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Abstract: The aim of this project is to construct a complete classification of all possible ground
wave functions of a pentaquark consisting of four light quarks and a heavy antiquark. The existence
of such a particle has not been established yet, but the theoretical interest in studying properties of
pentaquarks has raised since the discovery, in July 2015, of an exotic baryon consisting of three light
quarks (two up and one down) and a heavy pair charm-anticharm. We will study the symmetries
of the internal degrees of freedom of flavour, colour and spin by computing the tensor product of
irreducible representations of SU(3) and SU(2), and then identify which results correspond to par-
ticles that hold the quark model symmetry principles and thus could exist and might be discovered
in the future.

I. INTRODUCTION

Since the LHCb collaboration reported the discovery
of an exotic baryon consisting of four quarks and an an-
tiquark in July 2015, several papers focusing on various
aspects and predictions of pentaquarks have been pub-
lished. [4]
In this project, we will study the specific case of the pen-
taquark consisting of four light quarks and an antiquark,
q4Q̄, which has not been established yet.
We will focus on the internal properties corresponding to
flavour, colour and spin and consider the spatial part to
be totally symmetric, so that we make use as much as
possible of symmetry principles and we do not introduce
any dynamics.
In order to construct the states we will use the fact that,
for each quark, an internal property corresponds to a
given irreducible representation of a Lie Group (SU(3)
for flavour and colour and SU(2) for spin). Then, each
internal property of the multiquark system is obtained by
computing the tensor product of the four representations,
resulting in new irreducible representations which hold
specific symmetric properties. When constructing the
classification, we need to take into account the combina-
tions of spin, flavour and colour in which the pentaquark
wave function is a colour singlet and the system of four
quarks obeys the Pauli exclusion principle, and thus
it is totally antisymmetric.
We are interested in the wave functions because they
predict the properties of the possible pentaquark states
within the quark model.

II. MAIN PROPERTIES OF THE
PENTAQUARK

We are going to study the pentaquarks consisting of a
heavy antiquark (Q̄) and four light quarks (q4).
Each quark has a baryonic number of + 1

3 and the anti-

quark corresponds to − 1
3 ; the total baryonic number of

the particle is +1. Its wave function contains contribu-

tions from each light quark connected to:

• Three flavour degrees of freedom up, down or
strange (u, d, s), which transform under the fun-
damental representation of SU(3).

• Three colour degrees of freedom r, g and b, which
transform under the fundamental representation of
SU(3). The combination of the four light quarks
and the antiquark color charge must be a colour
singlet so that the state can exist as a free particle.

• Two spin degrees of freedom corresponding to a
total spin of 1

2 , which transform under the funda-
mental representation of SU(2).

The total parity of the pentaquark will be given by the
equation:

P = PQ̄ · Pq · Pq · Pq · Pq · (−1)L, (1)

where Pq(PQ̄) is the parity of the quark(antiquark) wave
function and L is the sum of relative angular momentum
of the light quarks regarding the heavy antiquark. We
will consider it to be 0 (ground state) so that the spatial
wave function is totally symmetric. Then we need the
ground state to have negative parity so that the Pauli
exclusion principle holds.

III. SYSTEM OF FOUR LIGHT QUARKS

We associate each internal property of a quark with
a tensor in SU(3) for colour and flavour and SU(2) for
spin. Then, we combine the four quarks by computing
the tensor product and obtain a direct sum of several
irreducible representations.

A. Young Tableaux and Clebsch-Gordan
decomposition

The irreducible representations of SU(n) with m in-
dices are associated to the irreducible representations of
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the permutation group Sm because of their connection
with symmetries. Young Tableaux are a useful tool to
identify the dimension and the symmetry of the repre-
sentations of the permutation group and thus we can use
them to label and compute the tensor product between
SU(n) irreducible representations.
In a Young Tableaux, a row represents a multiplet of
symmetric combinations and a column an antisymmetric
multiplet. All other configurations are of mixed symme-
try.
When working with Young Tableaux, we need to take the
following rules into account:

• As in SU(n), a Tableaux with more than n boxes
in any column will vanish.

• Tableaux which are the same except for a column
with n boxes correspond to the same irreducible
representation. Such a column corresponds to the
totally antisymmetric tensor ε.

• (Clebsch-Gordan decomposition) When com-
puting the tensor product of two Tableaux we will
label the rows of the second one by ordered num-
bers. Then, we will add the boxes from the second
Tableaux to the first one in all possible ways which
hold that, when reading the obtained Tableaux
along the rows from right to left from top row down
to the bottom row, the number of 1′s must be equal
or greater than the number of 2′s, which must be
equal or greater than the number of 3′s and so on.
The result of the tensor product will be the di-
rect sum of all tensors corresponding to the Young
Tableaux obtained by this method.

• To calculate the dimension of an irreducible rep-
resentation from its Young Tableaux, we need to
introduce the factors over hooks rule, which is
a special case of Weyl’s character formula. For
SU(n), put an n on the upper left hand box of the
Tableaux, add one when moving right and subtract
one when moving down. The product of all these
factors is F. We associate a hook to each box of a
Young Tableaux i. A hook contains the given box
together with all those boxes that are to the right
in the same row and lower in the same column. The
number of boxes is called the hook length l. The
dimension of the representation is:

hν =
F∏
i li

(2)

For SU(3),
1 ⊗ 2 ⊗ 3 ⊗ 4

we obtain the direct sum of the Young Tableaux from
TABLE I.

Computing the dimensions, we get:

3⊗3⊗3⊗3 = 15ts⊕15a⊕15a⊕15a⊕6̄sa⊕6̄sa⊕3s⊕3s⊕3s
(3)

[4], 15 1 2 3 4 (ts)

[31], 15

1 2 3
4 (a4)

1 2 4
3 (a3)

1 3 4
2 (a2)

[22], 6

1 2
3 4 (sa12)

1 3
2 4 (sa13)

[211], 3

1 4
2
3 (s4)

1 3
2
4 (s3)

1 2
3
4 (s2)

TABLE I: Young Tableaux label and dimension for the Ya-
manouchi basis vectors for SU(3).

This is the general result for SU(3), which is valid to de-
scribe the flavour states. As for the colour states,
we must impose that, when adding the antiquark to the
resulting representation, we obtain the totally antisym-
metric tensor. The antiquark corresponds to the Young
Tableaux [1n−1]:

which only combined with the [211] Young Tableaux
leads to the colour singlet. Therefore, we will only con-
sider representations of dimension 3s for the four light
quarks as colour states.

[4], 5 1 2 3 4 (ts)

[31], 3

1 2 3
4 (a4)

1 2 4
3 (a3)

1 3 4
2 (a2)

[22], 1

1 2
3 4 (sa12)

1 3
2 4 (sa13)

TABLE II: Young Tableaux label and dimension for the Ya-
manouchi basis vectors for SU(2).

For SU(2),
1 ⊗ 2 ⊗ 3 ⊗ 4

we obtain the direct sum of the Young Tableaux from
TABLE II.

Computing the dimensions, we get:

2⊗ 2⊗ 2⊗ 2 = 5ts ⊕ 3a ⊕ 3a ⊕ 3a ⊕ 1sa ⊕ 1sa (4)

Note that if we label each representation by the the total
spin of the system we get:

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0 (5)
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IV. THE PENTAQUARK WAVE FUNCTIONS

The next step is to identify the combinations of the
flavour, spin and colour states obtained in Section III A
so that the system of the four light quarks is described
by a totally antisymmetric wave function.

A. Representation Theory of Sn: the Yamanouchi
Basis

In order to check that the wave function is antisym-
metric under any exchange of the four quarks, we will
need some results of Representation Theory.
As mentioned above, the inequivalent irreducible repre-
sentations of Sn, or the labelled Young tableaux, match
with a given symmetry between quarks. We will name
the labelled Young tableaux Yamanouchi basis vec-
tors. A partition will denote a Young Tableaux with
no label, which corresponds to a given state.

For example, the Yamanouchi basis vector Y
[ν]
m

denotes the partition [ν], labelled in a way m, where
there is n!∏

i li
possibilities for m.

We know that the permutation group, S4, is generated
by the adjacent transpositions (12), (23), (34), so we
just need to prove that the total wave function is
antisymmetric under the effect of any of the generators
of the group.

A Yamanouchi basis vector has no symmetry between
non-adjacent indices that are at the same row or column
or between adjacent indices from different row and col-
umn. That is why we need to define the Yamanouchi
matrix elements, which will allow us to study all mixed
symmetries under the effect of the generators of the per-
mutation group Sn. We will define the Yamanouchi ma-
trix elements as follows:

1.

(i− 1, i) | Y [ν]
m 〉 = ± | Y [ν]

m 〉 (6)

when i− 1 and i are in the same row (+) or same
column (-).

2.

〈Y [ν]
m′ | (i−1, i) | Y [ν]

m 〉 =


1
σ if m′ = m√
σ2−1
|σ| if Y

[ν]
m′ = (i− 1, i)Y

[ν]
m

0 otherwise.

(7)
when i−1 and i are not in the same row or column.
σ is the axial distance from i− 1 to i in Y

[ν]
m and

it is defined to be:

σ = ci − ci−1 − (ri − ri−1) (8)

where ri, ri−1, ci, ci−1 are the row and columns
numbers of the letters i and i − 1 respectively in

the Young Tableaux Y
[ν]
m .

In (A.I) we can find the Yamanouchi matrices for the
partitions we are interested in.

B. Calculation of the wave functions

The way to proceed is:

1. Assume the wave function ψA contains all possible
combinations of the Yamanouchi basis vectors of
given partitions (states) of spin, flavour and colour.
For example:

ψA =
∑

i∈a4,a3,a2
j∈a4,a3,a2
k∈s2,s3,s4

αi,j,kψ
F
i ψ

S
j ψ

C
k (9)

2. Apply the permutation (12) to ψA by using the
matrices from (A.I) corresponding to each partition
of flavour, spin and color. Get rid of the elements of
ψA which are not antisymmetric. Continuing with
the previous example, we are left with:

ψA =+ αa2,a4,s2ψ
F
a2ψ

S
a4ψ

C
s2+ αa4,a4,s3ψ

F
a4ψ

S
a4ψ

C
s3

+ αa4,a4,s4ψ
F
a2ψ

S
a4ψ

C
s4+ αa3,a3,s3ψ

F
a3ψ

S
a3ψ

C
s3

+ αa3,a3,s4ψ
F
a3ψ

S
a3ψ

C
s4+ αa2,a2,s3ψ

F
a2ψ

S
a2ψ

C
s3

+ αa2,a2,s4ψ
F
a2ψ

S
a2ψ

C
s4+ αa4,a3,s3ψ

F
a4ψ

S
a3ψ

C
s3

+ αa4,a3,s4ψ
F
a4ψ

S
a3ψ

C
s4+ αa3,a2,s2ψ

F
a3ψ

S
a2ψ

C
s2

+ αa2,a3,s2ψ
F
a2ψ

S
a3ψ

C
s2+ αa4,a2,s2ψ

F
a4ψ

S
a2ψ

C
s2

+ αa3,a4,s3ψ
F
a3ψ

S
a4ψ

C
s3+ αa3,a4,s4ψ

F
a3ψ

S
a4ψ

C
s4

(10)

3. Apply the permutation (23) and find the combina-
tions of the coefficients αi,j,k such that the result
is antisymmetric under the exchange 2 ↔ 3 for all
elements of ψA. In the previous example, we are
left with:

ψA =+ αψFa2ψ
S
a4ψ

C
s2− αψFa3ψ

S
a4ψ

C
s3+ βψFa2ψ

S
a2ψ

C
s4

+ βψFa3ψ
S
a3ψ

C
s4+ γψFa4ψ

S
a3ψ

C
s3− γψFa4ψ

S
a2ψ

C
s2

+ λψFa3ψ
S
a3ψ

C
s3− λψFa2ψ

S
a2ψ

C
s3+ λψFa2ψ

S
a3ψ

C
s2

+ λψFa3ψ
S
a2ψ

C
s2+ δψFa4ψ

S
a4ψ

C
s4

(11)

4. Finally, apply the permutation (34) and find the
value of the coefficients such that the wave function
is antisymmetric under this transposition too. In
the previous example, we are left with the following
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normalized wave function:

ψA = +
1

3

( 1√
2
ψFa2ψ

S
a4ψ

C
s2 −

1√
2
ψFa3ψ

S
a4ψ

C
s3 (12)

+
1√
2
ψFa2ψ

S
a2ψ

C
s4 +

1√
2
ψFa3ψ

S
a3ψ

C
s4 −

1√
2
ψFa4ψ

S
a3ψ

C
s3

+
1√
2
ψFa4ψ

S
a2ψ

C
s2 + ψFa3ψ

S
a3ψ

C
s3 − ψFa2ψ

S
a2ψ

C
s3

+ ψFa2ψ
S
a3ψ

C
s2 + ψFa3ψ

S
a2ψ

C
s2 −

√
2ψFa4ψ

S
a4ψ

C
s4

)
C. Results

By the procedure described in Section IV B we have
identified seven possible ground state wave functions with
their corresponding spin and flavour states for the four
quark system:

1. Spin 1, Flavour 15ts

ψA = +
1√
3

(
ψFtsψ

S
a4ψ

C
s4 + ψFtsψ

S
a3ψ

C
s3 + ψFtsψ

S
a2ψ

C
s2

)
(13)

2. Spin 2, Flavour 15a

ψA = +
1√
3

(
ψStsψ

F
a4ψ

C
s4 + ψStsψ

F
a3ψ

C
s3 + ψStsψ

F
a2ψ

C
s2

)
(14)

3. Spin 1, Flavour 15a

ψA = +
1

3

( 1√
2
ψFa2ψ

S
a4ψ

C
s2 −

1√
2
ψFa3ψ

S
a4ψ

C
s3 (15)

+
1√
2
ψFa2ψ

S
a2ψ

C
s4 +

1√
2
ψFa3ψ

S
a3ψ

C
s4 −

1√
2
ψFa4ψ

S
a3ψ

C
s3

+
1√
2
ψFa4ψ

S
a2ψ

C
s2 + ψFa3ψ

S
a3ψ

C
s3 − ψFa2ψ

S
a2ψ

C
s3

+ ψFa2ψ
S
a3ψ

C
s2 + ψFa3ψ

S
a2ψ

C
s2 −

√
2ψFa4ψ

S
a4ψ

C
s4

)
4. Spin 0, Flavour 15a

ψA = +
1√
12

(
ψSsa12ψ

F
a2ψ

C
s2 +

√
2ψSsa12ψ

F
a4ψ

C
s3 (16)

+ ψSsa12ψ
F
a3ψ

C
s3 −

√
2ψSsa12ψ

F
a3ψ

C
s4 −

√
2ψSsa13ψ

F
a4ψ

C
s2

+ ψSsa13ψ
F
a3ψ

C
s2 − ψSsa13ψ

F
a2ψ

C
s3 −

√
2ψSsa13ψ

F
a2ψ

C
s4

)
5. Spin 1, Flavour 6̄sa

ψA = +
1√
12

(
ψFsa12ψ

S
a2ψ

C
s2 +

√
2ψFsa12ψ

S
a4ψ

C
s3 (17)

+ ψFsa12ψ
S
a3ψ

C
s3 −

√
2ψFsa12ψ

S
a3ψ

C
s4 −

√
2ψFsa13ψ

S
a4ψ

C
s2

+ ψFsa13ψ
S
a3ψ

C
s2 − ψFsa13ψ

S
a2ψ

C
s3 −

√
2ψFsa13ψ

S
a2ψ

C
s4

)
6. Spin 1, Flavour 3s

ψA = +
1√
6

(
ψFs2ψ

S
a4ψ

C
s3 − ψFs3ψSa4ψ

C
s2 (18)

+ ψFs2ψ
S
a3ψ

C
s4 + ψFs3ψ

S
a2ψ

C
s4 − ψFs4ψSa3ψ

C
s2

− ψFs4ψSa2ψ
C
s3

)

7. Spin 0, Flavour 3s

ψA = +
1√
12

(√
2ψFs4ψ

S
sa12ψ

C
s2 +

√
2ψFs4ψ

S
sa13ψ

C
s3 (19)

+
√

2ψFs2ψ
S
sa12ψ

C
s4 −

√
2ψFs3ψ

S
sa13ψ

C
s4 + ψFs2ψ

S
sa12ψ

C
s3

+ ψFs2ψ
S
sa13ψ

C
s2 + ψFs3ψ

S
sa12ψ

C
s2 − ψFs3ψSsa13ψ

C
s3

)
In order to prove that this classification is complete, we

need to prove that the ground wave functions described
are the only possible pentaquark states, i.e. any other
combination violates the Pauli exclusion principle. The
other possible combinations are the following combina-
tions of flavour, spin and color representations respec-
tively:

•

⊗ ⊗

The combination of flavour [4] and spin [4] is com-
pletely symmetric and thus when we combine the
three representations we get the same symmetry as
the colour [211] representation, which is not com-
pletely antisymmetric.

•

⊗ ⊗

⊗ ⊗

If we disregard the [4] completely symmetric repre-
sentation we are left with the combination of two
representations: a [211], which has completely anti-
symmetric properties only when combined with its
conjugate [31], and a [22]. Thus, the result is not
completely antisymmetric.

•

⊗ ⊗

By the same argument as the combination above
the result violates the Pauli exclusion principle.

•

⊗ ⊗

When we apply the procedure described in section
IV B to this combination of representations, we are
left with the following wave function:

ψA =−
√

2ψFsa12ψ
S
sa12ψ

C
s3 + ψFsa12ψ

S
sa12ψ

C
s4

−
√

2ψFs13ψ
S
sa13ψ

C
s3 + ψFsa13ψ

S
sa13ψ

C
s4

(20)
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which is not antisymmetric under the permutation
(23). Therefore, this state violates the Pauli exclu-
sion principle.

Note that the dimension of the flavour symmetry state
indicates the number of different pentaquarks that have
the corresponding wave function. We also need to con-
sider the spin of the heavy antiquark to obtain the to-
tal spin of the particle. When adding the spin ± 1

2 we
can obtain two different states which will have approx-
imately the same mass, as the interaction between the
light quarks and the heavy antiquark does not depend
on the heavy antiquark spin.

V. CONCLUSIONS

In this project, we have developed a mathematical
method to identify the ground wave functions of the
pentaquarks containing one heavy antiquark and four
light quarks only in terms of the permutation symmetry
properties regarding colour, spin and flavour.
The classification is complete and relates each ground
wave function to the internal properties of the particle.
The results obtained are useful to identify detected
particles. From the flavour symmetry we can obtain the
relation between the masses of the different multiplets
of isospin of the four quark system, i.e, the relation
between the masses of the pentaquarks corresponding to
a given wave function. They differ because of the heavier
mass of the strange quark and that is computed through
the Gell-Mann-Okubo formula. It is also useful to know
the combinations of flavour and spin because then we
can infer the spin, which can be difficult to measure, by
knowing that the flavour must be conserved.
Another interesting question would be if any of these
states is the result of the combination of a baryon (qqq)
and a meson (qq̄). Any baryon will have a completely
antisymmetric wave function obtained from the combi-
nation of partitions from (A.II). When a given baryon is
combined with a meson, the symmetry of the irreducible
representations we obtain is restricted even though we
get states which match the spin and flavour properties
of our results. We can not construct the ground wave

functions that we obtained in this project and therefore
they are genuinely exotic states.

VI. APPENDIX

(12) (23) (34)1 0 0

0 −1 0

0 0 −1


− 1

2

√
3

2 0√
3

2
1
2 0

0 0 −1


−1 0 0

0 − 1
3

√
8

3

0
√

8
3

1
3

1 0 0

0 1 0

0 0 −1


1 0 0

0 − 1
2

√
3

2

0
√

3
2

1
2


− 1

3

√
8

3 0√
8

3
1
3 0

0 0 1

(
1 0

0 −1

) (
− 1

2

√
3

2√
3

2
1
2

) (
1 0

0 −1

)
(A.I) Yamanouchi matrices in the basis of the Ya-
manouchi basis vectors.

[3], 10, 4 1 2 3 (ts)

[21], 8, 2

1 2
3 (s2)

1 3
2 (s3)

[111], 1, /

1
2
3 (ta)

(A.II) Young Tableaux label and dimension for SU(3)
and SU(2) for the Yamanouchi basis vectors for a baryon
qqq.
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