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Abstract: This work is a review that deals with the possibility of application of statistical me-
chanics into granular systems. Some modifications of statistical mechanics concepts are introduced
in order to apply statistical methods to these systems. The quadron method is proposed to deter-
mine correctly the degrees of freedom of granular systems. The total partition function is computed,
and it is shown that it gives rise to an equipartition principle for granular systems. In section IV, the
failure in the description of granular matter with the volume function, and a reformulation aimed
at overcoming such problems is proposed. Section V discuss the possibility of using the above result
in the Jamming transition problem. Finally, a personal perspective is given on this topic.

I. INTRODUCTION

Granular matter is a conglomeration of a large number
of solid macroscopic particles, with thermal motion fluc-
tuations being irrelevant. Thus, the predominant forces
on these systems are frictional. The importance of these
systems is obvious: granular matter is present in our ev-
eryday experience. Some examples of granular matter
are sand, rice, salt, coffee, etc. The size of a particle that
constitutes a granular system can range from µm up to
m.

This kind of matter is very important in industry. The
second most manufactured class of materials, after water,
are in the form of granular matter. As a matter of fact,
more than 1/10 of the total energy consumption in the
whole world is spent in processing granular materials.

Due to the high rate of collisions between grains,
these systems are highly dissipative. Therefore, unless
the presence of an external force, these systems rapidly
achieve mechanical equilibrium. Another important fea-
ture is that depending on the density of the system, gran-
ular matter will behave as a fluid (low density) or as a
solid (high density).

For many decades, scientific research has been done in
order to fully understand the unusual behavior of granu-
lar systems.

In this work we discuss and review recent work aimed
at applying statistical physics techniques to the study of
granular matter.

II. STATISTICAL PHYSICS OF GRANULAR
MATTER

Thermodynamics is the branch of physics that de-
scribes the macroscopic behavior of a system. Using
probability theory, statistical physics deals with the same
systems and describes their macroscopic behavior in
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terms of its microscopic constituents. For example, the
equation of state of an ideal gas, PV = nRT , can be
obtained by using statistical physics methods, consider-
ing that the gas is constituted of N independent, non-
interacting particles, with kinetic energy, p2/2m, where
~p is the linear momentum of each particle.

In principle, statistical mechanics methods could apply
to granular systems in order to describe their macroscopic
behavior in terms of its constituents and its interactions
[5]. In order to use statistical physics to study thermal
systems, we must make two assumptions: firstly, assume
that it is possible to project the state of the system de-
scribed by a large number of macroscopic variables (~q, ~p)
on a small set of parameters, determining the macro-
scopic degrees of freedom (DoF). Secondly, the equal a
priori probability postulate which means that the system
can be found, with the same probability, in any of its
accessible micro-states (of equal energy). In thermal sys-
tems, the total energy is described by the Hamiltonian,
H. Fluctuations are a direct manifestation of the tem-
perature, T , of the system.

In granular systems, the potential energy involved in
moving a grain of size l, ∼ mgl, is much larger than
the thermal energy, kBT . Thus, granular matter can be
considered to be at zero temperature. In addition, these
systems are in a metastable state, since any external per-
turbation would change the configuration of the grains.

In granular statistical mechanics, (GSM), we must con-
sider that there are two kinds of DoF, structural and
stress, that define the phase space. The original idea
proposed in [1] was to replace the Hamiltonian by a vol-
ume function W that depends on the structural DoF. In
the volume ensemble, the analogue of the temperature is
a scalar parameter called compactivity, X0. If X0 = 0,
the system is in the most compact possible state, whereas
X0 = ∞, corresponds to the least compact one. In the
corresponding stress ensemble, the analogue of the tem-
perature is a tensor, called angoricity, Xij .

By analogy with the usual thermodynamic expression
for temperature, T = ∂〈ε〉/∂S, (〈ε〉 is the mean value
of the internal energy of a thermal system and S is the
entropy) in the two ensembles we can write the com-
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pactivity and the angoricity as:

X =
∂〈W〉
∂S

, (1)

Xij =
∂〈Fij〉
∂S

, (2)

where W is the volume function and F ij is the force-
moment tensor.

A. The canonical volume ensemble

In the canonical ensemble, the system is in thermal
equilibrium with an external bath at a constant temper-
ature, T . The probability of finding the system with an
energy Er is

P (Er) =
1

Z
e−βEr , with β = 1/kBT . (3)

Z is the partition function of the system and is expressed
as follows:

Z =
∑
r

e−βEr . (4)

In granular systems, we can assume that the total system
acts as a ”thermal bath”, so we can write the probability,
pn of finding the granular system in a specific configura-
tion, with volume vn, as

pn =
1

Zv
e−

vn
X , (5)

where the denominator of (5) is the volume partition
function and it is defined as

Zv =

∫
e−

W(u)
X d {u} , (6)

where {u} are the structural DoF. Then, the mean value
of any observable, A, in this canonical ensemble is given
by

〈A〉 =
1

Zv

∫
A ({u}) e−

W({u})
X d ({u}) . (7)

In particular, the mean volume and the volume fluctua-
tions can be expressed in the following form:

〈V 〉 =
1

Zv

∑
q

Vqe
−Vq/X = − ∂ lnZv

∂(1/X)
, (8)

〈V 2〉 − 〈V 〉2 = − ∂
2 lnZv

∂(1/X)2
. (9)

It is clear that (8) and (9) are the analogues of the mean
energy and energy fluctuations in the canonical thermal
systems.

FIG. 1: The quadron is shaded and is constructed with the
two vectors ~rgc and ~Rgc.

III. STRUCTURAL DESCRIPTION OF
GRANULAR MATTER

In order to analyze the structure of 2-D granular pack-
ing, we introduce the quadron method [4]. We consider
an N-grain system, each grain with the same coordina-
tion number, z̄, defined as the mean number of contact
points with neighbouring grains.

A. Quadron method

Quadrons are space-tessellating quadrilateral elements
in 2-D [3]. To construct a quadron, we must follow four
steps:

1. Connect the contact points of each grain, g, with vec-
tors ~rgc that circulate in the clockwise direction

2. Define the centroid of each grain

3. Define the centroid of the surrounding cell, c

4. Connect the centroid of grain g with the centroid of c

by a vector ~Rgc

The quadron is the quadrilateral formed by the two vec-

tors ~rgc and ~Rgc. Fig. 1 is an illustration of the quadron

method. For brevity, we define ~rq ≡ ~rgc and ~Rq ≡ ~Rgc.
We evaluate the shape of the quadron from the follow-

ing tensorial product,

Cq = ~rq ⊗ ~Rq. (10)

The volume function, in terms of ~rq and ~Rq, can be ex-
pressed as,

W =
∑
q

vq =
1

2
|~rq × ~Rq| (11)

Then, the partition function is given by

Zv =

∫
e−

1
2X0
|~rq×~Rq|

Nsdf/2∏
q=1

drqxdr
q
y, (12)
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where Nsdf are the structural DoF (SDFs).
Having fixed the coordination number for each grain,

the number of contacts of each grain is Ncontacts = Nz̄/2.
Thus, the number of independent variables, in 2-D is
Nindep = Nz̄. So, the number of structural DoF is equal
to the number of independent variables of the system,
Nsdf = Nz̄.

If the vector ~ρ ≡
(
r1
x, r

2
x, ...r

Nz̄/2
x , r1

y, r
2
y, ..., r

Nz̄/2
y

)
is

defined, the volume function W becomes quadratic, and
therefore, the partition function can be written as,

Zv =

∫
e−

1
2X0

aqpαβr
q
αr
p
β

Nz̄/2∏
q=1

2∏
i=1

drqi =

∫
e−

1
2 ~ρ·A·~ρdNz̄~ρ,

(13)
where aqpαβ is a matrix that represents the area of the

quadrilateral, 1
2 |~r

q× ~Rq|, α and β run over the Cartesian
components, and x, y and p, q run over quadrons.

In view of this discussion, we can understand the
quadrons as the quasi-particles of the volume ensemble.
As grain volumes are constituted by small volume ele-
ments, it is reasonable to think that quadrons are the
quasi-particles of the volume ensemble.

B. The canonical stress ensemble

Consider that the granular system is subjected to M
boundary forces, ~gm (m = 1, 2, ...,M), acting on the
boundary grains. As the system is static, its state will be
defined solely by these boundary forces. Thus, the stress
DoF will correspond to these ~gm forces. The partition
function will be given by combinations of these boundary
forces acting on the boundary grains, with the constrain
that these boundary forces are fixed.

Then, we can write the canonical partition function of
the stress ensemble as follows,

Zf =

∫
e
− 1
Xαβ

Fαβ
M∏
m=1

d~gm, (14)

where Xαβ is the angoricity, Fαβ is the force moment
function, and ~gm are the independent boundary forces.

The force moment function can be expressed in terms
of the loop forces of the cell containing the quadron, q:

Fαβ =
∑
gc

fqαr
q
β , (15)

where fqα is the α component of the loop force contain-
ing the quadron q, and rqβ is the r vector of quadron
q. As quadrons sharing the same cell have the same
loop force, only N/2 of the Nz̄ loop forces are inde-

pendent. So, we define the loop force vector, ~φ =

(f1
x , f

2
x , ..., f

N/2
x , f1

y , f
2
y , ..., f

N/2
y ) as is done in the volume

ensemble.

Taking into account that the stress DoF are the bound-
ary forces, we must express the loop forces in terms of
these boundary forces [2]. To do that, the Nz̄/2 inter-
granular forces must be expressed in terms of the M
boundary forces and then, using the definition of loop
forces, in terms of the contact forces. The result is,

φcα = Cqmαβ g
m
β , (16)

where α, β = x, y, c = 1, 2, ..., N/2 runs over all cells,
m = 1, 2, ...,M runs over all boundary forces and C is an
N × 2M matrix.

Two definitions are introduced now. Firstly, ~fq = E~φ,
where E is an Nz̄×N matrix. Secondly, Bqpαβ ≡ X

−1
αβ δqp.

With these definitions, we have now all the ingredients
needed to compute the stress partition function, Zf . The
expression is,

Zf =

∫
e−

~φ·ET ·B·~ρ
M∏
m=1

d2~gm =

∫
e−~g·C

T ·ET ·B·~ρ
M∏
m=1

d2~gm.

(17)

C. Total partition function

In order to compute the total partition function, we
must integrate over all the phase space, dZ = dZvdZf .
Defining Q ≡ BT ·E ·C, the total partition function will
be given by,

Z =

∫
e−

1
2 ~ρ·A·~ρ−~g·Q

T ·~ρ(dN~z~ρ)(d2M~g). (18)

This last equation shows that the volume ensemble and
the stress ensembles are inter-dependent, as the stress
ensemble has in the exponential a linear term in ~ρ.

In order to separate the variables in the exponential,
we change the variables to ~̃ρ = ~ρ + A−1Q~g. Then, the
partition function becomes:

Z =

∫
e

1
2 (−~̃ρA~̃ρ+~gP~g)(dNz̄ ~̃ρ)(d2M~g). (19)

The calculation of the partition function allows us to es-
timate the mean volume as,

〈V 〉 =
X0

2Z

∫
(~̃ρA~̃ρ+ ~gP~g)e

1
2 (−~̃ρA~̃ρ+~gP~g)(dNz̄ ~̃ρ)(d2M~g).

(20)
This expression can be split into two gaussians, which
gives the surprising result:

〈V 〉 =
Nz̄ + 2M

2
X0. (21)

This result plays the role of the equipartition principle
of granular statistical mechanics. In thermal systems,
the kinetic energy of a particle with mass m and velocity
~v = (vx, vy, vz) is equally shared kBT/2 times among the
DoF. In granular systems, the mean volume is distributed
equally among the volume, (Nz̄), and stress, (2M), DoF,
each of them having a contribution of X0/2 to the mean
volume of the granular system.
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FIG. 2: The volume function in Eq. (23) can not distinguish
between the configurations of (a) and (b).

IV. FAILURE OF THE VOLUME FUNCTION IN
GRANULAR STATISTICAL MECHANICS

In thermal statistical mechanics, the Hamiltonian, H,
describes the total energy of the system in terms of all
the DoF. Any derivative of H respect to a DoF must be
different from a derivative respect to another DoF. If the
derivatives are equal, the Hamiltonian does not describe
properly the energy of the system, leading to a miscount-
ing of the microstates, and therefore, a wrong calculation
of the entropy of the system. Within this viewpoint, it
has been shown [6], that the volume function, W, does
not depend on all the structural DoF, and a reformula-
tion must be done in order to have a good estimation of
the entropy.

Consider the system of grains as represented in Fig. 2.
The volume function of Fig. 2(a) is

W =
1

2
(|~rB × ~rC |+ | (~rB + ~rC)× ~rD|) . (22)

Changing the position of grain A in Fig. 2(b), we obtain
the same volume function as in the (a) configuration.
Therefore, W can not discriminate the two configura-
tions. Following the argument at the beginning of this
section, and taking the derivative of W with respect to

~rA and ~r′A, we obtain

∂W
∂~rA

=
∂W
∂~r′A

= 0. (23)

Thus, W does not depend on all the DoFs. Therefore, it
is not a good analogue of the Hamiltonian.

The connectivity function, C is now introduced in order
to have a good analogue of the Hamiltonian that includes
a dependence on all the DoFs. It is defined as follows:

C =

nz̄∑
q,p=1

d∑
α,β=1

bqp;αβrqαrpβ (24)

where bqp;αβ are coefficients that are discussed below and
the sum runs over all the vectors, ~r, of the system. The
contacture is the replacement of the compactivity, X0,
and is defined as

τ =
∂〈C〉
∂S

, (25)

where S is the entropy of the system. As temperature
is related to energy fluctuations in thermal systems, the
contacture is a measure of the fluctuations of the connec-
tivity function in granular systems. With this definition,
the exponential term of Eq. (13), W/X0, must be re-
placed by C/τ .

In order to compute the coefficients bqp;αβ , it must be
assumed that C is additive. This fact implies that bqp;αβ
do not have cross terms, and thus, that is independent
of p and q. C must be independent of the orientation of
the coordinate system as well, defining bqp;αβ as a scalar
times the unit matrix. Dividing τ by the constant pa-
rameter, W is then expressed as follows,

C =

Nz̄∑
q=1

~rq · ~rq =

d∑
n=1

~R(n) · ~R(n), (26)

where the vector ~R(n) ≡ (r1xn , r2xn , ...) contains all the
xn components of the ~r vectors of the system.

V. JAMMING

An interesting problem where the previous formalism
could be applied is the problem of Jamming [7]. A gran-
ular system is jammed when it is at zero temperature,
zero shear stress and high density. Jamming is the tran-
sition from a flowing to a rigid state. Note however that
Jamming does not mean crystallization. Crystallization
is the process where a group of atoms are ordered in a
defined structure forming a solid. Instead, in the Jam-
ming state the grains that form the solid do not present
any kind of order.

Consider an ideal spheres model at zero temperature
and zero shear stress, that interact via a pairwise poten-
tial of the form:

V (rij) =

{
ε
α

(
1− rij

σij

)α
rij < σij

0 rij ≥ σij
(27)

where ε is the repulsion energy, σij is the average diam-
eter between two spheres and rij is the distance between
centers of two spheres. Special cases of interest corre-
spond to α = 2 (harmonic), α = 5/2 (Hertzian in 3-D)
and α = 0 (hard-spheres).

In order to have a representation of the jamming tran-
sition, the Jamming phase diagram (Fig. 3) is intro-
duced. When the density of the system is very low, the
particles are free to move, they do not overlap each other.
The system behaves as a fluid. At high density, overlap-
ping between particles occurs, and then, the system is in
the jammed state. At a critical density, ϕc, the system is
between the jammed and unjammed state. As the tran-
sition between the two states is discontinuous, it has a
first-order nature. Point J represents the critical point
in the ideal spheres model. The location of the critical
point is at ϕ = ϕc, T = 0 and σ = 0.

Treball de Fi de Grau 4 Barcelona, January 2017



Statistical Mechanics of Granular Systems Carlos González Otero

FIG. 3: Jamming phase diagram. At high density values, low
temperature and low shear stress, the system is in the jammed
state. Point J represents the transition for the ideal spheres
model at T = 0 and σ = 0.

The order parameter of this transition is Z, the aver-
age number of overlaps of a particle with its neighbors.
Z = 0 corresponds to a very low packing fraction of the
system, φ. The density is very small, so that there is no
overlapping between particles. At a critical packing frac-
tion value, φc, Z jumps from 0 to the critical transition
value, Zc.

In order to apply statistical mechanics formalism of
granular matter to the jammed state, we suggest to es-
tablish an order parameter based on the quadron concept
introduced previously. Firstly, construct the quadron of
the system in the jammed state. As the coordination
number of the grains in the jammed state is different
from that of the unjammed state, the quadron will not
be the same for the two states. It is clear that this order
parameter is closely related to the usual order parameter
Z. Indeed, this order parameter will take zero value in the
unjammed state and non-zero value in the jammed state.
Notice that the volume function, W, will be different in
both states. We expect that its calculation allows us to
compute the total partition function, Z, and then, the
mean volume, 〈V 〉, of the jammed state.

VI. CONCLUSIONS

Since the first attempt of applying statistical physics
methods to granular systems done by Edwards in 1988
[1], a lot of theoretical and computational research have
been done during all of these years. Unless the efforts
of many physicists trying to elaborate a theory that de-
scribes the behavior of granular systems, some issues re-
main open up to date.

Firstly, no equation of state has been written yet. This
fact points out some misconceptions in applying the con-
cepts of statistical physics in granular systems. Secondly,
the lack of ergodicity in granular systems, that imposes
a difficulty in order to describe the dynamics of these
systems from static partition functions.

However, some surprising results have been achieved,
such as, finding an equipartition theorem for granular
systems (21), the fact that the stress and volume en-
semble are coupled and the reformulation of the volume
function in terms of all the DoF, opening the door to a
possible equation of state for granular matter.

The jamming transition could be an interesting prob-
lem to test the theoretical framework that has been de-
veloped in this work. Moreover, this phase transition
contributes to close the circle of the different behaviors
that granular matter present under certain conditions.

The field of granular matter physics is still open. Great
discoveries have been found, but some issues remain
open. Ideas are required in order to elaborate a general
theory of granular matter that can be confirmed with
experiments.

Acknowledgments

I would like to express my gratitude to my advisor
Antoni Planes for all of his effort, dedication and the
fruitful discussions held. Moreover, I want to specially
thank my family, friends and Anna for the extraordinary
support throughout these months. I dedicate this work
to my father.

[1] Edwards, S. F., & Oakeshott, R. B. S. The theory of pow-
ders. (1988).

[2] Ball, R. C., & Blumenfeld, R. Stress field in granular sys-
tems: loop forces and potential formulation. Physical Re-
view Letters, 88, 115505. (2002).

[3] Blumenfeld, R., & Edwards, S. F. Geometric partition
functions of cellular systems: Explicit calculation of the
entropy in two and three dimensions. The European Phys-
ical Journal E, 19, 23-30. (2006).

[4] Blumenfeld, R., Jordan, J. F., & Edwards, S. F. Interde-
pendence of the volume and stress ensembles and equiparti-
tion in statistical mechanics of granular systems. Physical

Review Letters, 109, 238001. (2012).
[5] Blumenfeld, R., & Edwards, S. F. Granular statistical me-

chanics – a personal perspective. The European Physical
Journal Special Topics, 223, 2189-2204. (2014).

[6] Blumenfeld, R., Amitai, S., Jordan, J. F., & Hihinashvili,
R. Failure of the Volume Function in Granular Statisti-
cal Mechanics and an Alternative Formulation. Physical
Review Letters, 116(14), 148001. (2016).

[7] Liu, A. J., & Nagel, S. R. The jamming transition and
the marginally jammed solid. Annu. Rev. Condens. Matter
Phys., 1, 347-369. (2010).

Treball de Fi de Grau 5 Barcelona, January 2017


