1.5 3±1
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Table 5. Frequency factor, activation energy adsorption enthalpy and entropy differences between 

DNOE and 1-octanol, and water and 1-octanol, respectively, for I-4 and I-5 models. 

Model type I-4 I-5 
n 1 2 3 1 2 3 

A, mol·h-1·kgcat
-1 4·1015 5·1015 5·1015  4·1015 4·1015 5·1015 

Ea, kJ·mol-1 120±7 120±7 120±8 120±7 120±7 120±27 

∆ܵ௔,஽ேைா െ ∆ܵ௔,ை௖ைு,	J·mol-1·K-1 182±115 134±63 134±63    

௔,஽ேைாܪ∆ െ kJ·mol-1 78±49 113±45	௔,ை௖ைு,ܪ∆ 48±19    

∆ܵ௔,ுଶை െ ∆ܵ௔,ை௖ைு, J·mol-1·K-1     130±113 82±61 62±26 

௔,ுଶைܪ∆ െ ௔,ை௖ைு, kJ·mol-1     57±49ܪ∆ 36±26 27±11 
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Table 6. Correction factors for ෠݇ ᇱ tested to represent the water inhibiting effect on the reaction rate. 

Equation Water isotherm Correction factor Reference 

ுଶைߠ 15 ൌ
ுଶைඥܽுଶைܭ

1 ൅ ுଶைඥܽுଶைܭ
 ݂ሺܽுଶைሻ ൌ

1

1 ൅ ுଶைඥܽுଶைܭ
 42 

ுଶைߠ 16 ൌ
ுଶைܽுଶைܭ

1 ൅ ுଶைܽுଶைܭ
 ݂ሺܽுଶைሻ ൌ

1
1 ൅ ுଶைܽுଶைܭ

 43 

ுଶைߠ 17 ൌ
ுଶைܽுଶைܭ

ଶ

1 ൅ ுଶைܽுଶைܭ
ଶ  ݂ሺܽுଶைሻ ൌ

1
1 ൅ ுଶைܽுଶைܭ

ଶ  44 

ுଶைߠ 18 ൌ
ுଶைܽுଶைܭ

௭

1 ൅ ுଶைܽுଶைܭ
௭  ݂ሺܽுଶைሻ ൌ

1
1 ൅ ுଶைܽுଶைܭ

௭  This work 

ுଶைߠ 19 ൌ ுଶைܽுଶைܭ
ଵ
∝ൗ  with ∝ൌ ௄∝

்
 ݂ሺܽுଶைሻ ൌ 1 െ ுଶைܽுଶைܭ

ଵ
∝ൗ   41 
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Table 7. Parameters, frequency factors (A), activation energies (Ea) and enthalpies and entropies 

differences for model I-5 with n=1 (equation 13), and model I-1 with n=1 with correction factors 

defined by equations 17, 18 and 19. 

  Model I-1(n=1) with correction factor defined by 

 Model I-5(n=1) Equation 17 Equation 18 Equation 19 

a1 2.79±0.07 2.8±0.1 2.76±0.05 2.79±0.05 

a2 (1.37±0.08)·104 (1.4±0.1)·104 (1.35±0.07)·104 (1.32±0.06)·104

b1 -0.5±0.6 - - - 

b2 (10±7)·103 - - - 

KH2O,1 - 1.2±0.6 2.4±0.8 0.5±0.4 

KH2O,2 - (9±8)·103 (8±7)·103 (3±3)·103

K - - - 272±49 

z - - 3.2±0.6 - 

A (mol·h-1·kg-1) 7·1014 6·1015 5·1014 3·1014 

Ea (kJ·mol-1) 114±7 113±11 113±5 110±5 

∆ܵுଶை െ ∆ܵை௖ைு (J·mol-1·K-1) 194±127 - - - 

ுଶைܪ∆ െ  - - - ை௖ைு (kJ·mol-1) 86±55ܪ∆

RSSQ 1301 1095 997 962 

 RSSQ (%)a - 74.5 76.8 77.6 

RSSQRE 1.41 0.977 0.991 1.15 
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Table 8. Activation energy for DNOE synthesis. Comparison with literature data 

Reaction Catalyst Ea (kJ·mol-1) Ref 

  22 1 OcOH DNOE H O   

Amberlyst 70 110±6 This work(a)

Amberlyst 70 110±5 This work(b)

Amberlyst 70 99 50 

CT 482 100 50 

H-Beta 150±12 18 

  22 1 BuOH DNBE H O   Amberlyst 70 122±2 49 

  22 1 PeOH DNPE H O   Amberlyst 70 114±0.1 26 

  22 1 HeOH DNHE H O   Amberlyst 70 121±3 27 

(a) Estimated from equation 21. (b) From Arrhenius plot of initial rates of DNOE synthesis  
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Figure 1. Reaction scheme in the dehydration of 1-octanol to DNOE 

 

 

 

Figure 2. Experimental Setup 

 

 

 

Figure 3. Influence of bead size on initial DNOE formation rate. (70 cm3 1-octanol, W = 1 g, T = 453 

K, N = 500 rpm). Error bars indicate the confidence interval at a 95%-probability level 
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Figure 4. Influence of stirring speed (N) on initial DNOE formation rate (70 cm3 1-octanol, W = 1 g, 

dp,m = 0.57 mm, T = 453 K). Error bars indicate the confidence interval at a 95%-probability level. 

 

 

 

Figure 5. 1-Octanol conversion against contact time. 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 

mm, N =500 rpm, W = 1 (solid symbols) or 2 (open symbols) g. 
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Figure 6. Selectivity to DNOE vs. conversion of 1-octanol. 70 cm3of 1-octanol, W = 1-2 g, dp,m = 

0.57 mm, N =500 rpm, W = 1 (solid symbols) or 2 (open symbols) g. 

 

 

Figure 7. Reaction rates of DNOE formation vs. 1-octanol activity at 413 K (+), 423 K (■), 433 K 

(♦), 443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 

 

 

Figure 8. Reaction rates of DNOE formation vs. DNOE activity at 413 K (+), 423 K (■), 433 K (♦), 

443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 
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Figure 9. Reaction rates of DNOE formation vs. water activity at 413 K (+), 423 K (■), 433 K (♦), 

443 K (▲), 453 K (●). 70 cm3of 1-octanol, W = 1-2 g, dp,m = 0.57 mm, N =500 rpm. 

 

 

Figure 10. Arrhenius plot for initial DNOE formation rate (W = 1-2 g, dp,m = 0.57 mm, T = 413-453 

K, N = 500 rpm). 
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Figure 11. Influence of initial DNOE amount (% wt) on initial reaction rate of DNOE formation at 

453K (■) and 433K () (70 cm3 of 1-octanol/DNOE mixture, W = 1 g, dp,m = 0.57 mm, N = 500 rpm). 

Error bars indicate the confidence interval at a 95%-probability level 

 

 

 

Figure 12. Effect of 1,4-dioxane amount (wt%) on initial reaction rate of DNOE formation at 423K 

(70 cm3 1-octanol/1,4-dioxane mixture, W = 1 g, dp,m = 0.57 mm, N = 500 rpm). Error bars indicate 

the confidence interval at a 95%-probability level 
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Figure 13. Influence of initial water amount (% wt) on initial reaction rate of DNOE formation at 

453K (■) and 433K () (70 cm3 1-octanol/water/1,4-dioxane mixtures, W = 1 g, dp,m = 0.57 mm, N = 

500 rpm). Error bars indicate the confidence interval at a 95%-probability level 

 

 

 

Figure 14. RSSQ for model I-5 with n=1, equation 13 (▬), and models I-1 with n=1 (■), II-1 with 

n=1 (■) n=2 (■) and n=3 (dotted bar), and I-4 with n=1 (□) with correction factors for inhibitor effect 

of water based on equations 15-19 
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Figure 15. Parity plot for equation 21 (, experiments processing only OcOH; , OcOH-DNOE 

blends; , 1,4-dioxane/OcOH/water blends; , 1,4-dioxane/OcOH blends) 

 

 

Figure 16. Correction factor for the inhibitory effect of water based on the Freundlich isotherm vs. 

water activity at different temperatures within the range 413-453K. 
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Figure 17. Correction factor for the inhibitory effect of water based on the Freundlich isotherm vs. 

aH2O in the reactions of synthesis of DNBE, DNPE, DNHE and DNOE, respectively, by dehydration 

of 1-alkanol at 443 K. 

 

 

 

 


