Study of work on a quantum harmonic oscillator
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Abstract: We define the work probability distribution that is done to a quantum system during
some process, from which the average work, its variance and the irreversible work can be obtained.
Two limits are introduced according to whether the system evolves adiabatically or it undergoes
an instantaneous quench. The time evolution of this system is obtained by solving numerically the
time dependent Schrédinger equation through the Crank-Nicolson method.

The two limit situations are explored for the simple case of a quantum harmonic oscillator with a
time dependent Hamiltonian, as well as the intermediate regime between both limits. The results for
the average work done during the process and its variance agree with the analytical expressions for
the two limits. Finally, we study the work probability distribution during a shortcut to adiabacity

protocol.

I. INTRODUCTION

The concept of work is not easily translated from clas-
sical to quantum systems. In recent years, there has been
an effort to define the quantum work done on a quantum
system. The idea is to consider a system governed by a
Schrodinger equation in which the Hamiltonian is varied
with time [I]. For instance, we will consider the work
done on a particle confined in a harmonic trap which
trapping frequency is varied with time. The main prob-
lem with a definition of quantum work is that it cannot
be defined from an operator, like for instance energy or
position. Instead, it is useful to define the probability
distribution of work done on the system during a process
[TH3]. The two sources of randomness, which make it ap-
propriate to have a probability distribution, are thermal
noise in the preparation of the initial state, and quantum
randomness arising from the measurement process at the
final time. The aim of this project is to understand the
concept of work on quantum systems by studying the
simple case of a harmonic oscillator in which the fre-
quency is varied with time.

The following section (Sec. provides general defini-
tions of the work probability distribution and its derived
quantities (average work, variance of the work and ir-
reversible work). We introduce two limit cases for the
process: the adiabatic limit when the Hamiltonian of the
system is evolved slowly enough such that the evolved
state is always the instantaneous ground state of the time
dependent Hamiltonian, and the instantaneous quench
for the opposite situation.

In Sec. [[T]| we consider a quantum harmonic oscillator
with the frequency depending linearly on time. We study
how the system evolves for different speeds of variation
of the frequency and check if the results for low and high
values tend to the adiabatic and instantaneous quench
limits, respectively. Besides, the work probability distri-
bution for different final frequencies is analysed.

Finally, Sec. [[V]is devoted to the study of the short-
cut protocol proposed in Ref. [4], which eventually yields

the final state of an adiabatic process, i.e. with minimal
irreversible work.

II. WORK PROBABILITY DISTRIBUTION OF
A QUANTUM SYSTEM

Let’s consider a system initially in the ground state
[tho) of the Hamiltonian #(t;) = H;, which evolves with
time to the final Hamiltonian H(¢;) = ;. The probabil-
ity distribution function of the work done on the system
[2] is defined by

PW) = [{ult(t1)PS(W — En + Eo), (1)

n

where Ej is the ground state energy of H;, {|i,)} are the
cigenstates of H; (with eigenvalues { £, }), and |4 (t;)) is
the final state of the system.

The average work performed during the process (W) =
J W P(W)dW can be obtained from Eq. as the first
moment of P(W)

(W) = ((t7)|Hslob(tg)) = (ol Hiltho)- (2)

Similarly, the variance of the work (work fluctuations)
AW? = (W?) — (W)? is

AW? = ((tp)|(Hy — Eo)?[0(ty)) — (W)2,  (3)
and the irreversible or wasted work is defined as
Wi = (W) — (Ey — Ep). (4)

Two important limiting scenarios are worth discussing
in detail:

a. Adiabatic limit. If the Hamiltonian is varied
slowly with time —i.e. slowly enough so at time ¢ the sys-
tem is on the ground state of the instantaneous Hamilto-
nian 7 (t)—, the final state will be [¢)(tf)) = |¢o). There-
fore, the average work from Eq. for this case becomes
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simply the difference between the final and initial ground
state energies

(W) = Ey - Eq, ()

while both the variance of work and the irreversible work
are zero. R

b. Instantaneous quench. If H; is instantaneously
changed to H instead (with ¢ insignificantly small), the
system will still be on its initial state after a time t¢, so
[¥(ty)) = |vo), and consequently the average work and
its variance from Egs. and reduce to

(W) = (ol Hylho) — (tho|Hiltbo), (6)

and
AW? = (yo|(Hy — Eo)[tho) — (W), (7)
respectively, with the irreversible work given by Eq. .

III. HARMONIC OSCILLATOR

In order to study with more detail the work probabil-
ity distribution and the magnitudes derived on the last
section, we will consider the simple yet important case
of the one-dimensional quantum harmonic oscillator [5].
The Hamiltonian for such system with a general time
dependent frequency w(t) can be written as

H(t) = LA —mw? (1)
m
Its ground state wavefunction and energy at frequency
w(0) = w; are

o= () e [5(2)]

and Ey = hw;/2, where ag? = mw;/h. For w(ty) = wy,
the eigenstates and eigenvalues are given by

= () () e (2) o0 |3 ()]

and E, = (n + 1/2)hwy, respectively, where 652 =
mwy/h and H, (z/ag) are the Hermite polynomials. The
variance of x of the ground state of a Hamiltonian with
frequency w is Ax?(w) = h/(2mw).

Generally, the evolution of the system will be described
by the time-dependent Schrodinger equation

0 t -
im0 _ g4y, 0
with p = —ihd,.. To simplify notation, we can define a

dimensionless variable @(t) with which the frequency at
time ¢ is defined as w(t) = @(t) - wo, where wy are the
units of frequency when @ = 1. Similarly, the energies
can be expressed as F = FE - hwg. From now on both
dimensionless variables will be preferably used instead of
w and E.
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A. Adiabatic limit

If the frequency is varied adiabatically from w; to wy,
the average work for the harmonic oscillator results

o) = (2 -1) 5 )

Wy 2

with AW? =0 and Wi, = 0.

B. Instantaneous quench and probability
distribution of work

If the frequency is instantaneously varied from w; to
wy, the average work is

w) =1 [(f) - 1} e (10)

the variance of work results

w3 (2)

and the irreversible work is

2
1 fwy hw;
”irrzf - - . 12

2

For this particular case, the Hamiltonian becomes
time-independent after ¢¢, and thus we can study how
the system evolves once it has undergone the quench.
Since the evolution of the system is described by Eq. ,
and considering that now the Hamiltonian remains con-
stant with time, the state it reaches after a certain time
t >ty will be given by exp(—iH st/h)|vo) as

() = S Wnlvo) exp (=iBat/R)[dn).  (13)

n

Considering a system with an initial frequency w; = 3.0
that is changed instantaneously to wy, the probability
distribution of work P(W) from Eq. has been plot-
ted on Fig. [1| as a function of the work for different cases
of wy (first panel), as well as a function of the final fre-
quency for the different modes of the distribution (second
panel). In order to evaluate P(W), the series have been
truncated up to order 20 (for a larger n the value of
|(4hn|t0)| becomes virtually zero), with &y ranging from
1 to 20.

On the first panel of Fig. [[]we can see that for the cases
where the final frequency is almost equal to the initial
frequency (r,, &~ 1), the mode which contributes most is
n = 0, while the other contributions are approximately
zero. As the final frequency moves away from the initial
frequency, the probablity of the zeroth mode decreases,
and the other modes begin to contribute. Similarly, on
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Figure 1: Probability distribution of work as a function of the
normalized work W/(E, — Ep) for different final frequencies
(first panel) and as a function of the frequencies ratio r, =
wy/w; for several modes of order n (second panel). In both
plots @; = 3.0 is fixed for all cases. E, is the energy of the
maximum order mode (i.e. n = 20) and Ep is the initial
ground state energy.

the second panel we observe that the zeroth order mode
has probability 1 when w; = w;, while for larger or lower
wy¢ the probability of this mode decreases.

Finally, the average work, variance of work and irre-
versible work at a certain time ¢ > t; after the quench
have been calculated, with the final state from Eq. .
Though the obtained values did coincide with the ana-
lytical ones, for large final frequencies (wy > 8w;) the
numerical results show a significant discrepancy with the
expected values. This deviation of the numerical points
arises from the fact that the harmonic trap is too narrow
for final frequencies large enough, so the spatial discreti-
sation (the number of = points) becomes insufficient for
the eigenstates of the final hamiltonian to be well de-
scribed.
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Figure 2:  Average work (first panel; the irreversible work
shows the same behaviour but shifted two units towards the
x-axis), variance of the work and variance of z (second panel)
as a function of w(t) for a harmonic oscillator with initial fre-
quency @&; = 1.0 and final frequency @; = 3.0, where Az} (w)
is the theoretical value of the variance of = for the ground
state of a Hamiltonian with frequency w. The analytic values
for the three magnitudes corresponding to the instantaneous
quench (red solid lines) and adiabatic limits (green solid lines)
are plotted on both panels.

C. Intermediate regime with a linear ramping for
the frequency

Now we can consider a more general situation where
the frequency varies linearly over time such that w(t) =
wi + (wf —w;)t/ty when t < tg, while w(t > ty) = wy.
For t < ty, its derivative w = dw/dt = (wy — w;)/ty is
constant and depends inversely on the final time ty.

The evolution of the system’s initial state was de-
termined by solving Eq. with the Crank-Nicolson
method [6] for a Hamiltonian 7(t), with a total time
Tmax > ty generally different from ¢; (time at which the
frequency reaches wy). Other parameters used on the
program are the temporal and spatial steps At and Ax,
and the grid half-width L.

Given a system with initial frequency @; = 1.0 and final
frequency w¢ = 3.0, the average work, variance of the
work and variance of x have been obtained for different
values of w and are represented in Fig. [2] where the total
time is Tiax = ty with time step At = 0.001 (20000
steps), grid width 2L = 20.0 with 400 z points, and ff is
varied from 0.002 to 20.0.

From Fig.[2] we can see that all magnitudes verify both
the instantaneous quench limit for large values of w and
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the adiabatic limit for rather small values of w, as was ex-
pected. If instead of stopping the evolution right at ¢, we
considered a larger total time T},,x fixed for all the data
points, we would obtain that the average work, variance
of the work and irreversible work coincided with the data
plotted on Fig.[2] This occurs because all the expected
values remain constant once the Hamiltonian becomes
time independent (after time t;). However, the variance
of x would show a clear discrepancy with the current
plot, specially for large w, because the wavefunction of
the state does not maintain its shape after reaching ty.

The average work, variance of the work and irreversible
work have been recalculated for three more situations:
reducing the time step to At = 0.0001, defining a fixed
Tmax = 20.0, and with a smaller grid 2L = 8 (800 z
points). In either case, the results coincided with the
original points from Fig.[2| Similarly, the stability of the
points for the variance of x have been studied by increas-
ing and decreasing the number of time steps, and again
the values obtained coincided with the original points.
Therefore, we can conclude that Fig. [2|is stable with re-
spect to At and Ax.

IV. SHORTCUT TO ADIABACITY

Assuming we are interested in minimising the irre-
versible work, we can use the protocol provided by
Ref. [4]. This article is focused on finding a functional
form for the frequency w(t) of a harmonic oscillator that
leads the system to the final state of an adiabatic pro-
cess in the shortest time possible. Such function w(t)
must satisfy that

WA(t) = - ) (14)

along with the following conditions: b(0) = 1, b(0) = 0
and b(0) = 0 at t = 0, and b(t;) = =, b(t;) = 0 and
b(ty) =0 at t = ty, where w; = w(0), and v = \/w; /wy.

If both requirements are fulfilled, the state reached by
the system at ¢y will be that of an adiabatic process, with
minimum irreversible work and both the energy and the
wave function an eigenvalue and eigenstate of the final
Hamiltonian.

A simple choice for b(t) is the 5th-order polynomial [4]

b(t) = 6(y — 1)s® — 15(y — 1)s* + 10(y — 1)s> + 1,

with s = t/t;, and where its first and second time deriva-
tives are b(t) and b(t).

Returning to the case considered on the last subsection
(system with initial and final frequencies w; = 1.0 and
@ = 3.0) with time step At = 0.0001, grid half-length
L =40 (400 z points), and Tinax = t; = 1.0, we can
now calculate the average work, variance of the work,
irreversible work and variance of x using the shortcut
to define w(t). The values obtained for the average and
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Figure 3: Frequency, average work and irreversible work as a
function of time for the shortcut protocol (first panel) and the
linear ramping (second panel), with initial frequency &; = 1.0,
final frequency @&; = 3.0 and final time {; = Tyax = 1.0.

irreversible work (Fig. 3] first panel) are compared with
the results found when the frequency is varied linearly
with time (Fig. [3] second panel), with the corresponding
frequency w(t) plotted in both cases.

From Fig. [3| we can see on both plots that the av-
erage work behaves similarly to the frequency, since an
increase on the frequency (the harmonic trap narrows)
implies that the energy of the states raises too and thus
the work required grows. We can also see that with the
shortcut both the average work and the irreversible work
at t = ty coincide with the adiabatic limit, while with
the linear ramping a much larger time will be required to
reach the adiabatic limit. In particular, the irreversible
work obtained with the shortcut is approximately zero
while for the linear ramping it falls far from the adia-
batic limit. Thus, with the linear ramping more states
than the ground state have been excited at ¢ = ¢y, re-
sulting on a non-zero irreversible work, while with the
shortcut the system evolves into the ground state of the
final Hamiltonian, and thus the irreversible work is zero.

Finally, the evolution of the variance of z (Fig. [4]) and
the probability density (Fig. [5)) are represented for both
the shortcut and the linear case, choosing Tinax = 4t in
order to see the state of the system some time after it
reaches wy at ty.

From Figs. [4 and [f] we can see that with the shortcut
the variance remains constant after ¢ = ¢y, while when
w(t) is changed linearly with time the variance of z os-
cillates for ¢ > ty. This means that the shape of the
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Figure 4: Evolution of the variance of z with {; = 1.0 and

total time Timax = 4ts, where Ax?(wy) is the variance of  at
the final state.
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Figure 5: Evolution of the probability density obtained with
the linear ramping (left) and the shortcut (right), where again
t; = 1.0 and L is the grid half-width (L = 4.0).

probability distribution [(z,t)|? for the shortcut does
not vary after ¢, while it does on the linear case. This
shows again that with the shortcut the system reaches an
eigenstate of the final Hamiltonian while with the linear
ramping, in general, it does not.

V. CONCLUSIONS & SUMMARY

In this work we have defined the work probability dis-
tribution of a general quantum system and introduced

two limit situations: the instantaneous quench and the
adiabatic limit.

We have considered the particular case of a harmonic
oscillator undergoing a process in which the frequency
is varied linearly with time. Exploring different speeds
for the variation of the frequency, we have calculated the
average work and its variance for each process. Then
we have shown that the numerical results agree with the
analytical values expected for both limits.

Finally, we have studied a shortcut protocol which min-
imises the irreversible work within a short time. Compar-
ing the results obtained with the shortcut and the linear
ramping, we have seen that the adiabatic limit is success-
fully reached using the shortcut protocol for a small final
time. The linear case results for the same final time, how-
ever, are far from the adiabatic limit, since an adiabatic
process with the linear ramping would require a much
longer time. Moreover, we have shown that if the system
is let to evolve after the final time, the variance of = re-
mains constant with the shortcut protocol as expected,
whereas it oscillates for the linear ramping.

Therefore, we can conclude that the protocols derived
to shortcut the adiabatic following provide an efficient
way to minimise the irreversible work after the time evo-

lution. In particular they are clearly better than a linear
ramping.
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