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Chapter 1. Dendrochronological  study 

1.1. Introduction 

 

Dendrochronology, from the Greek, “chronology”= time and “dendro” = trees 

or tree-ring dating is the method of scientific dating based on the analysis of tree-ring 

growth patterns. This technique was developed during the first half of the 20th century 

originally by the astronomer A. E. Douglass (Douglass, 1940), the founder of the 

Laboratory of Tree-Ring Research at the University of Arizona. Douglass sought to 

better understand cycles of sunspot activity and reasoned (correctly) that changes in 

solar activity would affect climate patterns on earth which would subsequently be 

recorded by tree-ring growth patterns. Since the majority of trees have annual growth 

increment, which is a proper tree ring; the information related to its formation (and 

factors that influence it) can be represented by the specific characteristics of each ring: 

width, density and other visual or analytical parameters than can differ one ring from 

others (Schweingruber, 1988). 

 

1.2. Dendrochronology and its applications 

Dendrochronology is used in different spheres such as archaeology and history 

(Cook et al., 1995; Bailllie, 1982), art and criminology, forestry and ecology. Nowadays 

the use of dendrochronology is very popular in environmental sciences (Schweingruber, 

1988; Jeffrey et al. (Eds), 1994), particularly with issues related to the climate change 

(Cook and Kairiukstis (Eds), 1990; Wigley, Briffa and Jones, 1984; Stahl et al., 1998). 

The climate of our planet is expected to change significantly within the next 

century due to the increasing greenhouse effect. Our expectations are mainly based on 

model calculations, but also possible to reconstruct the response of the global climate 

system to certain disturbances by investigating past global changes. Tree-rings are 

excellent archives of such changes. The analysis of tree-rings not only allows for 

reconstructing the local temperature, the annual precipitation rate or other regional 

environmental parameters but also the composition of the atmosphere in the past. 

Climate change is a one of the most current environmental problems that attract 

different branches of science, economy and politics to put their forces together to avoid 

the possible future “crisis”. In order to justify the claim that there really is a significant 

climate change, many scientists work on it, and the increment of about 0.5ºC of 

temperature per century is observed from various studies or just increasing tendency in 

general (Broecker, 2006; McCarthy et al. (Eds), 2001). In addition, studies of other 

climatic parameters are carried out as well since they are correlated in some manner, 

such as precipitation (Summer et al., 2003; Romero et al., 1998; Rodó, Baert and 

Comin, 1997; Norrant and Douguédroit, 2006; Martin-Vide and Lopez-Bustins, 2006; 

Llasat and Quintas, 2004), water stress (Macias et al., 2006), solar spots, wave and 

tornado activities, for example. 
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Tree rings width (TRW) growth is normally influenced directly by of climate 

parameters (generally changes in temperature and moisture or precipitation), and in 

some “sensitive” sites (where there is some strong limiting factor – temperature and/or 

precipitation), this link is quite strong, i.e. climate changes are “written” in the tree 

“archives”, their annual rings (Fritts and Swetnam, 1989). In areas where the climate is 

reasonably predictable, trees develop annual rings of different properties depending on 

weather, rain, temperature, etc., in different years. These variations may be used to infer 

past climate variations. 

Since there are no very long records of the month or annual climatic data due to 

the technological and information revolution of the 20th century and very poor historical 

data about it, the tree ring widths can be used in some cases as a “tool” of decoding of 

climatic data at least as much as trees (or their fossils) for these periods can be found 

(Schweingruber, 1988). A good example of the inference of the climate variations is the 

research of Strumia (2005) about the temperature variations of the last 700 years 

reconstructed from a tree-ring chronology of the central Alps. 
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Source: 	ordemann, D et al., 2003. (Picture taken from the Internet free presentation on-line). 

 

Figure 1. Millennium solar spot number reconstruction on a dendrochronological basis 

(TRW Series in Brazil)1.  

                                                                 
1
 The following pictures are included in the Figure 1: 

- Spectrum of solar spot numbers in the periods of 11, 21 and 100 years (x-axis: frequency (years) 

and y-axis: amplitude) 

- Tree growth curve of the Concordia tree (x-axis: time (years) and y-axis: tree ring growth (pixels) 

- Time series of the Concordia tree ring growth(x-axis: time (years) and y-axis: TRW (pixels) 

- Solar spot number reconstruction for 1000 years (amplitude versa time in years). 
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An example of the solar spot activity reconstruction is represented in Figure 1, 

where the solar spot number is reconstructed on a basis of Tree Ring Width Series for 

the last millennium by Brazilian scientists (Nordemann, D et al., 2003). The changes 

and annual temperature values for global, Northern and Southern Hemispheres and in 

the Tropics during years 1980-2005 with a tendency of little increase can be observed in 

Figure 2.  

 

 

Source: Internet: http://www.oism.org/pproject/Slides/Presentation.ppt, seen on-line 23
rd
 of March, 2008. 

 

Figure 2. Changes and annual temperature value (global, Northern and Southern 

Hemispheres and in Tropics) during years 1980-2005. 

 

From the Figure 3 we can observe that hydrocarbon use is uncorrelated with 

temperature since the temperature rose for a century before significant hydrocarbon use 

(temperature rose between 1910 and 1940, while hydrocarbon use was almost 

unchanged).  
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Source: Internet presentation: http://www.oism.org/pproject/Slides/Presentation.ppt, seen on-line 23
rd
 of 

March, 2008). 

Figure 3.  Seven independent records  solar activity, Northern Hemisphere, Arctic, 

global, and U.S. annual surface air temperatures; sea level; and glacier length all 

qualitatively confirm each other by exhibiting three intermediate trends  warmer, cooler, 

and warmer.  

 

1.3. Objectives 

The objective of this research is an attempt of such kind of “decoding” 

information saved by live trees (Pinus nigra) in the Mediterranean Pre-Pyrenees region 

(Pentina forest, Pallars) for possible future applications. Thus, the main purpose of this 

research is to take out the climatic signal from the tree-ring annual increment data series 

using dendrological and statistical analytical methods in order to compare and discuss 

the existence of cross-correlations with available climatic data (temperature and 

precipitation) for the location. 



What trees tell us. Dendrochronological and statistical analysis of the data. 

 

12 

 

Chapter 2. Material and methods 

2.1. General description of the samples: site, climate conditions, sample size. 

2.1.1. Tree rings width data 

The samples of the current dendrochronological analysis, the cores of Pinus 

nigra were sampled in the Catalonian prePirineous (1.2” of longitude and 42.5” of 

latitude, Pallars region) at the altitude of about 1050-1600 m where the subalpinian 

climate predominate.  The cores were taken by the increment bore of 5 mm at the 

breast height approximately (80-130 cm) in different directions. In total there are 38 

cores represented 15 trees (2-3 cores per tree) thought for the strict 30 cores should 

be selected (2 per each tree).  

 

 

Picture 1. Pinus nigra (Source: Internet: Wikipedia) 

 

Picture 2. Sampled and prepared for further analysis cores (photo by author). 



What trees tell us. Dendrochronological and statistical analysis of the data. 

 

13 

 

2.1.2. Climate data 

There were used two types of climate data (provided Spanish meteorological 

stations and CRU – Climate Research Unit, UK) in this research. 

Spanish meteorological data were obtained from the local observatories and 

though they are interesting because of their daily records and of the meteorological 

observatory location (very near to the sampling site), but in total time they cover quite 

“short” period (only the last 10 years), Vielha, Bonaigua and  Seu d’Urgell  stations.   

Another data for the very close locality (Vielha) were used (with interpolations for 

longer period of time back to 1957) from the phD thesis data used by Josep Mª Riba 

(PhD thesis: “Bio-ecologia de los Scolytidae (Coleptera) que nidifican en los Abetales 

del Valle de Aran (Pirineos Orientales)”, Barcelona, 1994). 

Finally, the 3rd type of Spanish archives for temperature and precipitation of the 

Pallars region (were the present samples were taken) were given by Emilia Gutierrez 

(ecology department of UB) that were collected for using in different national and 

international research programs. 

Upon the request of the climate data archives, the CRU (England) (CRU means 

Climate Research Unit) kindly sent available data for using in the frame of this research 

only, for the localities not much approximated but that can be still valid (Perpignan, 

Pyrenees, France and Leida, Spain), both for precipitation and annual/month 

temperatures with some periods with NA (not available data).  
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2. 2. Dendrochronological analysis 

2.2.1. Main stages of the dendrochronological analysis 

There are different stages of the dendrochronological analysis that start with an 

appropriate site and trees selection. It is crucial where we sample since can interfere in 

the results obtains depending on the purpose we are looking for. For example, in order 

to obtain the better climatic signal, it is recommended to chose the open site (no 

competency and alterations in the tree growth) from one side, with no anthropological 

activities nearby that can affect the tree growth as well from the other side, and, finally, 

the site with the most limiting factors related to climate (very dry site for example). All 

these 3 factors were taken into consideration in carrying out the investigation. 

Generally, the main stages of the dendrochronological analysis are (Fritts, 1989; 

Schweingruber, 1988): 

1. Sampling (using the increment borer, and normally 2 cores are taken per tree); 
2. Mounting  and sanding (the cores are prepared for the further observation with 

microscope) 
3. Individual dating and cross-dating (it is a very important and delicate procedure 

in order to date carefully all tree rings since many times there are difficulties 
aroused of missing rings) 

4. Measuring of the tree ring width (TRW) with microscope using special software 
for it; the results are given in the format of .CAT files. 

5. Transformation of the .CAT files into .RW and .RWL files using the program 
CORING for further statistical analysis by the program COFECHA and 
ARSTAN (Cook and Holmes, 1986) with use of the last it is possible to obtained 
treated indexes of the raw data, detrended and standardized. 

6. Statistical analysis of the data using various DENDROCLIM programs or any 

statistical software (Biondi, F and Waikul, K, 2002).  

 

Sampling of the cores is normally carried out with use of the increment borer of 5 

mm, taking at least 2 samples of each tree (in opposite directions) at the height of about 

breast (100-130 cm from the soil) if it is possible (see Picture 3). 

After the samples were taken, they are dried naturally some days and mounted on 

the special rails for them with glue fixation in the manner that the wood tracheas can be 

seen under the loop. Later on, the surface of each core is sanded using different 

graduation of the sanding paper (starting for the sharpest one, Nº 0 for example, and 

then consequently substituted by the thinner ones: Nº 200, 400 and 500 or more) (see 

Picture 2). 

Next stages, dating and cross-dating should be carried out very carefully to avoid 

further errors in the data analysis. Here the sequences are compared between them to 

see the common “marker” years and by this verifying the initial dating, resulting in the 
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“skeleton”-plot for the series (Yamaguchi, 1990) that can be represented graphically or 

symbolically (see the symbolic “skeleton”-plot of the series used in research in the 

Annex 3). The problem is that the samples are taken from the trees that are growing in 

the extreme or limiting conditions, and dating can be complicated by missing or false 

(double) rings or other complicities to do simply count back from the taken date. 

 

Source: on-line: http://web.utk.edu/~grissino/gallery.htm 

Picture 3. Sampling the Pinus caribbea. (photo©H.D. Grissino-Mayer, used with 

permission). 

 

 

Source: on-line: http://web.utk.edu/~grissino/gallery.htm 

Picture 4. White oak trees cores (Quercus alba) growing in Iowa (photo © T.J. Blasing,   

used with permission of Grissino-Mayer from his web-page).  

On the picture 4 is show dating and verification by cross-dating since there were 

presented “markers” years of two major drought events (one in 1894 and the other in 

1934), reflecting on the thing width of the rings of the corresponded years (or the next 

ones).  
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 Final stages prior to statistical analysis are measurement of the tree ring width 

(TRW) using a special computerized machine connecting to the loop (see Picture 5) and 

converting of the output files onto the formats that can be used by other general 

programs. 

 

Picture 5. Cross-dating and measuring of the TRW with a special machine (photo by 

author). 

 

Figure 4. The time series of the first 5 sampled cores2 (x-axis: time (calendar year) 

and y-axis: TRW measured values in mm*100). 

If in the past all measurement procedures were done manual on the millimeter 

gridded papers, currently the modern automatic machine with high resolution are used 

                                                                 
2
 There were taken only 5 sampled cores in order to represent TRW growth values visually more clear 

and separated if there were taken altogether. 
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with special computer programs elaborated for it, such as TSAP, for example (see 

Figure 4 for the graphical presentation of the sampled time series).  

 Since trees can grow and react differently to environmental changes due to their 

own properties (or endogenous factors) analysis of their common “behavior” should be 

carried both graphically and statistically. First impression can be taken from the 

graphical presentation, as we can see some agreement in the behavior of the tree growth 

shown at Figure 5; nevertheless it is important to see the correlation between them as 

well. A good comparative method for it, which is used in dendrochronological 

investigations, is the correlation of each core with the Master series that was constructed 

for this site (or previously or at the same time as a mean series of the representative 

samples) that is given as an output of COFECHA program. For example the average 

segment correlations (segments of 50 years with 25 years of overlap) for the samples 

series oscillate between 0.71 and 0.82 (that is quite high correlation), having m for more 

range of dispersion in values for each sample (the whole correlation table of sample and 

average, please, see in the Annex 4).  

 

Figure  5. TRW time series plots of all cores from 1951 to 2006 time period3 (x-axis: 

time in years and y-axis: TRW raw values in mm*100). 

                                                                 
3
 This period was chosen due to the common representation of the sampled cores and without age 

growth tendency (since first years are not included) for comparative similarity of the TRW growth 

behavior of all samples. 
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 At the plot of TRW series mean we can see min-max peaks in the tree rings with 

a general declining tendency due to physiological-geometrical growth limitation with 

time (see Figure 6). 
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Figure 6. Time series plot of the mean value of the sampling data, TRW (in mm*100) 

for each year. 

 

2.2.2. Reliability of data 

Reliability of data depends on several factors and accuracy during the process 

of their obtaining. One of the limiting factors is a sample size representation 

(physiological or sampling factor) since not all trees are of the same age and it is 

quite difficult to meet many old trees within the same site. Thus from the total spine 

time covered by sampled cores from 1753 to 2007 (see the individual time spines of 

each sample in the Annex 2) the period starting from 1828 is approximately reliable 

since there the sample size is increased up to about 20 (see Figure 7). 

Another important factor is very careful cross-dating and final dating since at 

this stage it is easy to confuse and make erroneous conclusion about the correct 

dating. Fortunately, in spite of complicity with many missing rings in the samples 
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cores (only 4 cores of 2 trees have all rings, and other samples have missing rings 

even up to 14 absent ones in the core PEPN08U1, for example, see Appendix 1), 

there were some very clear “marker” years or better the entire sequences that were 

presented in almost all samples that gave the change to verify the dating. “Marker” 

years or sequences are those visually detected special rings that are repeated in the 

majority of samples (can be especially narrow or wide rings, or other properties of 

late or early wood of the ring such as shape (proportion to the early wood), density 

(reflecting on the dark or clear color a part of the wide or other sings).  

Year
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Figure 7. Sample size of the tree cores presented in the current research4.  

A part of visual cross-dating via comparative analysis of “marker” years or 

with a skeleton-plot, COFECHA is used as well for to verify how accurate the cross-

dating was done since one of its outputs is the correlation between samples and 

problems occurring that are given by the determinate lags (Cook and Kairiuksis 

(Eds), 1990). If the correlation exists between samples that confirm both the 

suggestion that the trees correspond to the local and/or global environmental 

changes in their growth simultaneously 

��� = ������ 
��
����
����� 
��
����  = �
����

�
�������
�� ,              (1) 

or can be defined via correlations between chronologies as 

                                                                 
4
 The time-span of sampled cores by lags is graphically represented in Annex 2 as well. 
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��� = �� (�� + (1 − ���/���     (2) 

 where  r̅   is a mean value between all individual chronological correlations of 

each tree, and N is the number of trees. 

The chronology is considered to be reliable if EPS≥0.85 (85%) (Wigley, 

Briffa and Jones, 1984). As we can see from Table 1, our data are reliable starting 

from the year 1800 that can be correlated with the sample size as well. 

 

Table. 1  Lags correlation between samples and EPS means. 

 

 

 

 

2.2.3. General aggregative model 

Growth of the tree rings width (TRW) can be described by a simplified 

general aggregative model as  

Rt = Gt + Ct +δD1t + δD2t+εt ,      (3) 

where 

• Rt – annual increment ring measurement (TRW) 

• Gt – the age –related growth trend 

• Ct – growth variations due to climate common signal in the year t 

• D1t – the occurrence of disturbance factors within the forest stand 

• D2t – the occurrence of disturbance factors outside the forest stand 

• δ – indicates either a “0” for absence or “1” for presence 

• εt -  random variance (see Cook and Kairiuksis (Eds.), 1990a) 

• t – index related to a common year. 

The more complete model includes a pollution variable but in this case it is 

disregarded due to sampling in the site far away from human activities and for this 

reason is not included. 

 As per Golabek, E. and Tukiendorf, A. (Golabek and Tukiendorf, 2004), 

following the procedure relied on the Bayesian statistical modeling of their time series 

data for TRW, succeeded in the approximation of the linear perturbation model for each 

year to the normal distribution as 

lags 1750-1799 1800-1849 1825-1874 1850-1899 1875-1924 1900-1949 1925-1974 1950-1999 1975-2007

cor(Mbt) 0,71 0,77 0,74 0,78 0,75 0,78 0,84 0,78 0,8

EPS 83,0% 87,0% 85,1% 85,7% 87,6% 85,7% 91,3% 87,6% 88,9%
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yi ~Normal (µi, τ)      (4) 

yi = d1 + d2ti + d3cos(d4ti) + d5sin(d4ti)   (5) 

where 

 yi - TRW (tree ring width) 

µi and τ – distribution parameters (i.e. expected values and their variance component 

respectively) 

d1…d5 – unknown regression coefficient (to be estimated). 

The proposed method by Polish scientists can be interesting when applied to TRW 

data analysis, however, it has its limitations since, as was found by Shiatov and Mazepa 

(Cook and Kairiuksis, 1990a), after testing their TRW data for each year, that in some 

cases the distribution of data per year was a mixture of Normal distributions that would 

complicate the proposed model. 

 

2.2.4. Standardization of TRW data 

2.2.4.1. Removal of age dependence in the tree ring width data 

Removal of age dependence is one of the major problems since apart from 

detection of the adequate growth model for the samples and application of a special 

“filter” to remove this dependence, how to preserve the climate signal (part of which 

can be removed as well)? There are different types of growth models that are 

normally used in dendrochronological study (Schweingruber, 1988), starting from 

the simplest ones like lineal or negative exponential function and finishing with 

Weibull function (that takes into account so called “juvenile” effect of the early tree 

growth) and other ARIMA models or polynomials with special filters (Gaussian, for 

example), etc. (Cook and Kairiuksis (Eds), 1990) 

Since the cores were taken approximately at the breast height, the “juvenile” 

effect is not present in the series, and it is seen declining tendency similarly to a 

negative exponential function. In the simplest case we could take out the 

exponential age tendency applying logarithmic transformation to the raw TRW 

series data. In order to get the greatest similarity to the data, other fitted models or 

smoothing lines can be applied. For example, doing more adjusted fitted regression 

to the research data, the best options are the polynomial curve or Box-cox power 

transformation 5  as seen in Figures 8 and 9, carried out with the use of 

                                                                 

5
 Box-Cox transformation uses power transformation as I=

(��� !
"�#(�$%�  (6), where ym is a geometrical 

mean (source: Internet, Wikipedia on-line: http://en.wikipedia.org/wiki/Powe_transform), and λ is a 

power found by regression. 
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STAGRAPHIC and MINITAB programs respectively. Box-cox transformation 

regression is done for power (λ) of 0.57, with the significant p-value of 0.0000, and 

very high negative correlation coefficient of -0.971, and R2=89.7 which means that 

this regression explains about 90% of the whole data variability. 

  

   

Figure 8. Box-cox approximation of the sample data of RCS (statgraphic plot)6. 
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Figure 9. The fitted polynomial curve for the RCS mean value of TRW. 
                                                                 
6
 Here the raw TRW values data were transformed using box-cox power transformation (power=0.57) 

and presented in y-axis versa time (years in the x-axis), corresponded col_41 and col_40 of statgraphic 

calculus sheet correspondently. 
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 As for the polynomial regression fitted to the model, a polynomial of the 3rd 

order was used and gave similar results for the fitting parameters (a little bit less in 

comparison with box-cox transformation) for R2 value (88.7%) while the lineal 

regression gave the minor value of all compared, but still quite high (R2=81.5%, 

p=o.oooo) as shown below: 

 
Regression Analysis: RCS mean versus YEAR_1  
 
The regression equation is 

RCS mean = 602.2 – 0.2871 YEAR_1 

 

 

S = 10.1097   R-Sq = 81.5%   R-Sq(adj) = 81.4% 

 

 

Analysis of Variance 

 

Source       DF      SS      MS        F      P 

Regression    1  113887  113887  1114.28  0.000 

Error       253   25858     102 

Total       254  139745 

 

  

 

Polynomial Regression Analysis: RCS mean versus YEAR_1  
 
The regression equation is 

RCS mean = 85412 – 133.9 YEAR_1 + 0.07013 YEAR_1**2 – 0.000012 YEAR_1**3 

 

 

S = 7.93615   R-Sq = 88.7%   R-Sq(adj) = 88.6% 

 

 

Analysis of Variance 

 

Source       DF      SS       MS       F      P 

Regression    3  123937  41312.2  655.93  0.000 

Error       251   15809     63.0 

Total       254  139745 

 

 

Sequential Analysis of Variance 

 

Source     DF      SS        F      P 

Linear      1  113887  1114.28  0.000 

Quadratic   1    6291    81.02  0.000 

Cubic       1    3759    59.68  0.000 

 

 Summarizing 3 regressions done for the research data, the best application is to 
use Box-cox power transformation or polynomial regression of the 3rd order. 

 

  

As a result of single (or double in many cases) removal of age trend and 
smoothing data values via splines (smoothing line) or other techniques to obtain of the 
TRW indexes that are standardized normally in their mean (=1) and more or less stable 
variance (Cook and Kairiuksis (Eds.), 1990). The comparative example of the raw and 
standardized indexes is seen in Figure 10, where the raw data with decline age tendency 
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are converted onto indexes with mean of 1. The simplest method of taking out of the 
exponential tendency is taking LN of the raw values and followed standardization by 
the commonly used mean, for example. 
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Figure 10.  Conversion of the raw TRW data into stationary indexes. 

  

(Source: E. Gutiérrez classes on dendrochronology, phD course, summer session, June 

2007) 

 

2.2.4.2. Regional Curve Standardization (RCS) 

Regional Curve Standardization (RCS) is one of the advanced methods for taking 

out the age trend in tree-ring chronologies that has already been successfully applied to 

several large TRW data sets (Esper, J. et al, 2003; Helama et al., 2004). This method 

consists of aligning the individual TRW series by cambial age instead of the biological 

one and the curve obtained (RCS) describes the functional form of the overall, age 

related, growth trend for given samples (i.e. for given site and species).  It is quite 

effective method, and in our case give less variance in comparison with mean series, as 

is shown in Figure 11 below, and has a clearer negative exponential trend (Figure 13) 

then the mean series tendency (Figure 12) since in the latter case the dispersion is 

greater due to different time-spine of the tree cores that reflect the different ages of the 

sampled trees. 
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However an even better result is obtained via double detrending with the use of  

the ARSTAN program whose indexes are more stable in variance in comparison with 

those obtained via RCS method ones (see Figure 14). 
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Figure 11. Comparative graphic of two methods: mean and RCS7. 
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Figure 12. Trend Analysis Plot for TRW mean value8. 

                                                                 
7
 The mean values obtained with use of RCS data are less in their variance in comparison with simple 

mean of raw data and better to interpret and use for further analysis. 



What trees tell us. Dendrochronological and statistical analysis of the data. 

 

26 

 

 

Year

R
C
S
 m
e
a
n

2502252001751501251007550251

140

120

100

80

60

40

20

0

Accuracy Measures

MAPE 1143,78

MAD 6,86

MSD 81,06

Variable

Actual

Fits

Trend Analysis Plot for RCS mean
Growth Curve Model

Yt = 112,674 * (0,994633**t)

 

Figure 13. Trend Analysis Plot for RCS mean9. 
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Figure 14. Comparative plot of TRW indexes received by various methods (RCS and 

program ARSTAN: power transformation and smoothing line of 32 years)10. 

                                                                                                                                                                                            
8
 Trend analysis plot for TRW mean values shows a very general declining tendency reflecting a 

common sense of tree rings growth due to geometrical and physiological limitation with time. 
9
 Mean data of values obtained via RCS method is more adjust to the current research growth curve 

(a negative exponential) as it was shown in the preliminary analysis of data. 
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Figure 15. Cross-correlation between TRW indexes values obtained by different 

methods (RCS and ARSTAN program).  

 

lag correlation p-value 
-5 0.35 1.06E-08 
-4 0.40 3.55E-11 
-3 0.41 7.98E-12 
-2 0.47 1.96E-15 
-1 0.57 1.01E-23 
0 1 0 
1 0.57 1.01E-23 
2 0.47 1.96E-15 
3 0.41 7,98E-12 
4 0.40 3.55E-11 
5 0.35 1.06E-08 

 

Table 2. Significant correlation coefficient for two types of TRW indexes (RCS and 

ARSTAN). 

 Interestingly two different methods (RCS and ARSTAN with double detrending) 

that use different approaches of raw data treatment, have a 100% correlation between 

each other as seen from Figure 15 and Table 2 with p-values for it. That means that both 

types of indexes statistically identical in their pair values with a maximum correlation 

                                                                                                                                                                                            
10

 Comparing TRW indexes obtained by RCS methods and double detrending with use of ARSTAN 

program, generally they are quite similar, however, double detrended (PT+spline of 32 years) by ARSTAN 

are more stable in their mean and variance as shown in the plot of this Figure. 
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coefficient (=1) and minimum p-value (=0) in comparison with their delay values in 

lags. 

 

 2.3. Time series analysis and other statistical methodologies 

 Since TRW and climate data, which are used in this research, are time series, 

mainly the time series analysis methods were used, such as autocorrelation, partial 

correlation functions for the separate series data and correlation between series just for 

preliminary study, and cross-correlation for the pair of data (TRW – climate variable) 

for the main study.  

 Initially the time series are to be determined if they are stationary and if they 

have any significant seasonality that needs to be modeled under a Box-Jenkins model 

(source: http://www.itl.nist.gov/div898/handbookhandbook/pmc/section4/pmc446.htm), 

that can be assessed from a run sequence plot (should show constant location and scale). 

As well non-stationarity can be seen from the autocorrelation plot when the graphics has 

very slow decay. Seasonality (or periodicity) can be seen from the autocorrelation plot 

or a spectral plot. Generally after addressing stationarity and seasonality, the order of 

the autoregressive and moving average terms (p and q) should be defined and further the 

autocorrelation and partial correlation plots are to be compared to the theoretical 

behavior. The order of the autoregressive process (p), especially for AR(1) process, the 

sample autocorrelation function should have an exponentially decreasing appearance 

while for higher-order AR processes are often a mixture of exponentially decreasing and 

damped sinusoidal components.  

 For higher–order autoregressive processes, the autocorrelation function (ACF) is 

to be complemented with a partial autocorrelation function (PACF) plot. The PACF of 

an AR(p) process becomes zero at lag p+1 and greater, thus, the sample partial 

autocorrelation function should be examined if there is evidence of a departure from 

zero. This is usually determined by placing a 95% confidence interval (±2/√� with N 

denoting the sample size) on the partial correlation plot. 

 Order of Moving Average Process (q) is determined from the autocorrelation 

function of a MA(q) process when it is zero at lag q+1 or greater with the 95% interval 

as well. 

Depending on shape of autocorrelation function, one or other type of model is 

recommended to use (Table 3) (source: seen on-line in the 26th of May 

http://www.itl.nist.gov/div898/handbookhandbook/pmc/section4/pmc446.htm). 
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Table 3. Summary of the indicated model to use depending on shape of autocorrelation 

function. 

SHAPE I
DICATED MODEL 

Exponential decaying to zero Autoregressive model. Use the partial 
autocorrelation plot to identify the order of the 
autoregressive model 

Alternating positive and 
negative, decaying to zero 

Autoregressive model. Use the partial 
autocorrelation plot to help identify the order 

One or more spikes, rest are 
essentially zero 

Moving average model, order identified by where 
plot becomes zero 

Decay, starting after a few lags Mixed autoregressive and moving average model 
All zero or close to zero Data is essentially random 
High values at fixed intervals Include seasonal autoregressive term 
No decay to zero Series is not stationary 
 

 Mixed models that are difficult to indentify are normally reflected in random 

variables of ACF and PACF and do not give the same picture as the theoretical 

functions and more complicate.  

 In this research, there were used specially designed programs for 

dendrochronological analysis and the statistical validation of cross-dating and obtaining 

treated TRW indexes, such as COFECHA, ARSTAN and Turbo ARSTAN. Moreover, 

for the raw data treating, fitting the data to the definite model, time series analysis and 

graphical presentation of data, there were used MINITAB, Excel, PAST, R, 

STATGRAPHIC and TSAP. 

COFECHA is a quality-control program used to check the cross-dating and overall 

quality of tree-ring chronologies. There are three parts of the output: 

1. the statistical measures and summary information for the chronology 

(Header); 

2. the “correlation matrix” that shows the correlations of each series segment 

with the master chronology (Correlation of Series by Segments); 

3. the summary statistics provided for each series in the chronology, and 

averaged over all series (Descriptive Statistics). 

ARSTAN (and more flexible new version turbo ARSTAN), the concept and methodology 

of which were developed by Dr. Edward R. Cook at the Tree-Ring Laboratory, Lamont-Doherty 

Earth Observatory of Columbia University, Palisades, New York Cook, E. and Holmes, R., 

1986), produces chronologies from tree-ring measurement series by detrending and indexing 

(standardizing) the series, then applying a robust estimation of the mean value function to 

remove effects of endogenous stand disturbances. Autoregressive modeling of index series often 

enhances the common signal. Extensive statistical analysis of a common time interval provides 
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characterization of the data set. Three versions of the chronology are produced, intended to 

contain a maximum common signal and a minimum amount of noise. 

PAST is a free easy-to-use data analysis package originally aimed at paleontology but 

now also popular in ecology and other fields; it includes common statistical, plotting 

and modeling functions and was used for calculus and plotting of cross-correlations of 

paired data.  
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Chapter 3. Results 

3.1. General model description and limitations 

Generally series of growth indexes that can be represented by multiple 

regression as 

It = b0 + b1X1t + b2X2t + … + bnXnt + et  (7)  

where  t – the tree ring (one tree ring=one year) 

It - the series growth indexes (TRW Indexes) 

b0, b1, … - coefficients of regression 

X1t, X2t, … - climatic variables. 

The main problem of such type of regression is that there is the colineality 

(interdependency) both between and inside of the variable from one side, and the 

difficulty of “conversion” regression in the reconstruction. The multivariate models 

exist but they are more difficult to use in the reconstruction regressions. 

As well the simple model It = f(Ct) is used widely in the dendrochronological 

study where standardized indexes of TRW values are regarded as a function of 

climate value. In the current research the TRW indexes are compared with climate 

values one by one (month or annual data of temperature (mean, minimum or 

maximum) and precipitation (or by a grouped value, for example temperature of 

several months) via cross-correlations coefficients showing their significance by the 

correspondent p-values. 
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Figure  16. Time Series Graphic for the core PEPN12L1 (the oldest tree).  

 Generally, time series are obtained from observations of a phenomenon over 

time (Cryer, 1986) like values of TRW data for different years (Figure 16) and they can 

be used for further analysis independently.  

One of the important features of time series data is their autocorrelation, estimated 

as a function: 

rk  = 
∑ (() (*+$,)-% �(()., (*�

∑ (() (*�/+$,)-%
 ,  (8) 

where Z1, Z2, …Zn  are observed series (Cryer, 1986). 

For example, it is possible to see the order if significant autocorrelation between 

values in order to see the dependency of values of the previous ones. It is important for 

further “whitening” of data with the goal of obtaining “pure” signal for the 

corresponded time value. As is clearly seen on the Figure 17, autocorrelation in the core 

12L1 is very strong and steady for the quite long lag of this tree due to the physiological 

and geometrical limitation of tree growth, and last rings are the thinnest ones and have 

very slight differences in their sizes. In this case the order of autocorrelation is high due 

to little annual increment because of tree age. 

In the case of another sample core 02L1, due to the young age, ring formation 

depends mainly on other factors (endogenous or exogenous), and do not have the 

physiological and geometrical limitation as the core 12L1 (Figure 18) and the 

autocorrelation of 02L1 is of less order (AR(1)) in comparison with the core 12L1 

(AR(15)). Young trees grow quickly since do not have growth limitation and thus do 

not depend on values of many previous years, but only the last one. 
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Figure  17. Autocorrelation Graphic of the core PEPN12L1 (the oldest tree). 
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Figure  18. Autocorrelation Graphic of the core PEPN02L1 (the young tree). 

 

Autocorrelation function can be applied both to data and to their residuals; an 

example of ACF of residuals foe mean TRW value is shown at the plot below (Figure 

19), indicating a negative correlation at lag 1. 
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Figure  19. ACF of Residuals Graphic of the mean value of TRW chronologies. 
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Partial autocorrelation function is another parameter that can be analyzed similar 

to autocorrelation function since AR(p) series do not remain zero after a certain number 

of lags (Cryer, 1986) and sometimes can be useful to define some cycles in the data 

over the time (if they exist) and their frequency. In the example below there are highest 

positive correlations in lag 3, 4 and 5 and 45 (Figure 20). 
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Figure  20. PACF of Residuals Graphic of the mean value of TRW chronologies. 

 Summarizing, after checking the autocorrelation functions (cores of trees A2 and 

A12 were taken as examples of the youngest and the eldest tree), autocorrelations of a 

higher order in the oldest tree were observed that can be logically explained by 

physiologically-geometrical growth limitations that do not permit a big dispersion in the 

TRW values for the last years (see Figures 17 and 18). 

Since autocorrelation analysis is not the objective of this research, more detailed 

investigations were not carried out; however, generally it is important to understand the 

dependence of data from previous years and can be used in the “whitening” of data or in 

other prediction models as well (Cook and Kairiukstis (Eds.), 1990). 

A part of the autocorrelation problem that can influence on proper “pure” value 

for the concrete point of time, there is another kind of “noise” in data due to a particular 

reaction to some factor of endogenous or exogenous origin. If this is exogenous factor 

and is reflected in all samples of the site, it is more difficult to detect and remove. 

Changes in increment of TRW values in many samples can be caused by some external 

event (for example due to opening of a ski station and deforestation of the site) and not 

to climate changes for the observed period. Sometimes growth suppression or 

deliberation can be caused by growth completion of the nearest trees. An example of 
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growth suppression is shown in Figure 21, reflected both in the real ring width values of 

the core (photo of the core in the upper part) and in their graphical presentation above 

with significant decline.  
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Source: E. Gutiérrez classes on dendrocronology, phD course, summer session, June 

2007. 

Figure 21. Growth supression in the TRW series. 

 

As for any endogenous influence for the specific tree, it can be detected easier just 

comparing with the master or mean series by differences (or dissimilarities) in 

correlations and variances.  

 At the contrary, similarities in “behavior” of data can be seen graphically by 

analogy of curves or min and max values for the first visual estimation, as is shown in 

the Figure 22, where time series of A2 and A12 trees are represented. Another method 

to see the degree of similarity between series is their correlation. An example of 

correlation between TRW raw values of A2 and A12 trees is seen in Figure 23 that have 

a maximum correlation at lag 0. 
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Figure 22. Time series plot of TRW raw data of the trees A2 and A12. 

 

Figure 23. Correlation between two series for the common period of time for trees A2 

and A12 (1833-2007). 

0 10 20 30 40 50 60 70 80

Lag

0,75

0,78

0,81

0,84

0,87

0,9

0,93

0,96

0,99

M
e
a
n
 s

im
ila

ri
ty



What trees tell us. Dendrochronological and statistical analysis of the data. 

 

37 

 

 Thus, there are several limiting factors in the representation of samples, and if on 

the one hand the sample size is important for reliability of the chronology and the 

maximum samples are needed to be included in the chronology, on the other hand, some 

samples can be some kind of “outliers” and differ more from the remaining majority, for 

example as is seen in Figure 24, the trees A6 and A15 have more dispersion and their 

raw values then other represented ones. This particular growth of some trees can 

influence on the average or mean chronology making it less “pure” as a climatic signal, 

and one of the solutions to it is to use weighted filters for different trees or even for 

some periods of TRW (see Figure 21 with partial growth suppression that can be caused 

due to endogenous factors such as tree growth competition, for example) where their 

correlation with a master series is low, while the trees A2 and A12 have quite high 

correlation (Figure 23) and visual agreement in the sample data (Figure 22).  
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Figure  24. TRW time series plots of trees A2, A6, A8, A10; A12 and A15. 

 

3.2. Simulation and obtaining of the cross-correlation between TRW 

indexes and climate variables 

In order to see if there is any correlation between tree ring width growth and climate 

variables, the cross-correlations are done for different ones (mean, maximum and 

minimum annual temperatures, precipitation), using the data from different sources. 
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Cross correlation is a standard method of estimating the degree to which two series 
are correlated. Consider two series x(i) and y(i) where i=0, 1, 2 ... N-1. The cross 
correlation r at delay d is defined as  

r = 
∑ [(1(
� �2�3�(
 4� �56]8

9∑ (1(
� �2�/8 :∑ (�(
� �5�/8
  (9) 

Where mx and my  are the means of the corresponding series. If the above is computed 
for all delays d=0, 1, 2, ... N-1 then it results in a cross correlation series of twice the 
length as the original series.  

r(d) = 
∑ [(1(
� �2�3�(
 4� �56]8

9∑ (1(
� �2�/8 :∑ (�(
 4� �5�/8
  (10) 

As for analysis for cross-correlations of TRW indexes with Spanish data of Pallars 

region (see the full Table of p-values for cross-correlation coefficients in the Annex 6), 

analyzed for the common period of time 1941-1994; there were found some significant 

correlations with mean temperature: all the positive ones (0.31 (p=0.03) in lag -7; 0.35 

(p=0.01) in lag 2; 0.52 (p=9.33*10-5) in lag 6, 0.58 (p=1.55*10-5) in lag 7 and 0.37 

(p=0.024) in lag 19) and with annual precipitation data: all negative except one 

coefficient (0.4 (p=0.03) in lag -26, -0.37 (p=0.009) in lag -6, -0.27 (p=0.04) in lag -1, -

0.29 (p=0.03) in lag 2 and -0.40 (p=0.005) in lag 7. 

In both cases the maximum correlations are observed in the lag 7 (0.58 for the mean 

annual temperature and -0.40 for the mean annual precipitation) as can be seen in 

Figures 25 and 26. 

 

 
 
 
Figure 25. Cross-correlation of TRW_I time series with annual temperature mean of 
Pallars region (1941-1994). 
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Figure 26. Cross-correlation of TRW_I time series with annual mean of precipitation of 
Pallars region (1941-1994). 
 
     Similarly other cross-correlations TRW mean indexes with climate data (annual, 
month or grouped period of month) were analyzed, and the highest significant cross-
correlations were found with the Spanish climate data (maximum and minimum 
temperature and annual precipitation) of the meteorological station of Seu d’Urgell 
while there were no significant correlation links of TRW growth and climate data with 
the other nearest locality (Vielha meteorological station for the same period of time, 
1998-2006) that can be related with greater similarity of the site where the samples 
were taken. The same tendency in the correlation sign is observed here (Seu d’Urgell 
station in comparison with Pallars historical climate data analyzed above), if for the 
temperature values TRW data have a positive correlation, for the precipitation, a 
negative one.   
 
Table 4.  Correlation between annual  T mean of Seu d'Urgell station and TRW indexes. 

 

lag correlation p-value 

  -5   0.65 1.19 

  -4   0.52 0.24 

  -3 -0.11 0.79 

  -2 -0.07 0.85 

  -1   0.23 0.52 

    0   0.51 0.11 

    1   0.61 0.07 

    2   0.12 0.75 

    3 -0.56 0.16 

    4   0.19 0.68 

    5   0.96 0.005
11

 

 

                                                                 
11

 The highest significant correlation (all significant correlations are marked with yellow color in this 

and other tables). 
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Figure 27. Cross-correlation of TRW indexes with annual mean temperature of Seu 
d’Urgell station. 
 
Table 5.  Crosscorelations between annual T max of Seu d'Urgell and TRW indexes. 

 

lag correlation p-value 

  -5  0.27 0.61 

  -4  0.41 0.36 

  -3  0.22 0.59 

  -2  0.03 0.93 

  -1  0.04 0.91 

    0  0.43 0.19 

    1  0.73 0.02 

    2  0.19 0.63 

    3 -0.46 0.25 

    4  0.20 0.67 

    5  0.77 0.09 
 

 
 
 
Figure 28. Cross-correlation of TRW indexes with annual maximum temperature of 
Seu d’Urgell station. 
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Table 6. Cross-correlation between annual Tmin of Seu d’Urgell and TRW indexes. 
 

lag correlation p-value 

  -5 0.80 0.07 

  -4 0.50 0.27 

  -3 -0.45 0.26 

  -2 -0.26 0.50 

  -1 0.29 0.41 

    0 0.52 0.10 

    1 0.44 0.21 

    2 -0.05 0.90 

    3 -0.53 0.18 

    4 0.24 0.60 

    5 0.96 0.004 
 

  

 

Figure 29. Cross-correlation of TRW indexes with annual minimum temperature of Seu  
d’Urgell station. 
 

Table 7. Cross-correlation between annual precipitation of Seu d’Urgell and TRW indexes. 
 
lag correlation p-value 

  -5   0.62 0.21 

  -4   0.36 0.43 

  -3 -0.64 0.09 

  -2 -0.68 0.047 

  -1 -0.34 0.34 

    0 -0.11 0.73 

    1 -0.05 0.88 

    2 -0.15 0.70 

    3 -0.53 0.19 

    4 -0.39 0.40 

    5   0.52 0.31 
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   Figure 30. Cross-correlation of TRW indexes with annual precipitation of Seu 
 d’Urgell station. 
 

         As for the rest of the data (taken from the regions with higher distance in case of 
extrapolation of data used in phD student work and with possible greatest error due to 
the manual extrapolation and less precision of the data format presentation), there some 
other pictures of correlation function “behavior”, there were observed some cycles with a 
negative and positive halves of divided lags, as is shown in Figures 31 and 32.  
 
 

 
 

 

 

 

 Figure 31.Cross-correlation TRW with annual T mean of Perpignan region (climate data  
from UK). 
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Figure 32. Cross-correlation TRW with annual mean temperature (1951-1994) of Vielha 
data extrapolated from phD data. 

3.3. Future application of the findings (reconstruction of climate in the 

past). 

Since the findings of correlations in some lags (delays) were significant they 

can be used for the climate reconstruction of the past. Below is an example of 

predicted values of precipitation versa real ones (Figure 33). 

 

 

Figure 33. Comparative plot of the fitted values of precipitation (predicted by model) 

and real pp2 (UK climate data). 
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Figure 34. No standardized predicted value of precipitation versa real (pp2, x-axis). 

The 95% prediction confidence interval is drawn. 

 

Coefficients(a)           

Model    No est. coefficients 

Stand. 

coefficients t Significance 

  

 

B 

Typical 

Error  Beta 

 

  

1 (Constant) 10992.0413 981.594909 

 

11.1981442 8.841E-13 

  delay10 

-

2291.24527 763.194116 -0.46317415 -3.0021789 0.00507859 

2 (Constant) 13068.4639 1246.91475 

 

10.4806394 7.1003E-12 

  delay10 

-

2131.64156 714.154872 -0.43091034 

-

2.98484495 0.0053994 

  delay6 

-

1665.62881 679.77406 -0.3537356 

-

2.45026827 0.01992609 

3 (Constant) 14979.5006 1425.51098   10.5081622 9.6824E-12 

  delay10 

-

2163.09511 669.105613 -0.43726866 

-

3.23281567 0.00290566 

  delay6 

-

1594.58057 637.489243 -0.33864683 

-

2.50134506 0.01786395 

  delay2 

-

1508.75324 645.169611 -0.31532465 

-

2.33853737 0.02598435 

a Dependent  Variable: pp2         
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       Resum of the 

model(d)           

Model R R sqr. 

corrected R 

sqr Typical error of estimation 

1 0.46317415 0.2145303 0.19072819 1829.44812 

 

  

2 0.58190912 0.33861822 0.29728186 1704.76089 

 

  

3 0.6616625 0.43779726 0.38339054 1596.90096 

 

  

a Variables for prediction: (Constant), delay10 

 

  

b Variables for prediction: (Constant), delay10, delayt6   

c Variables for prediction: (Constant), delay10, delay6, delay2   

d Dependent Variable: pp2         

 

Table 8. Lineal regression model for the pp2 data. 

 

Model of lineal regression was applied with prediction variables of different 

delays (lags) that gave the highest significant correlations with the use of pp2 

precipitation data (CRU data, UK). As a result of including different delays, the 3rd 

(the most complete) model has the highest predictive capacity with R2 of 0.44 

(Table 7).  

The estimated model is: 

1 2 310 6 2t t t t tR lag lag lag Cβ β β ε= + + + +      (11) 

where 

• Rt – annual increment ring measurement (TRW) 

• Lag10 – growth variations due to climate common signal in the year -10 

• Lag6 – growth variations due to climate common signal in the year -6 

• Lag2 – growth variations due to climate common signal in the year -2 

• C – model constant 

• εt -  random variance. (see Cook and Kairiuksis (Eds.), 1990a) 

• t – index related to a common year. 

 The values of the coefficients were found as the following ones: 

C 14979.5006 

1β  -2163.09511 

2β  -1594.58057 

3β  -1508.75324 
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Although it is not a very ideal result, it is a result and proof that the data can be 

used for reconstruction or future prediction. Using different standardization methods 

for TRW data and choosing the most appropriate climate variable for the model, it is 

possible to construct finally the optimum model and have predictions more adjusted 

and reliable. Regarding the current research work, is seen from Figure 34, all 

predicted values (except one outlier) are within calculated 95% confidence interval 

that means that constructed model is a good predictor model and can be validated as 

a good predictor model of changes of climatic parameters or to be used for the cross 

validation, however it was not used due to little common spine of samples and 

climatic data available. 

   



What trees tell us. Dendrochronological and statistical analysis of the data. 

 

47 

 

Chapter 4. Discussion and Conclusions 

Dendrochronological analysis requires a lot of time mainly due to obtaining 

data. There are limitations in both types of data: as dendro (sampling, preparing and 

cross-dating requires entire weeks of the concentrated work), as well as climate data 

since there is no complete historical registers for all localities studied covering at least 

50-100 years backward (to have enough for validation and reconstruction) on the one 

hand, and extrapolation or previous calculations (from daily to month and annual 

values, for example) on the other hand. In addition, the study of methodologies, used 

both in the experimental and analytical stages, requires a special narrow preparation in 

this field and constitutes the first endpoint on the current research. 

Complicity exists not only with obtaining data and reliable data, but as well with 

choosing the method of their treatment and standardization that it is still one of the most 

important problems of dendrochronological analysis in order that during the process of 

removal the age tendency or data standardization the climate signal is to be left as much 

as possible. However, taking into account the particular behavior of the tree growth or 

knowing any additional information about its “history” can help to interpret the data 

more exactly even if it is costs extra to find forces and time. 

In the current research the tree ring widths (annual growth increments) of 32 

samples (cores) belonging to 15 trees of the same locality were analyzed after their 

special standardization in order to obtain the climate signal and further comparative 

analysis with climate data (temperature values and precipitation) that were provided a 

part.  

Although different types of standardization of raw data were applied in this 

research, the RCS (regional curve standardization) and indexes achieved with use of the 

ARSTAN program (double detrending: power transformation and spline of 32 years for 

smoothing) were the most appropriate to the fitted data models. Interestingly, that they 

were 100% correlated between them as it was shown via cross-correlation procedure 

giving unique maximum in lag 0 with a significant value of p<0.001.  

Analyzing the cross-correlations between obtained tree ring width indexes and 

climate data, significant correlations (p<0.05) were observed in some lags, as for 

example, annual precipitation in lag -1 (previous year) had negative correlation with 

TRW growth in the Pallars region data. Some significant correlation coefficients  

between 0.27-0.51 (with positive or negative signs) were detected for many cases, 

corresponding to a medium correlation value, met in other research works, of about 0.44 

(Macia et al., 2006). Regarding the recent (but very short period) climate data of Seu 

d’Urgell meteorological station, some significant correlation coefficients were observed, 

of the order of 0.9, which are very high and can be explained by the precision of climate 

data (modern and precise tools of measuring) as well as by the approximation of 

localities and similarity of climate between sampled site and meteorological station. In 
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comparison, for another recent meteorological station (Vielha) there were not observed 

any significant correlations for the same period of time (1998-2006). 

The time series research, applied in the current research, has different levels: 

starting with the simplest one, univariate model, like autoregressive model of order 1 

AR(1) for tree 02L1; then passing to bivariate models with cross-correlations between 

TRW and one climatic parameter series; finalizing with multivariate model in order to 

predict the climate of the past with different lags with highest correlations. The lineal 

multivariate model is commonly used in dendrochronological analysis for the more 

complex and complete study as it was explained before: 

Ct = Rt + Gt + +δD1t + δD2t+εt ,     (12) 

where 

• Rt – annual increment ring measurement (TRW) 

• Gt – the age –related growth trend 

• Ct – growth variations due to climate common signal in the year t 

• D1t – the occurrence of disturbance factors within the forest stand 

• D2t – the occurrence of disturbance factors outside the forest stand 

• δ – indicates either a “0” for absence or “1” for presence 

• εt -  random variance. (see Cook and Kairiuksis (Eds.), 1990a) 

• t – index related to a common year. 

  

In the current research analysis performed there were found high time 

correlations between raw values of tree ring width values with a mean series (ca. 0.70) 

that means the common behavior in the annual increment growth of sampled trees. 

Sample size for the statistical analysis was considerably reliable (> 30 samples), and 

with EPS ≥ 0.85 for the total time spine except on the first lag of 25 years, covering 

total significant time spine then 1800-2006. Different statistical types of raw data 

treatments were shown in this work in order to compare different outputs, and the box-

cox transformation and power transformation plus smoothing lines (with lags of 32 

years) were the most suitable ones for removal the age trend (a negative exponential 

function). Obtained standardized indexes were cross-correlated with different climate 

variables (one by one) from different meteorological stations and there were observed 

significant correlations in lags, in delays that can be used in further analysis for 

reconstruction of past climate or in the prediction of the future (the last one cannot be 

validated only).  

In a sum, the results obtained from the current research are positive, and there 

were found the significant correlations between TRW indexes and climate data that 

proves the hypothesis of using tree rings width data sampled in an adequate place 

(under special limiting factors and away of urbanized or industrialized areas where the 

environmental pollution can interfere the growth as well) can be used for taking out of 
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the climate signal. In continuation the corresponded climatic parameters (with higher 

significant correlation) can be used in the models for the reconstruction of the past 

climate or in the prediction of the future one that is to be done in continuation of 

research. Moreover, there is no research done with the Pallars locality until now and can 

contribute to the data bank at Spanish or European level. Actually a lot of investigation 

work is carried out and still go on in this direction since the climate change is one of the 

major environmental problems nowadays. 
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A

EX 1. Absent rings listed by series:       

      
 

 PEPN01LD    3 absent rings:   1924  1958  2005 
 
 PEPN01U1    6 absent rings:   1924  1958  1981  1986  2005  2006 
 
 PEPN03UR    2 absent rings:   1882  1924 
 
 PEPN04L1    1 absent rings:   2005 
 
 PEPN04R1    1 absent rings:   2005 
 
 PEPN05L1    1 absent rings:   1924 
 
 PEPN05U1    1 absent rings:   1924 
 
 PEPN06L1    1 absent rings:   1924 
 
 PEPN06U1    2 absent rings:   1924  2005 
 
 PEPN07L1    2 absent rings:   1920  1924 
 
 PEPN07L2    2 absent rings:   1920  1924 
 
 PEPN07R1    3 absent rings:   1920  1924  1986 
 
 PEPN08R1    8 absent rings:   1893  1896  1920  1924  1945  1949  1958   1965 
 
 PEPN08U1   14 absent rings:   1877  1882  1893  1896  1918  1919  1920   1923  1924  1938  1945  1948  1949  1958 
 
 PEPN09D1    2 absent rings:   1896  1924 
 
 PEPN09D2    2 absent rings:   1896  1924 
 
 PEPN09U1    2 absent rings:   1896  1924 
 
 PEPN11N1    3 absent rings:   1919  1924  2005 
 
 PEPN11S1    2 absent rings:   1896  1924 
 
 PEPN12L1    7 absent rings:   1807  1824  1882  1945  1958  1981  2005 
 
 PEPN12R1   12 absent rings:   1807  1882  1896  1898  1899  1925  1926  1945  1949  1958  1965  2005 
 
 PEPN13D1    5 absent rings:   1882  1893  1923  1949  1958 
 
 PEPN13U1    4 absent rings:   1807  1837  1882  2005 
 
 PEPN14D1    4 absent rings:   1824  1871  1882  1924 
 
 PEPN14U1    2 absent rings:   1882  1924 
 
 PEPN15U1    4 absent rings:   1882  1896  1924  1945 
 
 PEPNG1LD    3 absent rings:   1924  1958  2005 
 
 PEPNG1U1    5 absent rings:   1924  1949  1958  1981  1986 
 
 PEPNG3UL    1 absent rings:   1882 
 
 PEPNG3UR    2 absent rings:   1882  1924 
 
           107 absent rings   1.532% 
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A

EX 2. Time spine of the sampled cores. 

 

1750 1800 1850 1900 1950 2000 2050 Ident   Seq Time-span  Yrs 

   :    :    :    :    :    :    :    :    :    :    :    :    :      

  .    . <=================>    . PEPN01LD   1 1820 2006  187 

  .    . <=================>    . PEPN01U1   2 1820 2007  188 

  .    .  <================>    . PEPN02L1   3 1833 2007  175 

  .    .  <================>    . PEPN02U1   4 1833 2007  175 

  .    .  <================>    . PEPN03UL   5 1835 2007  173 

  .    .<==================>    . PEPN03UR   6 1818 2007  190 

  .    .   <===============>    . PEPN04L1   7 1844 2007  164 

  .    .    <==============>    . PEPN04R1   8 1855 2007  153 

  .    .<==================>    . PEPN05L1   9 1818 2007  190 

  .    .    .<=============>    . PEPN05U1  10 1860 2007  148 

  .    .    .<=============>    . PEPN06L1  11 1869 2007  139 

  .    .  <================>    . PEPN06U1  12 1830 2007  178 

  .    .  <================>    . PEPN07L1  13 1830 2007  178 

  .   <====================>    . PEPN07L2  14 1792 2007  216 

  .    .<==================>    . PEPN07R1  15 1812 2007  196 

  <========================>    . PEPN08R1  16 1756 2007  252 

  . <======================>    . PEPN08U1  17 1776 2006  231 

  .    .    . <============>    . PEPN09D1  18 1871 2007  137 

  .    .<==================>    . PEPN09D2  19 1815 2007  193 

  .    . <=================>    . PEPN09U1  20 1821 2007  187 

  .    .    .<=============>    . PEPN10N1  21 1868 2007  140 

  .    .    .<=============>    . PEPN10S1  22 1868 2007  140 

  .    .   <===============>    . PEPN11N1  23 1840 2007  168 

  .    .   <===============>    . PEPN11S1  24 1840 2007  168 

  <========================>    . PEPN12L1  25 1753 2007  255 

  <========================>    . PEPN12R1  26 1753 2007  255 

  . <======================>    . PEPN13D1  27 1778 2007  230 

  . <======================>    . PEPN13U1  28 1778 2007  230 

  . <======================>    . PEPN14D1  29 1770 2007  238 

  . <=================>    .    . PEPN14U1  30 1770 1952  183 

  .    .<==========>  .    .    . PEPN15D1  31 1817 1921  105 

  .    . <=================>    . PEPN15U1  32 1821 2007  187 
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EX 3. Master Bar Plot                                      

                                                               15:41  Wed 12 Sep 2007  

---------------------------------------------------------------------------------------- 

   Year Rel value  Year Rel value  Year Rel value  Year Rel value  Year Rel value  Year Rel value   

                  1800-------B    1850----------F     1900-e               1950--c              2000----------E 

                        1801--------C   1851-d              1901--c             1951------A         2001-------B 

                        1802---------D  1852--b           1902--------C    1952--------C      2002---a 

   1753------B    1803-d            1853---a         1903---------D  1953--b              2003---------D 

   1754-d          1804-----@      1854----------E 1904----------E  1954--------C       2004-------B 

   1755m          1805--b         1855----a       1905---------D  1955---------D      2005o 

   1756--b         1806------A     1856---------C  1906---a  1956---------D      2006--c 

   1757-----A     1807j           1857--b             1907-c  1957-----A           2007------A 

   1758--------C  1808-e          1858---a         1908---a  1958n 

   1759--------C  1809-------B    1859----------H 1909-d   1959-----@ 

   1760---------D 1810---------D  1860--b         1910------B  1960----------G 

   1761----------F1811----@       1861---b        1911-------B  1961---------D 

   1762------B    1812---a        1862------A     1912-------B  1962---a 

   1763----------E1813----@       1863--------C   1913---a    1963------A 

   1764--------C  1814---------D  1864-d          1914---------C  1964---------C 

   1765---------C 1815----------E 1865---a        1915---------D  1965j 

   1766-d           1816-------B    1866--c           1916---------D  1966----@ 

   1767---a         1817-------B    1867-------B    1917-----A   1967---a 

   1768---a         1818------A     1868---a        1918--------C   1968-----@ 

   1769-f             1819------A     1869---------C  1919---a  1969------A 

   1770g             1820--------C   1870-d          1920---a 1970--c 

   1771-d            1821----------E 1871-----@      1921----@   1971------B 

   1772-------B     1822-e          1872---------D  1922-----A  1972---------D 

   1773-----@      1823---b        1873-------B    1923—b  1973--b 

   1774---a          1824f           1874g                1924k   1974---------C 

   1775-----A       1825----@       1875---a        1925-e  1975------B 

   1776-----@      1826--------C   1876--b         1926-c   1976-f 

   1777--------C   1827--------C   1877--------C   1927------A  1977----------F 

   1778---------C  1828-e          1878-c          1928----@  1978--------C 

   1779------A      1829------B     1879-e          1929--b   1979------A 

   1780--b           1830-c          1880---------D  1930------B  1980--b 

   1781----------F 1831----@       1881----@       1931—b  1981--c 

   1782i              1832----@       1882l           1932----------F  1982-------B 

   1783--b           1833-----A      1883-------B    1933------A  1983-----@ 

   1784--------C   1834---------D  1884--------C   1934--b   1984-----A 

   1785-------B    1835-----@      1885---------D  1935--------C  1985------B 

   1786--b           1836----------E 1886---------D  1936--------C  1986-f 

   1787---a          1837-e          1887------B     1937-------B  1987--c 

   1788------B      1838---------C  1888---------D  1938--b   1988----@ 

   1789------B      1839h           1889---------D  1939----------H  1989--b 

   1790----@       1840----@       1890-----@      1940----------G  1990-----@ 

   1791----------H 1841---a        1891--------C   1941-------B  1991k 

   1792h              1842-c          1892-----@    1942--b   1992-------B 

   1793----@       1843------A     1893k           1943----@   1993---a 

   1794---------D   1844----@       1894-------B    1944----@  1994---a 
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   1795-------C     1845--------C   1895------B     1945k  1995--------C 

   1796-----A        1846---------D  1896i           1946----@  1996-------B 

   1797--c            1847----@       1897---a        1947---a  1997-------B 

   1798--b           1848----@       1898---a        1948----@  1998------B 

   1799----@       1849----a       1899----@       1949k   1999---------E 
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EX 4 . COFECHA Analysis output 

Correlation with master series (in lags of 50 years, overlapped 25 years)  

1 PEPN01LD 1820 2006             .66  .69  .74  .72  .82  .88  .82  .83 

2 PEPN01U1 1820 2007             .77  .78  .91  .88  .89  .90  .66  .67 

3 PEPN02L1 1833 2007                  .63  .87  .85  .84  .90  .83  .84 

4 PEPN02U1 1833 2007                  .48  .69  .77  .89  .90  .82  .87 

5 PEPN03UL 1835 2007                  .84  .88  .86  .87  .91  .81  .85 

6 PEPN03UR 1818 2007             .78  .82  .90  .87  .84  .87  .79  .85 

7 PEPN04L1 1844 2007                  .73  .69  .76  .76  .80  .76  .73 

8 PEPN04R1 1855 2007                       .75  .81  .76  .85  .75  .75 

9 PEPN05L1 1818 2007             .73  .74  .75  .76  .76  .87  .82  .86 

10 PEPN05U1 1860 2007                      .75  .79  .83  .91  .83  .85 

11 PEPN06L1 1869 2007                      .31A .29A .72  .92  .87  .88 

12 PEPN06U1 1830 2007                 .73  .82  .76  .75  .79  .73  .76 

13 PEPN07L1 1830 2007                 .88  .92  .89  .88  .89  .79  .81 

14 PEPN07L2 1792 2007       .77  .82  .83  .83  .87  .89  .90  .78  .82 

15 PEPN07R1 1812 2007            .83  .88  .89  .89  .90  .92  .74  .80 

16 PEPN08R1 1756 2007  .54  .56  .65  .78  .79  .72  .72  .66  .71  .76 

17 PEPN08U1 1776 2006       .70  .76  .72  .69  .59  .56  .70  .75  .83 

18 PEPN09D1 1871 2007                      .65  .72  .88  .86  .81  .85 

19 PEPN09D2 1815 2007            .43  .74  .77  .76  .85  .86  .80  .83 

20 PEPN09U1 1821 2007            .66  .73  .83  .82  .78  .80  .81  .82 

21 PEPN10N1 1868 2007                      .77  .72  .72  .85  .77  .81 

22 PEPN10S1 1868 2007                      .82  .77  .71  .83  .74  .78 

23 PEPN11N1 1840 2007                 .76  .81  .79  .83  .94  .90  .90 

24 PEPN11S1 1840 2007                 .71  .71  .66  .72  .89  .84  .88 

25 PEPN12L1 1753 2007  .78  .81  .86  .92  .84  .76  .82  .85  .83  .83 

26 PEPN12R1 1753 2007  .75  .89  .88  .89  .85  .74  .73  .74  .65  .68 

27 PEPN13D1 1778 2007       .86  .87  .80  .71  .60  .65  .78  .78  .85 

28 PEPN13U1 1778 2007       .75  .72  .82  .83  .75  .75  .87  .83  .83 

29 PEPN14D1 1770 2007  .76  .79  .81  .63  .57  .64  .68  .73  .70  .77 

30 PEPN14U1 1770 1952  .71  .75  .79  .75  .79  .72  .73  .74 

31 PEPN15D1 1817 1921             .74  .71  .83  .75 

32 PEPN15U1 1821 2007             .46  .53  .60  .43  .27B .35  .49  .61 

33 PEPNG1LD 1822 2007             .74  .77  .78  .72  .83  .92  .80  .81 

34 PEPNG1U1 1819 2007             .78  .81  .91  .86  .83  .87  .66  .47 

35 PEPNG2U1 1836 2007                  .68  .80  .85  .83  .89  .83  .87 

36 PEPNG2UL 1839 2007                  .57  .77  .82  .89  .91  .85  .86 

37 PEPNG3UL 1824 1989             .76  .78  .89  .85  .85  .93  .82 

38 PEPNG3UR 1837 1989                  .77  .82  .79  .83  .87  .84 

 

 Av segment correlation .71  .77  .74  .75  .78  .75  .78  .84  .78 .80 

 

 

--------------------------------------------------------------------------------------- 
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Unfiltered --------\\  //---- Filtered -----\\ 

                           No.    No.    No.    with   Mean   Max    Std   Auto   Mean   Max     Std   Auto  AR 

 Seq Series   Interval   Years  Segmt  Flags   Master  msmt   msmt   dev   corr   sens  value    dev   corr  () 

 --- -------- ---------  -----  -----  -----   ------ -----  -----  -----  -----  -----  -----  -----  -----  -- 

   1 PEPN01LD 1820 2006    187      8      0    .786    .65   2.67  .401   .764   .392   2.48   .385  -.043   1 

   2 PEPN01U1 1820 2007    188      8      0    .804    .59   1.89  .441   .836   .453   2.43   .350  -.020   1 

   3 PEPN02L1 1833 2007    175      7      0    .797    .67   1.40  .234   .447   .299   2.67   .468  -.029   2 

   4 PEPN02U1 1833 2007    175      7      0    .772    .75   1.44  .260   .534   .279   2.76   .453  -.012   3 

   5 PEPN03UL 1835 2007    173      7      0    .847    .97   2.34  .504   .629   .409   2.56   .403  -.016   2 

   6 PEPN03UR 1818 2007    190      8      0    .846    .74   1.98  .376   .675   .401   2.69   .473  -.024   1 

   7 PEPN04L1 1844 2007    164      7      0    .751   1.22   2.97  .573   .568   .366   2.63   .453  -.021   2 

   8 PEPN04R1 1855 2007    153      6      0    .773   1.03   2.59  .437   .513   .358   2.49   .325  -.011   1 

   9 PEPN05L1 1818 2007    190      8      0    .774    .85   2.08  .449   .673   .361   2.48   .297   .018   1 

  10 PEPN05U1 1860 2007    148      6      0    .807    .86   1.96  .447   .662   .353   2.60   .390  -.043   1 

  11 PEPN06L1 1869 2007    139      6      2    .716    .93   4.41  .660   .701   .375   2.82   .448  -.030   1 

  12 PEPN06U1 1830 2007    178      7      0    .763    .81   2.67  .515   .731   .390   2.62   .329  -.009   1 

  13 PEPN07L1 1830 2007    178      7      0    .854    .55   1.73  .285   .587   .437   2.70   .444  -.040   1 

  14 PEPN07L2 1792 2007    216      9      0    .809    .69   2.86  .451   .764   .402   2.75   .533  -.046   1 

  15 PEPN07R1 1812 2007    196      8      0    .816    .70   2.31  .396   .645   .446   2.63   .434  -.006   1 

  16 PEPN08R1 1756 2007    252     10      0    .743    .67   3.37  .634   .901   .459   2.58   .375  -.043   2 

  17 PEPN08U1 1776 2006    231      9      0    .739    .43   2.29  .446   .872   .500   2.57   .417  -.012   1 

  18 PEPN09D1 1871 2007    137      6      0    .776    .61   1.31  .275   .524   .406   2.51   .314   .023   2 

  19 PEPN09D2 1815 2007    193      8      0    .707    .67   2.19  .345   .644   .383   2.50   .340   .000   1 

  20 PEPN09U1 1821 2007    187      8      0    .751    .68   1.91  .324   .647   .380   2.44   .275   .004   1 

  21 PEPN10N1 1868 2007    140      6      0    .761    .84   2.45  .369   .390   .415   2.56   .345  -.037   1 

  22 PEPN10S1 1868 2007    140      6      0    .785    .73   1.68  .304   .403   .411   2.72   .496  -.037   3 

  23 PEPN11N1 1840 2007    168      7      0    .823    .75   1.97  .410   .677   .419   2.55   .404  -.023   1 

  24 PEPN11S1 1840 2007    168      7      0    .796    .70   1.87  .330   .561   .432   2.68   .418   .017   3 

  25 PEPN12L1 1753 2007    255     10      0    .811    .51   2.74  .436   .821   .499   2.61   .320  -.023   1 
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  26 PEPN12R1 1753 2007    255     10      0    .798    .46   1.55  .323   .699   .515   2.62   .399  -.020   1 

  27 PEPN13D1 1778 2007    230      9      0    .809    .45   2.46  .319   .576   .523   2.82   .452  -.058   1 

  28 PEPN13U1 1778 2007    230      9      0    .823    .51   1.57  .266   .443   .496   2.66   .443  -.061   1 

  29 PEPN14D1 1770 2007    238     10      0    .716    .64   2.23  .366   .691   .412   2.66   .434   .016   1 

  30 PEPN14U1 1770 1952    183      8      0    .771    .74   3.61  .533   .731   .437   2.81   .474   .035   1 

  31 PEPN15D1 1817 1921    105      4      0    .735    .88   3.26  .558   .585   .467   2.69   .455  -.001   1 

  32 PEPN15U1 1821 2007    187      8      1    .577    .81   2.50  .597   .773   .437   2.75   .388  -.038   1 

  33 PEPNG1LD 1822 2007    186      8      0    .817    .64   1.67  .365   .682   .416   2.43   .368  -.027   1 

  34 PEPNG1U1 1819 2007    189      8      0    .752    .58   2.82  .455   .793   .460   2.45   .313  -.023   1 

  35 PEPNG2U1 1836 2007    172      7      0    .816    .84   2.21  .400   .715   .302   2.52   .375  -.002   1 

  36 PEPNG2UL 1839 2007    169      7      0    .796    .81   2.16  .330   .613   .296   2.71   .395  -.003   1 

  37 PEPNG3UL 1824 1989    166      7      0    .825    .97   2.82  .482   .571   .400   2.77   .462   .038   1 

  38 PEPNG3UR 1837 1989    153      6      0    .823    .69   1.70  .336   .614   .416   2.54   .370  -.013   1 

 --- -------- ---------  -----  -----  -----   ------ -----  -----  -----  -----  -----  -----  -----  -----  -- 

 Total or mean:           6984    287      3    .781    .71   4.41  .410   .660   .416   2.82   .400  -.017 

 

                                              - = [  COFECHA PEP25COF  ] = - 
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EX 5. ARSTA
 outputs 

 []  P R O G R A M    A R S T A N                                       

                                        Version 6.05P    26555 

------------------------------------------------------------------------------------------------------------------------------------ 

   PROGRAM  ARSTAN : Summary of chronology statistics  [13Sep07-0834] 

 Chronology time span 1753 to 2007   255 years     3 trees    38 radii 

 Chronology type                       STNDRD      RESID (AR 1)   

  ARSTAN 

    Mean                                  .9863         .9966         .9919 

    Median                              .9820         .9875         .9792 

    Mean sensitivity               .3179         .3491       .3057 

    Standard deviation           .2986         .2874        .2952 

    Skewness                            .0072        -.0692         .0050 

    Kurtosis                           1.3019        1.3183        1.0208 

    Autocorrelation  order 1            .2715        -.0113         .2763 

    Partial autocorr order 2            .0321        -.0933        -.0578 

    Partial autocorr order 3            .0998         .0455         .0881 

---------------------------------------------------------------------------------------------------- 

Common interval time span 1872 to 2006   135 years     3 trees    34  radii 

                                       Detrended     Residuals 

    Mean correlations:                    series    (white noise) 

       Among all radii                     .557          .609 

       Between trees (Y variance)          .549          .597 

       Within trees                       .567          .625 

       Radii vs mean                       .752          .780 

    Signal-to-noise ratio         3.645         4.435 

    Agreement with population chron  .785          .816 

    Variance in first eigenvector         57.51%        62.62% 

 

    Chron common interval mean           .981          .990 

    Chron common interval std dev        .330          .308 
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EX 6. Tables for p-values and cross-correlations of TRW data with climate 

data. 

 

1. TRW versa T annual mean Pallars 2. TRW versa annual PREC. Pallars 

lag correlation p-value 

 

lag correlation p-value 

 
-27 0,20462 0,29664 

 

-27 0,003535 0,98576 

 
-26 0,043479 0,82286 

 

-26 0,40004 0,031865 

 
-25 -0,10288 0,58868 

 

-25 -0,09484 0,61827 

 
-24 0,0091197 0,96118 

 

-24 0,014413 0,93868 

 
-23 0,15382 0,40083 

 

-23 -0,06512 0,72336 

 
-22 0,23865 0,18139 

 

-22 -0,154 0,39241 

 
-21 0,069777 0,69505 

 

-21 0,052853 0,76663 

 
-20 0,087344 0,61794 

 

-20 0,058844 0,73711 

 
-19 0,10435 0,54486 

 

-19 -0,062495 0,71735 

 
-18 -0,020903 0,90229 

 

-18 -0,034257 0,84051 

 
-17 -0,21251 0,20046 

 

-17 -0,082297 0,62337 

 
-16 -0,07482 0,65085 

 

-16 -0,076299 0,6444 

 
-15 0,018485 0,90988 

 

-15 0,046364 0,77638 

 
-14 0,046183 0,77437 

 

-14 -0,20737 0,19347 

 
-13 0,038105 0,81068 

 

-13 -0,022117 0,88945 

 
-12 0,020012 0,89866 

 

-12 0,045913 0,77005 

 
-11 0,17214 0,26401 

 

-11 -0,12946 0,4024 

 
-10 0,15376 0,31337 

 

-10 0,077734 0,61183 

 
-9 0,18817 0,21061 

 

-9 0,066694 0,65971 

 
-8 0,039352 0,79287 

 

-8 0,11246 0,45178 

 
-7 0,31288 0,030478 

 

-7 -0,14533 0,32445 

 
-6 0,25355 0,078907 

 

-6 -0,37124 0,0086945 

 
-5 0,077873 0,59095 

 

-5 0,040526 0,77994 

 
-4 -0,024197 0,86617 

 

-4 0,090888 0,52595 

 
-3 0,12135 0,39154 

 

-3 -0,20167 0,15179 

 
-2 0,22468 0,1059 

 

-2 -0,26334 0,056865 

 
-1 0,15375 0,26708 

 

-1 -0,27945 0,040809 

 
0 0,18206 0,18352 

 

0 0,063906 0,64302 

 
1 0,1686 0,22306 

 

1 0,039399 0,77731 

 
2 0,3529 0,0095977 

 

2 -0,2926 0,033586 

 
3 0,23642 0,091649 

 

3 0,022254 0,87558 

 
4 0,27547 0,050517 

 

4 0,056187 0,69538 

 
5 0,25437 0,074786 

 

5 0,16142 0,26287 

 
6 0,52974 9,33E-05 

 

6 -0,17131 0,23935 

 
7 0,58111 1,55E-05 

 

7 -0,39812 0,0051177 

 
8 0,20445 0,1682 

 

8 0,057654 0,70033 

 
9 0,14558 0,33448 

 

9 -0,0022202 0,98832 

 
10 -0,0025474 0,98675 

 

10 -0,12102 0,42852 

 
11 0,15833 0,3048 

 

11 -0,10398 0,50186 

 
12 0,096554 0,53803 

 

12 -0,0055671 0,97174 

 
13 0,076629 0,62964 

 

13 0,19019 0,22785 
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14 -0,03585 0,82394 

 

14 0,14489 0,36624 

 
15 -0,0353 0,82883 

 

15 -0,023393 0,88609 

 
16 0,26626 0,10157 

 

16 0,020197 0,90289 

 
17 0,024755 0,88274 

 

17 0,21534 0,19438 

 
18 0,21766 0,19587 

 

18 0,24153 0,15008 

 
19 0,37421 0,024739 

 

19 0,041155 0,81168 

 
20 0,11606 0,5069 

 

20 0,20879 0,22899 

 
21 0,17129 0,33298 

 

21 0,27972 0,10942 

 
22 0,138 0,44395 

 

22 0,18536 0,302 

 
23 0,34742 0,051697 

 

23 0,086147 0,63933 

 
24 0,28897 0,11526 

 

24 -0,035861 0,84816 

 
25 0,34107 0,065495 

 

25 0,083289 0,66182 

 
26 0,14175 0,4635 

 

26 0,047328 0,80746 

 
27 0,030098 0,87921 

 

27 0,25477 0,19122 

  


