
Final Project

BUSINESS MANAGEMENT DEGREE

Faculty of Economics and Business,
Universitat de Barcelona

Theory of decision applied to
sports management

Author: Gutiérrez Galopa, Alejandro

Director: Gil Lafuente, Ana María
Department: Business Department

Barcelona, June 2017

"Yo pienso que convertir los
sentimientos en matemáticas es
realmente algo muy complicado y
muy hermoso. La tarea del arte es esa,
es transformar todo lo que nos ocurre
continuamente en símbolos,
transformarlo en música,
transformarlo en algo que pueda
perdurar en la memoria de los
hombres.
Nuestro deber es ese, tenemos que
cumplir con él, si no nos sentimos
muy desdichados."

- Borges

Resumen

Este proyecto tiene como finalidad ser una introducción a la teoría de decisión y, de
manera más tangencial, a la matemática de la incertidumbre.

La toma de decisiones no solamente está presente en cualquier situación cotidiana,
sino que también tiene una importancia capital en el ámbito empresarial. En muchas
ocasiones, estas decisiones tienen un alto componente de incertidumbre inherente a las
consecuencias que puede conllevar cada una de las posibles elecciones. La teoría de
la decisión, fundamentada en la matemática de la incertidumbre, permite gestionar y
analizar estas situaciones mediante algoritmos que pueden facilitar la elección de la
alternativa correcta.

El trabajo se estructura en seis capítulos. El primer capítulo es introductorio; se definen
los conceptos básicos y se destacan los rasgos diferenciales tanto de la teoría de la decisión
como de la matemática de la incertidumbre. Los siguientes cuatro capítulos, del segundo
al quinto, están dedicados a los cuatro elementos básicos de la teoría de la decisión;
relación, asignación, agrupación y ordenación respectivamente. Por último, en el sexto
capítulo se presenta una aplicación de la teoría de la decisión a la gestión deportiva.
Primero, se realiza un estudio de inversión en una franquicia de la liga de baloncesto
americana (NBA), seguido de una planificación de grupos óptimos de entrenamiento
según las características de los jugadores, y finalmente se estudia la repercusión que
pueden tener determinadas acciones de marketing.

Palabras clave

Decisión Incertidumbre

Relación Asignación

Agrupación Ordenación

Abstract

The complexity of human interactions and their unpredictability result in an environment
of increasing uncertainty. The aim of this project is to provide an overview of the theory of
decision by discussing in depth the elements involved and highlighting both the differentiating
characteristics and the theory’s adaptability to business decisions.
To demonstrate the functionality of fuzzy mathematics, a business case relating to sports
management in the context of basketball is studied and resolved using the theory of
decision.

Key words

Decision Uncertainty

Relation Assignation

Grouping Order

Acknowledgements

I would like to thank Ana María Gil Lafuente for all her support and tuition during
these months, and all those close to me, especially my family, friends and classmates, all
of whom have encouraged me and given me inspiration when I needed it most.
My thanks also to Rosemary who has kept my English on the straight and narrow.

Contents

Introduction i

1 Context 1
1.1 Introduction to uncertainty . 1
1.2 Principle of excluded middle and principle of gradual simultaneity 2
1.3 The four elements in the theory of decision . 2

2 Relation 5
2.1 Basic concepts in relations . 5
2.2 Relation for elements of a same set . 6
2.3 Relation as a step prior to grouping and order . 8
2.4 Method. Forgotten effects algorithm . 11

3 Assignation 12
3.1 Basic concepts and valuations in assignations . 12
3.2 Konig’s contribution to the theory of assignation . 14
3.3 Method. The Hungarian algorithm . 15

4 Grouping 17
4.1 Basic concepts in grouping . 17
4.2 Moore closings and their application to fuzzy graphs 18
4.3 Galois connections between different sets . 22
4.4 Method. Maximum inverse correspondence and Pichat algorithm 23

5 Order 25
5.1 Basic concepts in order . 25
5.2 Different types of order relations . 26
5.3 Grouping equivalent elements for the ordering . 28
5.4 Method. Malgrange algorithm . 28

6 Application to sports management 31

Conclusions 45

Bibliography 46

Appendix 47

Introduction

Fuzzy mathematics emerged 50 years ago as a new branch within mathematics, and
the theories developed around it bring flexibility and adaptation to classical mathematics.
Having studied for a double degree in Mathematics and Business Management, my
mathematical background had been based on rigorousness and exactitude so I was
intrigued by how fuzzy mathematics deals with what initially seemed to be classical
mathematical problems. Therefore, I am of the opinion that the topic I have chosen
provides the perfect link between my two fields of study and suggests an innovative
treatment of Mathematics in the field of decision-making.

Not only in a business context, but also in day-to-day situations, decision is a key word.
Focusing on the business world, decision-making has obvious economic consequences
and can have important long-term effects that have to be carefully considered before
deciding between one option or another. Therefore, making a decision requires a process
of analyzing the pros and cons of all the possible choices in a range; and it is precisely
this prediction exercise from which complexity stems. The theory of decision, employing
fuzzy mathematics, can provide some key knowledge for our decision-making process
and take the decision-maker one step ahead of the competition by supplying him with the
tools to handle situations with a degree of uncertainty.

The project begins with a presentation of fuzzy mathematics and the theory of decision
in the first chapter. The following four chapters, Chapters 2 to 5, are dedicated to the four
basic elements which comprise the theory of decision; relation, assignation, grouping and
order. Finally, the last chapter expounds on the application of the theory of decision in
relation to an NBA franchise.

During recent years, NBA franchises have experienced an increasing number of
structural changes; some have relocated to new home cities, others have seen ownership
changes, and we have even seen the creation of new franchises.
This is the reason for carrying out a real case study into which is the most attractive NBA
franchise to invest in, together with a study of all the possible marketing actions to take in
order to update the image of the franchise, along with a workout plan for the upcoming
NBA Draft. The entire study is carried out using the elements and algorithms from the
theory of decision.

i

Chapter 1

Context

This chapter will set the framework in which mathematics of uncertainty and fuzzy sets
arise. Beginning with a comparison between classical mathematics and mathematics of
uncertainty, the principle of excluded middle and the principle of gradual simultaneity
will be presented. Finally, the four fundamental elements of the theory of decision will
be discussed.
The objective of this first chapter is to introduce the subsequent four chapters which will
be dedicated to the four elements; relation, assignation, grouping and order.

1.1 Introduction to uncertainty

Mathematics of uncertainty, also known as fuzzy mathematics, arises from attempts to
develop a formal construction to deal with uncertainty and the increasing unpredictability
of the social environment directly affected by human decisions.
In contrast to the operators relative to classical mathematics, which are known as hard,
mathematics of uncertainty incorporates soft operators. While hard operators deal with
objective and quantifiable problems, soft operators deal with highly subjective issues and
elements which do not necessarily have to be quantifiable.
Due to the capital importance it will have on this project, the MaxMin convolution is
presented below:

Definition 1.1. (MaxMin convolution) Let M1, M2 be two fuzzy matrices representing fuzzy
relations1 [R1] and [R2] in U ×V and V ×W respectively.
The MaxMin convolution of M1 and M2 is a fuzzy relation in U ×W such that, for all (u, w) in
U ×W,

MaxMinM1,M2(u, w) := Max(Min(M1(u, v), M2(v, w))) =
∨
v
(M1(u, v)∧M2(v, w)), ∀v ∈ V

The symbol used to represent the MaxMin operator is ◦.
This transition from traditional models to uncertain models, i.e., introducing soft operators
and uncertain variables, provides a closer fit to the complex realities of nowadays.

1The concepts of fuzzy matrix and fuzzy relation will be later discussed in this project.

1

2 Context

1.2 Principle of excluded middle and principle of gradual
simultaneity

For many years, science has assumed as undeniable the principle of excluded middle.

Proposition 1.2. (Principle of excluded middle) A statement can not be true and false at the
same time. In other words, a statement is either true or false. Using logical notation,

¬(p ∧ ¬p)

Nowadays, taking into consideration the nature of our environment and the importance of
humans in decision-making, principle of excluded middle falls a bit short when it comes
to explaining certain phenomena.
This is the gap that the principle of gradual simultaneity tries to fill. Contrary to the
principle of excluded middle, it gives the attribute of graduality to proposals.

Proposition 1.3. (Principle of gradual simultaneity) A statement can at one and the same
time be true and false, on the condition that a degree is assigned to its truth and a degree to its
falseness.

This means that for a certain property we have different degrees of truth (for example, we
can scale from 0 to 1, both included) instead of the absolute truth or the absolute falseness
(which would correspond to the values 1 and 0 respectively). Observe that, in fact, the
principle of excluded middle can be thought of as a particular case of the principle of
gradual simultaneity where the only possible grades are the extremes (completely true or
completely false). This shows that the principle of gradual simultaneity can cover all the
theory behind the principle of excluded middle, and can also encompass situations with
a higher degree of complexity. Again, the flexibility of multivalent logic demonstrates
that assuming the existence of uncertainty instead of a rigid perspective offers more
possibilities when dealing with realistic situations and decision-making scenarios.

1.3 The four elements in the theory of decision

Theory of decision distinguishes four basic elements in decision-making: relation,
assignment, grouping and order. It is difficult to imagine any decision-making process
where none of these elements is present.
Below are briefly introduced these four elements:

a) Relation

Relation between two agents can be understood as the connection between them.
Following the principle of gradual simultaneity, two agents can have different degrees
of connection; some of them are stronger and some are weaker. Therefore, although the
relation is not a quantifiable element, degrees of relation can be assigned for every two
agents of a set.

1.3 The four elements in the theory of decision 3

Remark 1.4. To follow a coherent notation, throughout this paper we will consider a scale
from 0 to 1 to measure relation.

Remark 1.5. Note that relation is not necessarily a symmetric property. Considering, for
example, a Business Management student and Angelina Jolie, the former will probably
know who the latter is, so his degree of relation with the actress can be considered greater
than 0, while the latter will probably not know the former, so for her her degree of relation
with the student will be 0.

Fuzzy graphs and fuzzy matrices, together with some algorithms, are powerful tools to
express and deal with relation between elements or sets.
In this project, special attention will be paid to relations between causes and effects. Given
X = {x1, x2, ..., xn} the causes and Y = {y1, y2, ..., yn} the effects of an event, we can define
the relation ρij between the cause xi and the effect yj.
A typical representation of relations between X and Y by using fuzzy matrices and fuzzy
graphs would look like:


y1 y2 ... ym

x1 ρ11 ρ12 . . . ρ1m
x2 ρ21 ρ22 . . . ρ2m
...

...
...

. . .
...

xn ρn1 ρn2 . . . ρnm



The process of analyzing the relations between a set of causes X = {x1, x2, ..., xn} and a
set of effects Y = {y1, y2, ..., yn} involves three matrices or graphs:

• matrix MX , expressing the relations between causes and causes

• matrix RXY, expressing the relations between causes and effects

• matrix MY, expressing the relations between effects and effects

Further detail of calculation of relations will be given in Chapter 2, in the forgotten efects
matrix explanation.

b) Assignation

In the assignation between two sets, one of them will contain the elements to assign
and the other will contain the elements which will receive the assignation. There are three
key actors in any assignation, represented by sets:

I) A set representing the elements to assign

II) A set representing the elements which receive the assignment

III) A set representing the assignment criteria

4 Context

The usual way to proceed with the resolution of assignments is by using fuzzy sets.
Further explanation will be given in Chapter 3, where one of the most common algorithms,
the Hungarian algorithm, will be detailed step-by-step.

c) Grouping

Normal practice would be to classify the possible options into different groups before
making a decision, and this is why grouping is considered a key element in the theory of
decision. Basically, the action of grouping revolves around the concept of similarity; two
elements can be considered of a same group if they are similar (taking into consideration
the pertinent properties). However, similarity is not an easy concept to deal with because
of its intransitivity.
This means, defining ∼S as a similarity relation, and considering a, b and c as three
elements of a set,

a ∼S b , b ∼S c 6=⇒ a ∼S c

The way to proceed when grouping elements is by building a similarities graph which
satisfies the reflexive and symmetric properties. This will reveal the biggest groups of
elements with similar characteristics, also known as maximal similarity subrelations.
The graph below shows a typical way of representing grouping for a set of elements
A = {a, b, c, d, e, f , g}, the Galois representation:

In Chapter 4, one of the main methods employed in creating these graphs, the Pichat
algorithm, will be studied in-depth. Again, as with relations, connections between elements
of two different sets can be measured on a scale (so there are stronger and weaker
connections). Using α-cuts, a wide range of boolean matrices can be built and, depending
on the criteria assigned, the value of α can change according to the situation. Further
explanation will be provided in Chapter 4.

d) Order

Order is the element which culminates the theory of decision. When dealing with
unquantifiable variables, traditional modelling tools may fall short; comparing elements
and sorting them in a non-quantifiable way can be a productive process. Even when it is
not possible to give a strict order for a whole set of elements, equivalence classes can be
found (i.e., elements with the same level in the order scale), making it possible to proceed
with the ordering of these equivalence classes.
The last section of this chapter will explore the Malgrange algorithm in depth.

Chapter 2

Relation

This chapter starts with an introduction of the main concepts relating to relations,
including a comparison between fuzzy and boolean relations. Following this, some
properties for relations between elements of the same set are defined with the purpose
of facilitating the discussion of the connection between relations and grouping and order.
The chapter ends with an explanation of a method to compute the forgotten effects in a
relation between two sets.

2.1 Basic concepts in relations

Consider X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} two sets of elements and, for
each i ∈ {1, ..., n}, j ∈ {1, ..., m}, consider ρij ∈ [0, 1] the value that measures the relation
between xi and yj, where 1 represents the higher grade of relation (and 0 the lower one).

The most common way to represent the relations between elements of two sets X and Y
is, as was introduced in Chapter 1, by using fuzzy graphs and fuzzy matrices.


y1 y2 ... ym

x1 ρ11 ρ12 . . . ρ1m
x2 ρ21 ρ22 . . . ρ2m
...

...
...

. . .
...

xn ρn1 ρn2 . . . ρnm



5

6 Relation

Fuzzy and boolean visions

From a fuzzy point of view, intensity of a relation between two elements is gradable
from 0 to 1. The boolean perspective follows the principle of excluded middle; i.e., the
relation exists (and it takes a value of 1) or the relation does not exist (and it takes a value
of 0). The following example shows a fuzzy matrix and a boolean matrix.

Example 2.1. Considering X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4, y5} two sets of
elements,

M f ≡



y1 y2 y3 y4 y5

x1 1 0.9 0.3 0 0.3
x2 0.9 1 0 0 0.7
x3 0 0.6 1 0.4 0.5
x4 0 0.1 0.8 1 0.6
x5 0.4 0 0 0.3 1

 MB ≡



y1 y2 y3 y4 y5

x1 1 1 0 0 0
x2 1 1 0 0 1
x3 0 0 1 0 0
x4 0 0 1 1 0
x5 0 0 0 0 1


M f represents a fuzzy relation between the elements in X and Y, while MB represents a
boolean relation between these two sets.

Remark 2.2. A boolean relation can be built from a fuzzy relation. In example 2.1., M f is
a fuzzy relation and MB is the resulting boolean matrix with 1 representing ρij ≥ 0.7 and
0 representing ρij < 0.7.
This is a frequent practice, especially with similarity relations. A significance level α is
determined, α ∈ (0, 1], and it is considered that the relation exists when its value ρij is
higher than or equal to α, and non-existent in the other case. This value α is known as
α-cut.
Defining µij as the coefficients of the boolean relation (and ρij the coefficients of the fuzzy
relation) and a significance level α, then, for all i,j,

µij =

{
0 , ρij < α

1 , ρij ≥ α
.

2.2 Relation for elements of a same set

Until now two sets X and Y have been used to explain relations between sets. However,
there is a particular case where relations between the elements of the same set are studied;
i.e., when X = Y.
Let X = {x1, x2, ..., xn} be a set, and let R be a relation in X × X. Some properties for
relations between elements of a same set are analyzed below:

I) Reflexitivity
A relation [R] is reflexive if

∀i ∈ {1, 2, ..., n} , ρii = 1

2.2 Relation for elements of a same set 7

II) Symmetry and antisymmetry
A relation between two elements xi and xj does not necessarily have to be symmetric.
That means, the intensity of the relation of xi with xj can be different to the intensity
of the relation of xj with xi.
A relation [R] is symmetric if

∀i, j ∈ {1, ..., n} , ρij = ρji

A relation [R] is antisymmetric if

∀i 6= j ∈ {1, ..., n} , ρij 6= ρji

Therefore, some variations of the "classical" antisymmetry appear in fuzzy relations.
A relation [R] is a fuzzy antisymmetry if

- ∀ρij ∈ (0, 1] , i 6= j , ρij 6= ρji 6= 0 ,

- ρij = ρji = 0

A relation [R] is a perfect antisymmetry if

∀i 6= j , ρij > 0 =⇒ ρji = 0

Remark 2.3. For boolean relations, fuzzy antisymmetry and perfect antisymmetry
are the same concept.

III) Transitivity
The intuitive idea of transitivity is that, for three elements xi, xj, xk ∈ X, if xi and xj
are related, and xj and xk are also related, then xi and xk are related too.

When dealing with fuzzy relations, the concept of transitivity is slightly more restrictive.
Apart from the condition mentioned above, it also has to be satisfied that the direct
relation between two elements xi and xj has to be greater than or equal to all the
indirect relations between them. Formalizing this statement,

∀i, j, k ∈ {1, 2, ..., n} , ρik ≥
∨

j
(ρij ∧ ρjk)

Remark 2.4. This means that a fuzzy relation satisfies the transitive property if all
the relations between its elements are transitive.

Remark 2.5. Note that to check the transitivity of a fuzzy relation a soft operator
(MaxMin convolution) is used.

8 Relation

Remark 2.6. Consider the fuzzy relation [R] = (ρij). Its transitivity can be verified
when every box of the fuzzy matrix [R]2 := [R] ◦ [R] (the MaxMin convolution of
[R] with itself) is lower than or equal to that in [R].
In effect, the box ij of [R]2 (i-th row, j-th column)



.
...

. . .
...

...
xi ρi1 . . . ρij . . . ρin

...
...

. . .
...

.
. . .


◦



xj

. ρ1j
...

. . .
...

...
. ρij
...

...
. . .

...

. ρnj . . .
. . .


is equal to ∨

(ρi1 ∧ ρ1j, ..., ρij ∧ ρij, ..., ρin ∧ ρnj) =
∨
k

(ρik ∧ ρkj)

Thus, if every box of [R]2 is lower than or equal to every box of [R], this means that
for all i, j,

ρij ≥
∨
k

ρik ∧ ρkj

which is the exact definition of transitivity.
Hence R is a transitive relation if

[R]2 ≤ [R]

Note that, as mentioned previously, boolean relations are a particular case of fuzzy relations,
so every definition given about the properties of fuzzy relations can also be applied to
boolean relations.

2.3 Relation as a step prior to grouping and order

The four fundamental elements in the theory of decision are not unrelated. When
a relation [R] satisfies at least two of the three properties discussed above (reflexitivity,
symmetry and transitivity) grouping and order can be performed.

Definition 2.7. Consider [R] a reflexive and symmetric relation.
Then [R] is called a resemblance relation.

Definition 2.8. Consider [R] a resemblance relation that also satisfies the transitive property (i.e.,
[R] is reflexive, symmetric and transitive).
Then [R] is called a similarity relation.

2.3 Relation as a step prior to grouping and order 9

Example 2.9.

A ≡


x1 x2 x3 x4

x1 1 0.6 0.1 0
x2 0.6 1 0.8 0.4
x3 0.1 0.8 1 0
x4 0 0.4 0 1

 B ≡


x1 x2 x3 x4

x1 1 0.3 0 0
x2 0.3 1 0 0
x3 0 0 1 0.5
x4 0 0 0.5 1


A is a resemblance relation in X. In effect,

• A is reflexive,
∀i ∈ {1, 2, 3, 4} , ρii = 1

• A is symmetric,
∀i, j ∈ 1, 2, 3, 4 , ρij = ρji

• A is not transitive,

0.1. = ρ13 < (ρ12 ∧ ρ23) = 0.6∧ 0.8 = 0.6

B is a similarity relation in X. In effect,

• B is reflexive,
∀i ∈ {1, 2, 3, 4} , ρii = 1

• B is symmetric,
∀i, j ∈ 1, 2, 3, 4 , ρij = ρji

• B is transitive,
∀i, j ∈ 1, 2, 3, 4 , ρij ≥

∨
k

ρik ∧ ρkj

Some definitions in relation to order in relations will now be given.

Definition 2.10. Consider [R] a similarity relation without the symmetric property (i.e., [R] is
reflexive and transitive).
Thus [R] is called a preorder relation.

The fact that R is not a symmetric relation opens the possibility of ordering the set.

Example 2.11. Consider the following relation:

M ≡


x1 x2 x3 x4

x1 1 0.3 0.7 0.9
x2 0.1 1 0.8 0.5
x3 0 0 1 0.2
x4 0 0 0 1



The fuzzy graph representation clearly shows the order in this relation,

{x1, x2} → {x3} → {x4}

10 Relation

In a preorder relation similarity subrelations can be found.

Definition 2.12. Let R be a preorder relation in a fuzzy set X, and let Z ⊆ X be a subset in X
such that, for all zi, zj ∈ Z the property of symmetry is satisfied.
Thus, the elements in Z form a similarity subrelation in R.

Example 2.13. Taking the matrix from the last example above, and giving ρ21 the same
value as ρ12 the new relation clearly preserves the preorder property, and now it has a
similarity subrelation in {x1, x2}:


x1 x2 x3 x4

x1 1 0.3 0.7 0.9
x2 0.3 1 0.8 0.5
x3 0 0 1 0.2
x4 0 0 0 1


Definition 2.14. Let R be a preorder relation which also satisfies the antisymmetry condition.
Thus, R is an order relation.

As seen previously, the antisymmetry property in fuzzy relations is not as clear as it is in
boolean relations. The two types of antisymmetry lead to the definition of two different
order relations:

Definition 2.15. Let R be a preorder relation which also satisfies the perfect antisymmetry
condition.
Thus, R is a perfect order relation.

Definition 2.16. LetR be a preorder relation which also satisfies the fuzzy antisymmetry condition.
Thus, R is a non-perfect order relation.

Example 2.17.

Mp ≡


x1 x2 x3 x4

x1 1 0 0 0.6
x2 0.6 1 0.8 0.4
x3 0.1 0 1 0.7
x4 0 0 0 1

 Mnp ≡


x1 x2 x3 x4

x1 1 0.3 0 0
x2 0 1 0 0.9
x3 0 0.4 1 0
x4 0 0 0 1


Mp is a perfect order relation, with order {x2, x3, x1, x4}
Mnp is a non-perfect order relation where there is no relation, neither direct nor indirect,
between x1 and x3, so no order between these two elements can be determined. Therefore,
the order in this relation is given by two chains; {x1, x2, x4} and {x3, x2, x4}.
Note in the graphs below the order relations in Mp and Mnp.

2.4 Method. Forgotten effects algorithm 11

Different types of relations between sets have been discussed in this chapter. For further
reading on relations and their concatenation, which is beyond the central topic of this
project, see Elements for a theory of decision in uncertainty ([1] in the bibliography).

2.4 Method. Forgotten effects algorithm

This method is used to find the forgotten effects in a relation. Forgotten effects are
those relations between causes and effects which are not explicitly described but do exist.
Let X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} be the sets representing the causes and
effects of an event, and R the relation between them. Three matrices are necessary to
apply this method:

- A matrix MX showing the relations between causes and causes.

- A matrix MR showing the relations between causes and effects.

- A matrix MY showing the relations between effects and effects.

Steps in the algorithm

I) Apply the MaxMin convolution between MX and MR

Mconv = MX ◦MR

II) Apply the MaxMin convolution between Mconv and MY

M∗R = Mconv ◦MY

III) The matrix MR∗ shows the cumulative effects, i.e., both the direct and indirect
relations between causes and effects. Therefore, net indirect relations are obtained by
substracting the direct relations MR to MR∗

MF = M∗R −MR

The values in MF represent the forgotten effects in the relation R.

Remark 2.18. Take into account that the relation between an agent and itself is always 1.

Chapter 3

Assignation

This chapter begins introducing the notion of assignation and the elements involved
in any process of assignation. Also in the first section some important concepts are
discussed, such as Hamming distance and weighted assignations.
The purpose of the second section is to present Konig’s theorem, which is the basis of the
Hungarian algorithm, analyzed in the last section.

3.1 Basic concepts and valuations in assignations

Definition 3.1. Consider X and Y two sets. Assignation is the process by which each element in
X is ascribed to an element in Y following some specific criteria.

In an assignation three sets are involved:

1. A set X = {x1, x2, ..., xn} containing all the objects to assign

2. A set Y = {y1, y2, ..., ym} containing all the objects to receive the assignation

3. A set C = {c1, c2, ..., cr} containing all the relevant criteria for the assignation

For every element in X and Y, values (between 0 and 1) for each criteria in C can be defined
depending on their characteristics. For example, if only three criteria are considered, x1
can have a rating of 0.8 for c1, 0.5 for c2 , and 0.2 for c3.
Proceeding in this way for every element in X and Y, sets X and Y can be represented as
showing the characteristics of every element:


c1 c2 cr

x1 ρX
n1 ρX

n2 ρX
nr

x2 ρX
n1 ρX

n2 ρX
nr

...
...

...
...

...
...

xn ρX
n1 ρX

n2 ρX
nr




c1 c2 cr

y1 ρY
n1 ρY

n2 ρY
mr

y2 ρY
n1 ρY

n2 ρY
mr

...
...

...
...

...
...

yn ρY
n1 ρY

n2 ρY
mr


These matrices are the first step towards beginning the assignation between the elements
in set X and the elements in set Y.

12

3.1 Basic concepts and valuations in assignations 13

Remark 3.2. If n > m, this means there are more elements in X than in Y. Therefore,
some elements in the first set will not have any assigned element in Y. On the contrary, if
n < m, there will be some elements in Y which will not receive assignation.

To analyze which pairs of elements are the best for the assignation, the notion of distance
is used. In this paper the most typical measure, the Hamming distance, will be employed.

Definition 3.3. Let xi and yj be two elements in sets X and Y respectively, and ck an element in
C. Then, the Hamming distance between xi and yj for the criteria ck is defined as

dk(xi, yj) =| ρX
ik − ρY

jk |

For all the elements in C, the Hamming distance between xi and yj is

d(xi, yj) = ∑
k
| ρX

ik − ρY
jk |

Using the Hamming distance, it is easy to define the relative Hamming distance as

δij :=
d(xi, yj)

n
Frequently, as the aim of the process is to find the optimal assignation, it is easier to work
with coefficients that measure closeness rather than distance. Therefore, the adequacy
coefficient f between xi and yj for a criteria ck is defined as

fk(xi, yj) := 1∧ (1− | ρX
ik − ρY

jk |)

For all the criteria,
f (xi, yj) := ∑

k
1∧ (1− | ρX

ik − ρY
jk |)

As for the Hamming distance notion, the relative adequacy coefficient is calculated as

ϕij =
f (xi, yj)

n
Remark 3.4. The process of assigning ratings to every element for each criteria and then
building the matrix with the adequacy coefficients will be done in Chapter 6.

Weighting the criteria in the assignation

Once the adequacy coefficients have been calculated, assignation can be performed.
However, using this matrix directly implies that every criteria has the same weight in
the assignation. To solve this limitation in the assignation process, some weights can be
introduced in order to give more importance to certain criteria than others.
For every element in X, consider the following matrix

MX
i =


c1 c2 ... cr

y1 f1(xi, y1) f2(xi, y1) . . . f2(xi, y1)

y2 f1(xi, y2) f2(xi, y2) . . . f2(xi, y2)
...

...
...

. . .
...

ym f1(xi, ym) f2(xi, ym) . . . f1(xi, ym)



14 Assignation

which contains the adequacy coefficients between the element xi and every element yj for
every criteria ck.
Then, a second matrix is built which shows the level of importance of every criteria ck in
relation to every element yj.

W =


y1 y2 ... ym

c1 ω11 ω12 . . . ω1m
c2 ω21 ω22 . . . ω2m
...

...
...

. . .
...

cr ω1r ω2r . . . ωrm


Remark 3.5. Values are taken so that

n

∑
j=1

ωjk = 1

Sum-product composition between a matrix MX
i and W will result in a vector with the

new adequacy coefficients between the element xi and all the elements in Y:

MX
i ◦̃W =


c1 c2 ... cr

y1 f1(xi, y1) f2(xi, y1) . . . f2(xi, y1)

y2 f1(xi, y2) f2(xi, y2) . . . f2(xi, y2)
...

...
...

. . .
...

ym f1(xi, ym) f2(xi, ym) . . . f1(xi, ym)

◦̃


y1 y2 ... ym

c1 ω11 ω12 . . . ω1m
c2 ω21 ω22 . . . ω2m
...

...
...

. . .
...

cr ω1r ω2r . . . ωrm

 =

=
(y1 y2 ... ym

xi γi1 γi2 . . . γim
)

where γij are the new adequacy coefficient.
Finally,putting all the vectors into rows results in a matrix with the new adequacy coefficients:

Γ =


y1 y2 ... ym

x1 γ11 γ12 . . . γ1m
x2 γ21 γ22 . . . γ2m
...

...
...

. . .
...

xn γn1 γn2 . . . γnm



3.2 Konig’s contribution to the theory of assignation

This section provides an introduction to Konig’s theory, and is followed by the
explanation of the Hungarian assignation algorithm in the next section. The algorithm
was developed by Harold Kuhn1, but it was based on the works of Dénes Konig and Jeno
Egerváry, two Hungarian mathematicians; the algorithm is named Hungarian algorithm

1Harold Kuhn (July 29th, 1925 - July 2nd, 2014) was an American mathematician and Professor Emeritus at
Princeton University who developed his career around Game Theory

3.3 Method. The Hungarian algorithm 15

in honor of these two mathematicians. In the following lines some definitions will precede
the formulation of Konig’s theorem.
Consider two sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} and a set of relations rij, for
all i ∈ {1, ..., n} and j ∈ {1, ..., m}, represented in matrix form:

τ =


y1 y2 ... ym

x1 r11 r12 . . . r1m
x2 r21 r22 . . . r2m
...

...
...

. . .
...

xn rn1 rn2 . . . rnm


Definition 3.6. A support of τ is defined as a combination of rows and columns which, when
eliminated, leaves the matrix with no zeros. The minimum support is the support of the matrix
with the minimum number of rows and columns.

Definition 3.7. The dissemination index of τ is the minimum number of rows and columns of
a support. It is denoted by D(τ).

Definition 3.8. Consider k ∈N. The connection of k rows and k columns of τ is the set of k
zeros placed on the intersection of the k different rows and columns.

Definition 3.9. The binding index of τ is the connection with the maximum number of zeros.
It is denoted by Q(τ).

Following on from these definitions, Konig’s theorem can be introduced:

Theorem 3.10. (Konig’s theorem) The dissemination index is equal to the binding index,

D(τ) = Q(τ)

This principle is the main basis of the Hungarian algorithm, which finds an optimal
assignation between elements of two sets. The algorithm is analyzed in detail in the
following section.

3.3 Method. The Hungarian algorithm

The Hungarian algorithm is applied to a matrix expressing relations between two sets;
in this project the matrix chosen will be

Λ = M1 − Γ =


y1 y2 ... ym

x1 1− γ11 1− γ12 . . . 1− γ1m
x2 1− γ21 1− γ22 . . . 1− γ2m
...

...
...

. . .
...

xn 1− γn1 1− γn2 . . . 1− γnm



16 Assignation

Remark 3.11. Consider X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} the two sets related
to the assignation process. If n < m, or m > n, the matrix will not be square. In this
case, to apply the algorithm, it is necessary to add as many rows or columns as required
to transform the initial matrix into a square one. These additional rows or columns are
called fictitious rows or fictitious columns.

Steps of the algorithm:

I) Consider the matrix Λ.

• If one or more fictitious rows are added, the process starts subtracting the
minimum value in each column from every element in that same column. After
this, the process is repeated for the rows.

• If one or more fictitious columns are added, the same process is applied but
beginning with the rows.

• If the matrix Λ is square, the process can begin with either rows or columns.

II) If there are enough zeros in the matrix to assign every element in X to an element in
Y, an optimal assignation has been found. If not, the process continues as follows:

III) The minimum number of rows and columns containing all the zeros is found. These
rows and columns are then crossed out.

IV) The lowest value remaining in the matrix is then subtracted from all non crossed out
elements, and added to the crossed out elements.

V) With the new matrix created in step IV), the algorithm goes back to step II).

Remark 3.12. Generally, there is no one solution and different assignations may be found.

Chapter 4

Grouping

Chapter 4 first introduces the concept of affinities, as it is a central concept in grouping.
Some more important concepts as α-cuts are also introduced in the first section.
Second section analyze Moore closings giving some definitions which facilitate the
introduction of the notion of Galois connections, discussed in section three. Finally,
the fourth section analyzes two grouping methods; maximum inverse correspondence
and Pichat algorithm.

4.1 Basic concepts in grouping

Grouping consists of finding elements in a set which have similar properties or
behaviours taking into account some specific attributes. The whole theory of grouping
is built on the notion of affinity.

Definition 4.1. Affinities are defined as homogeneous agroupations that link elements which are
different in nature through their similarities.

Note that for relations and assignments, fuzzy matrices have been employed. In grouping,
however, affinities between elements are expressed in boolean matrices.
Let X = {x1, x2, ..., xn} be a set of elements and C = {c1, c2, ..., cr} a set of characteristics or
properties. The initial matrix representation for analyzing grouping elements is (similarly
to when studying assignments)


c1 c2 ... cr

x1 υ11 υ12 . . . υ1m
x2 υ21 υ22 . . . υ2m
...

...
...

. . .
...

xn υn1 υn2 . . . υnm


where υij ∈ [0, 1] measures the satisfaction of element xi to property cj.
Therefore, the process begins with a fuzzy matrix. Once this matrix is built, a threshold
or α-cut is set.

17

18 Grouping

α-cuts or thresholds in grouping

Previously in this project the concept of α-cut has been introduced. It consists of fixing
a level α ∈ [0, 1] which is considered the acceptance level; this means that all values lower
than α are considered zeros, and those greater than or equal to α are ones. For a complete
discussion see Remark 2.2. For grouping purposes, different criteria are considered, and
applying one α-cut to the matrix presented above means fixing the same acceptance level
for every criteria. Depending on the case, it may be useful to fix different α values for each
cj (for example, for c1 fixing 0.3 as the α-cut, and for c2 take 0.6 as the significance level).
Therefore, instead of fixing a single α for all the criteria, usually r different αj are fixed,
one for every cr. Thus, applying the α-cuts to the fuzzy matrix results in the following

F =


c1 c2 ... cr

x1 β11 β12 . . . β1m
x2 β21 β22 . . . β2m
...

...
...

. . .
...

xn βn1 βn2 . . . βnm


where βij ∈ {0, 1}.

Example 4.2. Consider x1, x2, x3 three candidates for a company for three different positions,
and three criteria c1, c2, c3 where c1 is experience, c2 is the level of studies and c3 the social
skills.
Consider now the following affiniities matrix

B =


c1 c2 c3

x1 0.3 0.5 0.8
x2 0.7 0.7 1
x3 0.8 0.3 0.6


Adjusting to the particular requirements of the case, a different α-cut is determined for
every criteria: 

α1 = 0.6
α2 = 0.5
α3 = 0.7

.

So, applying these α-cuts to the matrix, the following boolean matrix results:

B =


c1 c2 c3

x1 0 1 1
x2 1 1 1
xn 1 0 0



4.2 Moore closings and their application to fuzzy graphs

Definition 4.3. Given a set X = {x1, x2, ..., xn}, its power set is the set containing all the
possible combinations of elements

P(X) = {∅, x1, ..., xn, x1x2, ..., x1xn, ..., X}

4.2 Moore closings and their application to fuzzy graphs 19

Definition 4.4. A Moore family F (X) is a set of elements such that

a) X ⊂ F (X)

b) Y ∈ F (X) , Z ∈ F (X)⇒ Y ∩ Z ∈ F (X)

Definition 4.5. Let X be a set and M : X → X a functional mapping. M is a Moore closing if
M satisfies the following properties

a) extensivity
∀Y ∈ P(X) , Y ⊂ M(Y)

b) idempotence
∀Y ∈ P(X) , M(M(Y)) = M(Y)

c) isotony
∀Y, Z ∈ P(X) ; Y ⊂ Z ⇒ M(Y) ⊂ M(Z)

Example 4.6. Consider the set X = {x1, x2, x3}.
A common way to represent a Moore closing M for the power set P(X) is by using the
matrix notation. For example:

M =



∅ x1 x2 x3 x1x2 x1x3 x2x3 X

∅ 0 0 1 0 0 0 0 0
x1 0 0 0 0 1 0 0 0
x2 0 0 1 0 0 0 0 0
x3 0 0 0 0 0 0 0 1

x1x2 0 0 0 0 1 0 0 0
x1x3 0 0 0 0 0 0 0 1
x2x3 0 0 0 0 0 0 0 1

X 0 0 0 0 0 0 0 1


After defining the notion of Moore closing, a basic concept for applying grouping algorithms
is introduced below. Let X = {x1, x2, ..., xn} be a set, and B = (βij) the boolean matrix of
a relation. Then,

Definition 4.7. It is defined as connection to the right B+ the subset of elements A in X such
that

∀x ∈ A , B+(A) := {p ∈ X βxp = 1} , B+(∅) := X

Definition 4.8. It is defined as connection to the left B− the subset of elements A in X such
that

∀x ∈ A , B−(A) := {p ∈ X βpx = 1} , B−(∅) := X

Example 4.9. This example will help explain the two concepts defined above. Consider
X = {x1, x2, x3} and B = (βij) a boolean relation in X.

B =


x1 x2 x3

x1 1 0 1
x2 1 1 1
x3 1 0 0



20 Grouping

Then,

B+(∅) = X
B+(x3) = {x1}
B+(x2, x3) = {x1}
B−(∅) = X
B−(x3) = {x1, x2}
B−(x2, x3) = {x2}

B+(x1) = {x1, x3}
B+(x1, x2) = {x1, x3}
B+(X) = {x1}
B−(x1) = X
B−(x1x2) = {x2}
B−(X) = {x2}

B+(x2) = X
B+(x1, x3) = {x1}

B−(x2) = {x2}
B−(x1, x3) = {x1, x2}

The following proposition provides a way to find Moore closings from connections to the
right and to the left:

Proposition 4.10. Consider R a fuzzy relation in a set X, and B+, B− its connections to the right
and to the left respectively.
Then,

M1 = B+ ◦ B− , M2 = B− ◦ B+

are Moore closings of X.

Remark 4.11. The demonstration of the above proposition goes beyond the purposes of
this project.

Definition 4.12. Let X be a set. A closed subset A in P(X) is a subset that satisfies

M(A) = A

Example 4.13. This example shows the full process required to find the representation of
the subsets of closed elements.

B+ ◦ B− =



∅ x1 x2 x3 x1x2 x1x3 x2x3 X

∅ 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 1 0 0
x2 0 0 0 0 0 0 0 1
x3 0 1 0 0 0 0 0 0

x1x2 0 0 0 0 0 1 0 0
x1x3 0 1 0 0 0 0 0 0
x2x3 0 1 0 0 0 0 0 0

X 0 1 0 0 0 0 0 0


◦



∅ x1 x2 x3 x1x2 x1x3 x2x3 X

∅ 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 1
x2 0 0 1 0 0 0 0 0
x3 0 0 0 0 1 0 0 0

x1x2 0 0 1 0 0 0 0 0
x1x3 0 0 0 0 1 0 0 0
x2x3 0 0 1 0 0 0 0 0

X 0 0 1 0 0 0 0 0


=

=



∅ x1 x2 x3 x1x2 x1x3 x2x3 X

∅ 0 0 1 0 0 0 0 0
x1 0 0 0 0 1 0 0 0
x2 0 0 1 0 0 0 0 0
x3 0 0 0 0 0 0 0 1

x1x2 0 0 0 0 1 0 0 0
x1x3 0 0 0 0 0 0 0 1
x2x3 0 0 0 0 0 0 0 1

X 0 0 0 0 0 0 0 1



4.2 Moore closings and their application to fuzzy graphs 21

Thus, a Moore closing for the boolean relation B is

M(∅) = x2
M(x1) = {x1, x2}
M(x2) = x2
M(x3) = {x1, x2}
M(x1, x2) = x2
M(x1, x3) = {x1, x2}
M(x2, x3) = x2
M(X) = {x1, x2}

Proceeding the same way, B− ◦ B+ can be calculated:

B− ◦ B+ =



∅ x1 x2 x3 x1x2 x1x3 x2x3 X

∅ 0 1 0 0 0 0 0 0
x1 0 1 0 0 0 0 0 0
x2 0 0 0 0 0 0 0 1
x3 0 0 0 0 0 1 0 0

x1x2 0 0 0 0 0 0 0 1
x1x3 0 0 0 0 0 1 0 0
x2x3 0 0 0 0 0 0 0 1

X 0 0 0 0 0 0 0 1


Now, closed subsets for M1 = B+ ◦ B− and M2 = B− ◦ B+ can be found:⋃

A⊂P(X)

B+(A) = {{x1}, {x1, x3}, X}

⋃
A⊂P(X)

B−(A) = {{x2}, {x1, x2}, X}

These are the closed subsets for M1 and M2 respectively, and can be represented as
follows:

22 Grouping

Observe that for these two subsets B+ and B− are bijective and inverse functions. In effect,

B−(x1) = X , B−({x1, x3}) = {x1, x2} , B−(X) = {x2}

B+(x2) = X , B+({x1, x2}) = {x1, x3} , B+(X) = {x1}

Graphically:

Now, considering the bijective and inverse properties of B+ and B−, the representation
can be done in a single reticle:

4.3 Galois connections between different sets

This section aims to show the case where the Moore closing M is a mapping from a set
X to a set Y. Previously, a Moore closing has been defined as a functional mapping from
X to X, but the two sets can be different.
Therefore, if X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} are two different sets and n 6= m
matrices B+ and B− will not be square matrices, but the process is exactly the same as
that analyzed in the previous section when X = Y.

4.4 Method. Maximum inverse correspondence and Pichat algorithm 23

Example 4.14. To avoid repeating exactly the same process as that in Example 4.13.,
assume the representation of the closed subsets found for M1 and M2 for a relation
between two sets s = {a, b, c, d} and S = {A, B, C, D} is

Observe that when expressing the affinities, when moving from one group to another
and the number of elements in a set increases, the number of elements of the other set
decreases, and vice versa.
A Galois reticle is built by adding the upper limit (X, ∅) and the lower limit (∅, Y) to the
reticle. As seen in the example, Galois connections show the elements of both groupings
linked. Moreover, this representation gives a very clear picture of order in both sets.

4.4 Method. Maximum inverse correspondence and Pichat
algorithm

The maximum inverse correspondence algorithm is a method used to obtain the Galois
reticle for a relation between two different sets. Consider X = {x1, x2, ..., xn} and
Y = {y1, y2, ..., ym} two sets, and B a boolean relation between them.

Steps in the algorithm

I) Choose the set (X or Y) with a lower number of elements.

II) Build the power set of the set chosen in step I).

III) Calculate the connection to the right if X is the chosen set, or the connection to the
left if Y is the chosen set.

IV) For every non-empty element in B+(x), where x ∈ P(X), (or B−(y), where y ∈ P(Y)
in the case of having calculated the connection to the left) choose its preimage with
a higher number of elements.

V) Build the Galois reticle with the relations found in step IV).

24 Grouping

Pichat algorithm is a powerful tool for finding maximal subrelations between elements of
a same set X = {x1, x2, ..., xn}.
The algorithm begins with the matrix Ψ := (ϕij), where ϕij is the adequacy coefficient
between xi and xj.

Steps in the algorithm

I) Apply the pertinent α-cuts to convert the matrix Ψ into a boolean matrix ΨB = (ψij).

II) For every element in ΨB such that i ≤ j assign a 0. The result is an upper triangular
matrix ΨU with zeros in the diagonal.

III) For every row i in the matrix ΨU compute the boolean addition i + (j1, ..., jk), where
j1, ..., jk are all the j > i such that ψij = 0.

IV) Calculate the boolean product of all the boolean additions computed in step III). If
a row i∗ does not have any element such that ψi∗ j = 0 and j > i∗, then the value 1
is assigned. The results are expressed in minimal terms; that means, a + a = a and
a + ab = a.

V) The result of this product is a sum of element agroupations. The complementaries of
every agroupation are the maximal subrelations which satisfy transitivity property.

Chapter 5

Order

Following the structure of the previous chapters, Chapter 5 starts by defining some
basics for establishing order in a set of elements.
The second section in the chapter introduces the different types of order relation that can
be found in a set, followed by the explanation of grouping elements as a previous step to
ordering.
The last section analyzes an algorithm for ordering elements; the Malgrange algorithm.

5.1 Basic concepts in order

Definition 5.1. Order is a scale in the preferences between objects based on some properties and
attributes.

Before establishing an order relation in a set of elements, it is important to carefully select
the properties that will determine the order.
Two agents take part in an order relation:

I) The set X = {x1, x2, ..., xn} containing the elements to order

II) The set C = {c1, c2, ..., cm} containing the ordering criteria (or attributes)

For an element xi, values ρij ∈ [0, 1] measure the level of each attribute cj.
The following matrix results:


c1 c2 ... cm

x1 ρ11 ρ12 . . . ρ1m
x2 ρ21 ρ22 . . . ρ2m
...

...
...

. . .
...

xn ρn1 ρn2 . . . ρnm


From this matrix begins the ordering process. For every criteria ck a square matrix
Ok = (βij) is calculated as follows:

βij =

{
0 , ρik < ρjk

1 , ρik ≥ ρjk
.

25

26 Order

These matrices Ok show the preferences between elements for every criteria ck. Now,
summing these matrices results in a matrixO∑ = (σij) which contains values in {1, 2, ..., n},
where σij represents the number of times the element xi is preferred to xj (elements in the
diagonal are not significant, so they are not considered).

O∑ = ∑
k
Ok

To keep mathematical coherence, elements will be divided by m to produce a matrix
O = (θij) with coefficients between 0 and 1.

O =


x1 x2 ... xn

x1 X θ12 . . . θ1n
x2 θ21 X . . . θ2n
...

...
...

. . .
...

xn θn1 θn2 . . . X

 , ∀i 6= j, θij ∈ [0, 1]

The last step in establishing order between the elements is to apply an α-cut to the matrix
O, which determines from which level on it is considered that one element is preferrable
to another.
Thus, this can be represented both in a boolean matrix and in a graph.

Example 5.2. Assume that, for a set of elements X = {x1, x2, x3, x4} and for some criteria
the matrix O represents the priorities between elements:

O =


x1 x2 x3 x4

x1 X 0.5 0.75 0.5
x2 0.5 X 0.75 0
x3 0.5 0.25 X 0.25
x4 0.75 1 1 X


Applying an α-cut equal to 0.6, the representation of boolean preferences is:

O =


x1 x2 x3 x4

x1 X 0 1 0
x2 0 X 1 0
x3 0 0 X 0
x4 1 1 1 X



5.2 Different types of order relations

The previous section has introduced the first steps for establishing order relations.
It has been seen that when the boolean matrix representing priorities between elements
contains a 1 in the box (xi, xj) this means that xi is preferred over xj. However, there is
the possibility that the box (xj, xi) is also equal to 1. This would mean that xi is preferred

5.2 Different types of order relations 27

over xj, but at the same time xj is preferred over xi (in graph theory, this is called a cycle1

xi − xj). Thus, order between xi and xj cannot be established.
This proves the following simple proposition.

Proposition 5.3. Let G be the graph of a relation. If there is a cycle in G, then order cannot be
established.

Corollary 5.4. The existence of cycles in a relation implies the existence of i∗, j∗ such that in the
matrix O = (θij), θi∗ j∗ = θj∗i∗ = 1.
Therefore, for the existence of order in relations, antisymmetry is necessary.

Thus, only antisymmetric matrices will be considered when discussing order relations.
There are three main types of order relations, each with a different nature:

a) Total order relations: linear order can be established for all elements in the set. Graphically:

b) Split or juncture order relations: there is no order relation between two or more
elements. Graphically:

c) Disjunct partial order relations: there are two or more disjunct total order relations for
subsets in the set. Graphically:

1In graph theory, if there is a path leaving from a vertex which comes back to the same vertex, it is known as
a cycle.

28 Order

5.3 Grouping equivalent elements for the ordering

In section 5.2. it has been proved that total order between all the elements of a set
cannot be established if there are cycles. In fact, cycles represent equivalence between the
elements involved, and therefore it is quite trivial that all the elements in the cycle are at
the same level.
Grouping the elements from a cycle is a way of solving this.

Equivalence classes

Definition 5.5. Let X be a set. An equivalence class in X is a subset A ⊆ X such that there
is an equivalence relation between any two elements in A; i.e., reflexive, symmetric and transitive
properties are satisfied.

Thus, when finding the equivalence classes in the preferences matrix O the result is all the
groups of elements for which the preference is the same. That means, all the elements of
the same equivalence class are equally preferred, so no distinction can be done between
them.
If the set has some cycles, first step before ordering is finding the equivalence classes. Once
found, instead of ordering the elements of the set, the equivalence classes are ordered. The
result of the order process will be the order between equivalence classes, and obviously
all the elements which are equally preferred will not be ordered.

Remark 5.6. If a set X = {x1, ..., xn} has no cycles, when finding the equivalence classes
the result will be n different equivalence classes, one of each element. The interpretation
of this result is that there are no elements equally preferred, which clearly means that an
order can be found without need of grouping elements.

The following section introduces Malgrange algorithm, a method to order the equivalence
classes of a set.

5.4 Method. Malgrange algorithm

Malgrange algorithm is a method to find the equivalence classes and its order between
the elements of a set.
One of the fastest ways of finding the equivalence classes, and hence their elements, is by
employing the procedure explained below.

5.4 Method. Malgrange algorithm 29

Steps in the algorithm

Malgrange algorithm is divided in two phases.

Phase I

The first phase aims to find the equivalence classes in a set of elements. Steps followed
in this first phase are detailed below, followed by an example to clarify the process:

I) The starting matrix is the boolean matrix O, which represents the priorities between
elements. Let X = {x1, x2, ..., xn} be the set to order. An arbitrary element x∗ is
chosen.

II) For x∗, its transitive closing Γ(x∗) and its inverse transitive closing Γ−1(x∗) are
calculated.

III) The intersection Γ(x∗) ∩ Γ−1(x∗) give the equivalence class of x∗.

IV) Rows and columns for all the elements in the equivalence class found in the previous
step are eliminated.

V) Now with a smaller matrix, the process is repeated again from step II) until all the
rows and columns are eliminated.

Once the process is finished, all the equivalence classes will have been found.

Example 5.7. Consider the set X = {x1, x2, x3, x4}, and the boolean matrix below
representing the priorities between elements in X:

O =


x1 x2 x3 x4

x1 X 1 1 0
x2 0 X 1 0
x3 0 1 X 0
x4 1 1 1 X


Equivalence classes are going to be calculated by using the process explained previously:

I) The first element chosen is x1.

II) Calculating the transitive closings Γ(x1) and Γ−1(x1):

Γ(x1) = {x1, x2, x3} , Γ−1(x1) = {x1, x4}

III) Then, the intersection Γ(x1)∩ Γ−1(x1) is {x1}. Therefore, {x1} is an equivalence class
in X.

IV) The row and the column of x1 are eliminated to continue with the process:


x2 x3 x4

x2 X 1 0
x3 1 X 0
x4 1 1 X



30 Order

V) Now the process is repeated for the element x2. To avoid extending too much the
example, results are directly given:

Γ(x2) = {x2, x3} , Γ−1(x2) = {x2, x3, x4} ⇒ Γ(x2) ∩ Γ−1(x2) = {x2, x3}

Then, another equivalence class in X is {x2, x3}.

VI) Finally, {x4} is the other equivalence class in X.

Equivalence classes in X are:
{x1}, {x2, x3}, {x4}

This means that x2 and x3 are equivalent elements for this relation, and after grouping
them an order relation can be established.

Phase II

Once the equivalence classes are found, the second phase of the algorithm aims to
order these equivalence classes. The way to proceed to find order does not follow specific
steps. Usually, the ordering is found reconstructing the graph by grouping all the elements
in the same equivalence class.

Chapter 6

Application to sports management

In this chapter, all the theory of decision seen previously is applied to a sports case. The
chapter begins with an introduction to the case, following which the methods discussed
in the previous chapters will be applied in order to carry out a study into which is the
best NBA franchise to invest in, as well as build a training plan and analyze the effects
of various marketing actions.

Background and introduction to the case

National Basketball Association, also known as NBA, is one of the most famous sports
leagues in the world. Thirty teams, more commonly known as franchises, participate in
this competition. The structure of an NBA franchise is similar to the structure of a big
company; the franchise has owners and closes the year with profits or losses. Therefore,
operations such as share trading or acquiring franchises are possible, and are becoming
more and more common. There are even cases of teams which are listed on the Stock
Exchange, such as the Golden State Warriors.
Three recent cases of operations related to NBA franchises are:

a) After the 2003-04 season, the NBA announced the creation of a new franchise; the
Charlotte Bobcats. The Bobcats were created by a group of investors, including
celebrities such as Larry Bird and the singer Nelly. Their debut in the NBA was the
2004-05 season.

b) Having failed to obtain US$220 million of public funding to remodel their arena, the
Seattle Supersonics moved to Oklahoma City in 2008. Once there, the franchise owners
decided to change the name of the team by popular vote, and the franchise is now
known as Oklahoma City Thunder.

c) Mikhail Prokhorov took an 80% stake in the New Jersey Nets in 2010. Following
that, in 2012, he moved the team to Brooklyn, and completed the purchase of the
remaining 20% stake in 2015. However, following some poor decisions in relation to
the management of his franchise, Prokhorov has now put up for sale 49% of his stake.

31

32 Application to sports management

Application of the methods

The methods discussed in each chapter of this project will be applied for the following
purposes:

• A study of which franchise is the best to invest in will be made by using the
Malgrange algorithm.

• Once this franchise has been selected, the Draft workouts will be planned. Further
explanation about Draft workouts will be given in the following pages. Pichat and
Hungarian algorithm will be the tools employed to plan the workouts.

• Finally, the board of directors wants to promote a strong marketing campaign to
boost popularity and update the team image. The forgotten effects algorithm will
give some information about which marketing actions could be the most effective.

Selection of the best franchise to buy

A group of investors is considering buying an NBA franchise prior to the start of the
2017-18 season. By using the theory of decision they will try to optimize their decision
and analyze which the best team in the NBA is to invest in following some specific criteria.
The following pages show the viability analysis they carried out as a first exploration.
The board of directors has chosen 14 criteria on which they will base their selection with
respect to the best team to invest in:

c1. Economic situation of the state.

c2. Importance of basketball in the city.

c3. Weather and social conditions.

c4. Tax regulations.

c5. Current situation of the team.

c6. Team projection.

c7. Playoff chances.

c8. Marketing income.

c9. Media income.

c10. Management board stability.

c11. Arena attendance.

c12. Arena facilities.

c13. Popularity in the USA.

c14. Popularity outside the USA.

Remark 6.1. For the purposes of this project, all the criteria have the same weight in the
process. However, the process can be as complex as desired, adding weights depending
on the importance of each criteria. The appendix contains an explanation of how the
valuation for each criteria has been made.

33

Putting together all the valuations in a matrix:



c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

Celtics 1 0.9 0.7 0.8 0.9 0.9 0.9 0.8 0.9 0.6 0.7 1 0.9 0.9
Nets 1 0.3 0.7 0.8 0 0.2 0 0.6 0.4 0.2 0.1 0.5 0.1 0.2

Knicks 0.9 0.8 0.8 0.8 0.4 0.6 0.5 1 0.6 0.3 0.9 1 0.7 0.9
Sixers 0.6 0.9 0.5 0.4 0.6 0.9 0.5 0.3 0.5 0.6 0.5 0.3 0.1 0.4

Raptors 0.7 0.7 0.8 0.6 0.7 0.6 0.8 0.6 0.7 0.8 1 0.8 0.9 0.3
Bulls 0.7 0.8 0.7 0.4 0.6 0.3 0.6 0.9 0.5 0.5 1 0.9 1 0.8
Cavs 0.4 1 0.4 0.6 1 0.8 1 0.7 1 0.8 1 0.2 0.8 0.8

Pistons 0.3 0.5 0.2 0.4 0.3 0.3 0.3 0.5 0.4 0.3 0.2 0.8 0.2 0.2
Pacers 0.3 0.5 0.6 0.9 0.5 0.5 0.5 0.3 0.4 0.5 0.3 0.4 0.5 0.3
Bucks 0.5 0.6 0.4 0.7 0.7 0.8 0.7 0.2 0.6 0.7 0.2 0.1 0.5 0.5
Hawks 0.2 0.4 0.7 0.7 0.5 0.5 0.6 0.3 0.5 0.5 0.2 0.4 0.4 0.3

Hornets 0.2 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.4 0.3 0.5 0.2 0.3 0.1
Heat 0.4 0.3 0.9 0.4 0.4 0.3 0.4 0.7 0.4 0.4 0.8 1 0.8 0.7

Magic 0.4 0.2 0.8 0.4 0.2 0.4 0.2 0.4 0.4 0.1 0.6 0.7 0.2 0.5
Wizards 1 0.7 0.7 0.5 0.7 0.6 0.7 0.5 0.6 0.7 0.4 0.3 0.3 0.5

Mavs 0.5 0.4 1 0.5 0.3 0.2 0.3 0.7 0.4 0.4 0.9 0.8 0.7 0.4
Rockets 0.5 0.7 0.7 0.5 0.7 0.6 0.8 0.6 0.7 0.7 0.4 0.5 0.6 0.8

Grizzlies 0.2 0.8 0.4 0.2 0.6 0.4 0.7 0.3 0.6 0.6 0.3 0.4 0.4 0.7
Pelicans 0.2 0.3 0.3 0.4 0.6 0.7 0.4 0.1 0.4 0.6 0.3 0.1 0.5 0.2

Spurs 0.5 0.7 0.6 0.5 0.8 0.7 0.9 0.6 0.8 0.7 0.6 0.4 0.9 0.7
Nuggets 0.7 0.1 0.5 0.9 0.2 0.3 0.2 0.4 0.4 0.3 0.1 0.6 0.2 0.3
Wolves 0.7 0.3 0.3 0.4 0.4 0.8 0.3 0.2 0.4 0.5 0.1 0.1 0.7 0.5

Thunder 0.4 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.7 0.6 0.3 0.8 0.4
Blazers 0.4 0.6 0.8 1 0.6 0.5 0.5 0.5 0.5 0.6 0.8 0.7 0.6 0.4

Jazz 0.1 0.4 0.8 0.4 0.4 0.3 0.5 0.3 0.6 0.5 0.9 0.6 0.3 0.5
Warriors 0.8 1 0.7 0.1 1 0.8 1 0.8 1 0.8 0.8 0.5 1 0.9
Clippers 0.8 0.6 0.8 0.1 0.6 0.3 0.6 0.8 0.5 0.2 0.7 0.2 0.6 0.7
Lakers 0.8 0.8 0.8 0.1 0.3 0.5 0.3 0.9 0.4 0.3 0.7 0.9 1 0.8
Suns 0.1 0.4 0.6 0.6 0.4 0.7 0.4 0.6 0.4 0.8 0.4 0.7 0.4 0.3
Kings 0.8 0.2 0.8 0.1 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.6 0.1 0.2


From this matrix, for each criteria ck a matrix Ok is built. As explained in section 5.1., the
boolean matrices Ok = (bij) are built as follows:

βij =

{
0 , ρik < ρjk

1 , ρik ≥ ρjk
.

Remark 6.2. None of the 14 matrices are detailed here as this would unnecessarily extend
the length of this paper.

34 Application to sports management

The result of adding these matrices Ok and dividing every component by 14 (the number
of criteria) is the matrix OF, which shows how much each franchise is preferred over the
others:

OF =
1
14

14

∑
k=1
Ok

To avoid operating with matrices of such dimensions, a programming code has been
created to apply the algorithm. The programming code can be found in the Appendix,
under the title Programmed Malgrange algorithm.
The resulting matrix OF is in the Appendix in the Fuzzy preferences matrix section, as
it was too large too show it in portrait mode. Once the matrix showing the degree of
preference between teams is built, an α-cut has to be set.
This α-cut will determine from which value on we consider that the degree of preference
is strong enough to consider that one team is preferable to another. α is determined at
0.65, with this high value being applied in order that only teams with sufficiently high
preference value over others are considered.
Recall that the way of building the boolean matrix of preferences OB is by giving a 1 to all
the boxes with a higher value than or equal to α, and a 0 otherwise. Again, the matrix OB
is in the Appendix in the Boolean preferences matrix section, as it was also too large to
show it in portrait mode. The following step would be to calculate the transitive closing
for each team. However, as the purpose of this ordering process is only to find the best
team to invest in, the full process will not be applied and interest will only be focused on
the top teams.
Therefore, considering the matrix above, it is quite clear that Celtics, Knicks, Raptors,
Bulls, Cavs, Spurs and Warriors are the best franchises to invest in. The matrix below is a
submatrix of OB showing only the preferences between these top seven teams.



Celtics Knicks Raptors Bulls Cavs Spurs Warriors

Celtics X 1 1 1 0 1 0
Knicks 0 X 0 0 0 0 0
Raptors 0 0 X 0 0 1 0

Bulls 0 0 0 X 0 0 0
Cavs 0 0 0 0 X 0 0
Spurs 0 0 0 0 0 X 0

Warriors 1 0 0 0 1 1 X



35

The following graph detailing these preferences will be used to order these 7 franchises:

Looking at the scheme above, it is clear that the Golden State Warriors are the best team
to invest in.
The investors then studied the option of buying the Golden State Warriors. However, the
Warriors are currently by far the most difficult franchise in the NBA to buy. Its franchise
value is around US$2.6 billion, and given its current extraordinary growth the owners are
closed to offers.
Therefore, acquiring the Boston Celtics becomes the first option. The Boston Celtics are
also a franchise with a high value (US$2.2 billion1), and with a well-known history. The
idea of acquiring this franchise is not as crazy as that of buying the Warriors, so the
investors seriously consider the operation.

Draft workout

Introduction to the NBA Draft

The NBA Draft is an annual event where the 30 franchises choose players from other
basketball leagues or from college basketball teams to join the NBA.
Every team chooses two players,resulting in 60 picks (this is the common term used to
refer to the elections in the NBA Draft).
The elections are made following an order; one franchise which has the 1st pick, which
means that the franchise can choose any eligible player. Following the 1st pick, another
franchise has the 2nd pick, and so on. Once the 30th pick is reached, the thirty teams
choose again in the same order.
In the 2017-18 Draft, the Boston Celtics are the first team to choose (in NBA argot, the
common way to say it would be that the Celtics have the 1st pick in the Draft). That
means they can choose any player they want from the ones who have declared themselves
eligible for this year’s Draft.

1Information about franchises valuation has been obtained from Forbes.com; [11] in the Bibliography.

36 Application to sports management

Planning of the Draft workouts

NBA teams plan workouts to see how players perform. These workouts consist of
a training session involving some players (usually between 2 and 6) and testing their
abilities. These workouts will enable the franchises to decide which players to choose in
the NBA Draft.
In this section of the analysis the Draft workouts will be planned. First, by the creation of
groups of players who will train together, and then by the assignation of coaches to each
group of players.
To find the groups of players the Pichat algorithm will be used. By applying this, groups
of similar players will be found, and from here the training groups will be established.
Consider the Top-12 prospects for the 2017-18 NBA Draft, and some key qualities for a
future NBA player:

Top12 prospects:

p1. Markelle Fultz

p2. Lonzo Ball

p3. Josh Jackson

p4. De’ Aaron Fox

p5. Jayson Tatum

p6. Jonathan Isaac

p7. Dennis Smith

p8. Malik Monk

p9. Frank Ntilikina

p10. Zach Collins

p11. Lauri Markkanen

p12. Jarrett Allen

Qualities:

q1. Athleticism

q2. Size

q3. Defense

q4. Strength

q5. Quickness

q6. Leadership

q7. Jump Shot

q8. NBA Ready

q9. Ball Handling

q10. Potential

q11. Passing

q12. Intangibles

37

According to the opinion of the experts of NBADraft.net, one of the most important
websites for NBA prospects, the following scorings for each player have been assigned:



q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Fultz 0.8 0.8 0.6 0.6 0.8 0.4 0.8 0.6 0.6 0.8 0.6 0.6
Ball 0.6 0.8 0.6 0.4 0.6 0.8 0.4 0.6 0.6 0.8 1 0.6

Jackson 1 0.8 0.8 0.6 0.8 0.6 0.2 0.6 0.4 0.8 0.6 0.8
Fox 0.8 0.6 0.8 0.4 1 0.6 0.4 0.4 0.6 0.8 0.6 0.6

Tatum 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.4 0.6 0.8 0.6 0.6
Isaac 0.8 0.8 0.6 0.4 0.6 0.6 0.8 0.4 0.8 0.8 0.4 0.6
Smith 1 0.6 0.4 0.6 0.8 0.6 0.4 0.6 0.6 0.8 0.6 0.4
Monk 0.8 0.4 0.4 0.4 0.8 0.4 0.8 0.6 0.4 0.6 0.4 0.6

Ntilikina 0.6 0.8 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.6 0.6 0.6
Collins 0.6 0.8 0.6 0.6 0.6 0.4 0.6 0.2 0.6 0.8 0.6 0.6

Markkanen 0.4 0.8 0.4 0.4 0.4 0.4 0.8 0.6 0.6 0.6 0.6 0.6
Allen 0.6 0.6 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.8 0.4 0.6



Remark 6.3. NBADraft.net uses a scale between 1 and 10 for the qualities. As all these 12
players have a scoring higher than or equal to 6 for each quality, the following mapping
has been done:

NBADraft.net scoring 0 to 1 scale

6 0.2

7 0.4

8 0.6

9 0.8

10 1

38 Application to sports management

At this point, two more steps are required to begin applying the Pichat algorithm:

I. Apply an α-cut to create a boolean matrix which shows which players have the quality
and which do not. As the values in the fuzzy matrix are quite high, we set an α-cut
equal to 0.8. The following boolean matrix results:



q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Fultz 1 1 0 0 1 0 1 0 0 1 0 0
Ball 0 1 0 0 0 1 0 0 0 1 1 0

Jackson 1 1 1 0 1 0 0 0 0 1 0 1
Fox 1 0 1 0 1 0 0 0 0 1 0 0

Tatum 0 0 0 0 0 0 0 0 0 1 0 0
Isaac 1 1 0 0 0 0 1 0 1 1 0 0
Smith 1 0 0 0 1 0 0 0 0 1 0 0
Monk 1 0 0 0 1 0 1 0 0 0 0 0

Ntilikina 0 1 0 0 0 0 0 0 0 0 0 0
Collins 0 1 0 0 0 0 0 0 0 1 0 0

Markkanen 0 1 0 0 0 0 1 0 0 0 0 0
Allen 0 0 0 0 0 0 0 0 0 1 0 0



The way to understand this matrix is that, for example, Fultz has the qualities q1, q2, q5, q7, q10,
but not the qualities q3, q4, q6, q8, q9, q11, q12.

II. From the matrix obtained in step I., create the similarities matrix. First, the Hamming
distance for every pair of players has to be calculated.

d(pi, pj) =
1

12

12

∑
k=1
| mik −mjk |,

where mxy are the elements from the fuzzy matrix prior to the α-cut in Step I.
Once the Hamming distances are calculated for every pair of players, a matrix with
the Hamming distances is built.2 Hamming distance measures the size of the
difference between two players. The higher the distance, the bigger the difference.
Then, if we want to measure similarity between players, we have to find the complementary
of the distances, understanding the complementary as 1− d(pi, pj), for each pair of
players pi,pj.

2The matrix with the Hamming distances can be found in the Appendix, in the Draft workouts section.

39

The following matrix shows the similarities for the 12 players:



Fultz Ball Jackson Fox Tatum Isaac Smith Monk Ntilikina Collins Markannen Allen

Fultz 1 0.85 0.87 0.87 0.87 0.90 0.88 0.88 0.90 0.92 0.88 0.83
Ball 0.85 1 0.82 0.85 0.88 0.85 0.83 0.77 0.88 0.87 0.83 0.88

Jackson 0.87 0.82 1 0.87 0.80 0.80 0.88 0.78 0.80 0.82 0.75 0.80
Fox 0.87 0.85 0.87 1 0.90 0.87 0.88 0.82 0.87 0.85 0.78 0.90

Tatum 0.87 0.88 0.80 0.90 1 0.90 0.85 0.82 0.93 0.92 0.88 0.93
Isaac 0.90 0.85 0.80 0.87 0.90 1 0.82 0.85 0.90 0.88 0.85 0.90
Smith 0.88 0.83 0.88 0.88 0.85 0.82 1 0.83 0.82 0.83 0.80 0.88
Monk 0.88 0.77 0.78 0.82 0.82 0.85 0.83 1 0.85 0.80 0.87 0.85

Ntilikina 0.90 0.88 0.80 0.87 0.93 0.90 0.82 0.85 1 0.95 0.92 0.90
Collins 0.92 0.87 0.82 0.85 0.92 0.88 0.83 0.80 0.95 1 0.87 0.88

Markannen 0.88 0.83 0.75 0.78 0.88 0.85 0.80 0.87 0.92 0.87 1 0.85
Allen 0.83 0.88 0.80 0.90 0.93 0.90 0.88 0.85 0.90 0.88 0.85 1


To begin applying the Pichat algorithm, it is only necessary to determine the value α from
which two players are considered similar. Taking a first look at the matrix, it is easy to see
that the similarity scorings are considerably high, so applying a low α-cut would mean
considering almost all players as being similar, and therefore the grouping would not be
as useful as required.
The α-cut chosen is 0.88. That means that any two players with a similarity scoring higher
than or equal to 0.88 are similar, and if their similarity valuation is lower than 0.88 they
are not considered similar.
Note that the elements below the diagonal can be ignored, as they give repeated information
because the matrix is symmetric (and, therefore, the similarity between pi and pj is the
same as the similarity between pj and pi). The similarity matrix after applying the α-cut
is:



Fultz Ball Jackson Fox Tatum Isaac Smith Monk Ntilikina Collins Markannen Allen

Fultz 1 0 0 0 0 1 1 1 1 1 1 0
Ball 1 0 0 1 0 0 0 1 0 0 1

Jackson 1 0 0 0 1 0 0 0 0 0
Fox 1 1 0 1 0 0 0 0 1

Tatum 1 1 0 0 1 1 1 1
Isaac 1 0 0 1 1 0 1
Smith 1 0 0 0 0 1
Monk 1 0 0 0 0

Ntilikina 1 1 1 1
Collins 1 0 1

Markannen 1 0
Allen 1



40 Application to sports management

Now, the Pichat algorithm is applied (the algorithm is detailed in section 4.4).
The elements of the boolean addition are shown in the following table:

Row Sum elements

1 1+2,3,4,5,12

2 2+3,4,6,7,8,10,11

3 3+4,5,6,8,9,10,11,12

4 4+6,8,9,10,11

5 5+7,8

6 6+7,8,11

7 7+8,9,10,11

8 8+9,10,11,12

9 -

10 10+11

11 11+12

12 -

Calculating the boolean addition, the following result is obtained:

P = 1, 2, 3, 4, 6, 7, 8, 10, 12 + 1, 2, 3, 4, 7, 8, 11 + 1, 2, 3, 5, 6, 8, 9, 10, 11 + 1, 2, 3, 6, 7, 8, 9, 10, 11 + 1, 2, 4, 5, 6, 8, 9, 10, 11, 12+

+ 1, 3, 4, 6, 8, 10, 11 + 2, 3, 4, 5, 6, 7, 8, 10, 12 + 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 + 2, 3, 4, 5, 6, 8, 9, 10, 11, 12+

+ 2, 3, 4, 5, 7, 8, 11, 12 + 2, 3, 4, 6, 7, 8, 10, 11

Remark 6.4. The calculation of the addition is detailed in the section Pichat algorithm
calculation in the Appendix.

Calculating the complementary of each term in P the maximal similarity subrelations are
found:

{5, 9, 11}, {5, 6, 9, 10, 12}, {4, 7, 12}, {4, 5, 12}, {3, 7}, {2, 5, 7, 9, 12}, {1, 9, 11}, {1, 8}, {1, 7}, {1, 6, 9, 10}, {1, 5, 9, 12}

From these similarity relations, the groups for the draft workouts have to be determined:

- Players 6, 10 and 12 are very similar according to the result obtained with Pichat. Player
1 is also quite similar to these three players, as they are together in different maximal
subrelations. Therefore, players 1, 6, 10 and 12 will work out together.

- Players 5, 9 and 11 are very similar. In fact, they have a maximal subrelation. Player
2 also shares similarities with players 9 and 11 (and only appears in one maximal
subrelation). Therefore we consider players 2, 5, 9 and 11 as another training group.

41

- The four players left are not very similar to any of the players in the list, this is why
they have been left with no group until the end. They are not similar to be able to
train together, so the best option is to split them into two pairs. Players 4 and 7 share a
maximal similarity subrelation, so they will train together.

- Players 3 and 8, despite sharing very few qualities, will form the fourth training group.

Therefore, the four groups established are:

G1 = {1, 6, 10, 12}, G2 = {2, 5, 9, 11}, G3 = {3, 8}, G4 = {4, 7}.

Using players names:

G1 = {Fultz, Isaac, Collins, Allen}, G2 = {Ball, Tatum, Ntilikina, Markannen} ,
G3 = {Jackson, Monk}, G4 = {Fox, Smith}.

Costs minimization

After grouping the players, five leading coaches are contacted and asked for cost
estimates for specific workouts for these groups of players.
The costs of each coach (taking into account dates, accomodation, additional training staff,
etc.) are shown in the following table:


c1 c2 c3 c4 c5

g1 15, 000 15, 500 15, 000 16, 500 16, 500
g2 14, 000 15, 500 15, 000 15, 500 13, 500
g3 10, 000 11, 000 12, 000 12, 500 11, 000
g4 10, 000 10, 500 11, 000 11, 500 9, 500


Applying the Hungarian algorithm, the aim is to find which combination minimizes the
costs. Hungarian algorithm only applies on square matrices, therefore a ficticious group
of players (which will be called gF to make clear that it is fictitious) will be added to the
matrix. This fictitious row will be assigned the maximum value in the matrix:



c1 c2 c3 c4 c5

g1 15, 000 15, 500 15, 000 16, 500 16, 500
g2 14, 000 15, 500 15, 000 15, 500 13, 500
g3 10, 000 11, 000 12, 000 12, 500 11, 000
g4 10, 000 10, 500 11, 000 11, 500 9, 500
gF 16, 500 16, 500 16, 500 16, 500 16, 500


Dividing each element by the maximum value in the matrix; i.e., 16,500, a matrix with
values between 0 and 1 is obtained:



c1 c2 c3 c4 c5

g1 0.9394 0.9394 0.9091 1 1
g2 0.8485 0.9394 0.9091 0.9394 0.8182
g3 0.6061 0.6667 0.7273 0.7576 0.6667
g4 0.6061 0.6364 0.6667 0.6970 0.5758
gF 1 1 1 1 1



42 Application to sports management

Applying the Hungarian algorithm to the matrix above, the following optimal assignation
is obtained.

Group 1→ Coach 3

Group 2→ Coach 5

Group 3→ Coach 1

Group 4→ Coach 2

Group F→ Coach 4

Remark 6.5. There are four groups of players, {G1, G2, G3, G4}, and five coaches,{c1, c2, c3, c4, c5},
therefore is trivial that one of the coaches will not have any group of players assigned. The
results obtained using the algorithm show that Coach 4 has been assigned to the fictitious
group of players; this means that Coach 4 is the one who will not train any of the groups.

Detail of the calculation is given the Appendix, in the Hungarian algorithm application
section.

Marketing actions

The intention of the investors is to boost the franchise to the next level. With this
purpose, the board has organised a brainstorming with some marketing actions that can
help to update the image of the franchise.

s1. Create a new logo and new jersey design.

s2. Create a new image on Twitter, Instagram and other social networks.

s3. Hire influencer-services for ad campaigns.

s4. Collaborate with NGOs.

s5. Sign a Chinese player. (add some explanation)

s6. Organize an amateur 3x3 tournament at the home arena.

s7. Find a sponsor for the jersey.

s8. Open stores worldwide selling the franchise merchandise.

s9. Develop an own mobile app.

s10. Offer reduced-prize season tickets for senior citizens.

s11. Organize a preseason European tour.

43

The expected results of these marketing actions are as follows:

r1. An increase in merchandise sales.

r2. Stronger connection with young fans.

r3. Improved team image.

r4. Global recognition of the franchise image and brand awareness.

r5. A feeling of community among fans.

Once the actions have been suggested, and the objectives are clear, the board decides to
apply the forgotten effects algorithm to analyze the interrelations between actions and
effects. By applying this method, some indirect effects will come to light and therefore we
will be able to know if some of the marketing actions planned during the brainstorming
have some unexpected repercussions.
The way to proceed is exactly as that explained in section 2.4. Therefore, the three matrices
necessary to perform the Forgotten Effects algorithm are built, according to the opinion
of the board:

• Matrix MR: 

r1 r2 r3 r4 r5

s1 0.9 0.8 0 0.6 0.2
s2 0.9 0.1 0.2 0.9 0.6
s3 0.8 0.9 0.3 0.4 0
s4 0 0.2 1 0.1 0.1
s5 0.9 0.5 0.4 1 0
s6 0.3 0.6 0.8 0 0.9
s7 0.6 0.5 0 0.3 0
s8 0.4 0.2 0.2 0.9 0
s9 0.1 0.6 0.3 0.2 0.6
s10 0 0 0.8 0 0.4
s11 0.4 0.4 0.3 0.8 0.2


• Matrix MX :



s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 1 0.2 0.6 0 0.3 0 0.7 0.9 0.4 0 0
s2 0.7 1 0.9 0.2 0.6 0.3 0.2 0.8 0.9 0.1 0.3
s3 0.8 1 1 0.2 0.4 0.7 0 0.3 0.7 0.1 0.3
s4 0 0.3 0.2 1 0.7 0.3 0 0.3 0 0.4 0.2
s5 0.7 0.8 0.9 0.2 1 0 0.6 0.8 0.7 0 0.2
s6 0.2 0.4 0.3 0.5 0 1 0 0 0 0.2 0
s7 0.9 0.9 0.7 0 0.4 0 1 0 0.3 0.4 0.5
s8 0.3 0.8 0.9 0.2 0.5 0 0.4 1 0 0 0.6
s9 0 0.8 0.4 0 0.7 0.1 0.3 0.3 1 0.1 0.4
s10 0 0.2 0.2 0 0 0 0 0 0.2 1 0
s11 0 0.8 0.5 0.4 0.2 0 0.2 0.3 0 0 1



44 Application to sports management

• Matrix MY: 

r1 r2 r3 r4 r5

r1 1 0.4 0.2 0.3 0
r2 0.9 1 0.1 0.1 0.3
r3 0.3 0.4 1 0.4 0.2
r4 0.9 0.6 0.4 1 0
r5 0.2 0.4 0.5 0 1


To avoid operating with large dimension matrices, a programming code has been created
to apply the algorithm. The programming code is in the Appendix, under the title of
Programmed forgotten effects algorithm. After running the programming code, the
following result is obtained:



r1 r2 r3 r4 r5

s1 0 0 0.4 0.3 0.2
s2 0 0 0.3 0 0
s3 0.1 0 0.4 0.5 0.7
s4 0.7 0.4 0 0.6 0.3
s5 0 0.4 0.1 0 0.6
s6 0.3 0 0 0.4 0
s7 0.3 0.3 0.5 0.6 0.6
s8 0.5 0.7 0.3 0 0.6
s9 0.7 0 0.2 0.6 0
s10 0.3 0.4 0 0.4 0
s11 0.4 0.2 0.2 0 0.4


At first glance, the indirect relations with a higher scoring (of 0.7) can be highlighted:

Relation Action Effect

s3 − r5 Hire influencer-services for ad
campaigns

A feeling of community
between fans

s4 − r1 Collaborate with NGOs An increase in merchandise
sales

s8 − r2 Open stores worldwide selling
the franchise merchandise

Stronger connection with young
fans

s9 − r1 Develop an own mobile app An increase in merchandise
sales

This means that some marketing actions will have more relation than expected with some
of the consequences. For example, collaborating with NGOs can have an impact on
merchandise sales. The relation between these, which at first seemed almost insignificant,
is very strong. In light of these results, some of the actions to take may be reconsidered.

Conclusions

The theory of decision comprises and studies the basic elements in the decision-making
process. From an analytic point of view, but at the same time providing a high degree of
flexibility, the theory of decision amis to cope with problems where uncertainty is present.
After working on the project, I consider that one of the most differentiating aspects of the
theory of decision, and consequently of the algorithms presented, is the wide variety of
problems that can be addressed. This versatility is demonstrated in the application case,
where an investment analysis, a creation of training groups, a cost minimization problem
and a marketing study have been carried out employing different algorithms pertaining
to the theory of decision.
All the algorithms are based on fuzzy mathematics. The data treatment given by fuzzy
mathematics brings the possibility of adding subjectivity to the analysis, which classical
mathematics cannot do. Alpha-cuts offer the possibility to consider different scenarios
in the decision-making process depending on the exigence level imposed. Subjectivity
plays an important role in fuzzy mathematics, and therefore the same problem analyzed
by two different individuals can, and in fact probably will, have two different solutions.
Therefore, one of the conclusions that can be drawn is that fuzzy and classical mathematics
present varying results to the same problem since each looks at it from a very different
point of view.
Apart from being very adaptable even to a very specific case, another benefit of algorithms
is their simplicity and ease of application. When the number of dimensions in the problem
is considerably large, the difficulty of applying the algorithm "by hand" increases. In this
project a solution has been proposed. As algorithms use a simple process, it is easy to
program them so they can be applied to problems of any dimension. In this project,
the Forgotten Effects method and the process required to start applying the Malgrange
algorithm have been programmed.
This project is a theoretical approach to the theory of decision, and as a consequence
there are no hypotheses to be either corroborated or rejected. Nevertheless, it has been
demonstrated that the theory of decision is useful in many fields. Other business decisions,
such as processes involving project viability analysis, investment portfolio management
or recruitment processes could also have been analyzed.
As stated in the introduction, the aim of this project is to provide a general overview
of the theory of decision and fuzzy mathematics. Further studies can be carried out
along the same lines as the project; for example, an in-depth study of algorithms from a
mathematical point of view, demonstrating their validity and proving their coherence.

45

Bibliography

[1] GIL-ALUJA, Jaime, Elements for a theory of decision in uncertainty, Milladoiro, (1999).

[2] SERRANG, Oliver. Harvard University. A fast numerical method for max-min
convolution and the application to efficient max-product inference in Bayesian
networks, January 2015. [Consulted in April 2017.]
Link: http://adsabs.harvard.edu/abs/2015arXiv150102627S

[3] Stanford University. An introduction to Philosophy; the Law of Excluded Middle.
[Consulted in April 2017].
Link: https://web.stanford.edu/ bobonich/glances%20ahead/IV.excluded.middle.html

[4] KEEFER, Julia L. New York University. Traditional Logic Versus Fuzzy Thinking.
[Consulted in April 2017].
Link: http://www.nyu.edu/classes/keefer/ww1/fuzz.html

[5] Salés Vallès, F.A Aplicaciones de Galois en conjuntos ordenados y en retículos, Collectanea
Mathematica, (1970)

[6] U.S. Department of Commerce, Bureau of Economic Analysis, March 2017.
[Consulted in May 2017].
Link: https://www.bea.gov/newsreleases/regional/spi/2017/pdf/spi0317.pdf

[7] Numbeo.com. North America: Quality of Life Index 2017. [Consulted in May 2017].
Link: https://www.numbeo.com/quality-of-life/region_rankings.jsp?title=2017®ion=021

[8] ESPN.com. NBA Attendance Report - 2017. [Consulted in May 2017].
Link: http://www.espn.com/nba/attendance

[9] BleacherReport.com. Ranking All 30 NBA Arenas. [Consulted in May 2017].
Link: http://bleacherreport.com/articles/1374029-ranking-all-30-nba-arenas

[10] Ranker.com. Your Favorite NBA Basketball Teams. [Consulted in May 2017].
Link: http://www.ranker.com/crowdranked-list/favorite-nba-basketball-teams

[11] Badenhausen, Kurt. Forbes.com, The Knicks and Lakers Top the NBA’s Most
Valuable Teams 2017. [Consulted in May 2017].
Link: https://www.forbes.com/sites/kurtbadenhausen/2017/02/15/the-knicks-and-lakers-
head-the-nbas-most-valuable-teams-2017/#291bec9a7966

46

Appendix

The appendix contains the following sections:

- Criteria evaluation

- Fuzzy preferences matrix

- Boolean preferences matrix

- Draft workouts

- Programming codes for the algorithms

Criteria evaluation

This section of the Appendix gives details about how the scorings to create the matrix
to apply the Malgrange algorithm have been assigned.

Criteria 1

To determine the economic situation of the state for every franchise, a ranking from the
U.S. Department of Commerce has been employed ([6] in the Bibliography). This ranking
creates a list of the states ordered from best to worst according to economic situation.
Considering there are 50 states in the USA, the following scoring has been assigned to
each state depending on its position in the Department of Commerce ranking:

Top 3 4th-6th 7th-10th 11th-15th 16th-20th 21th-25th

1 0.9 0.8 0.7 0.6 0.5

26th-30th 31st-35th 36th-40th 41st-45th >46th

0.4 0.3 0.2 0.1 0

47

48 Appendix

Criteria 2

The scoring for the importance of basketball in the city has been calculated by considering
the popularity of basketball in relation to other sports such as baseball, hockey and
football.

Criteria 3

To measure weather and social conditions a ratio has been calculated. This ratio is a
weighted average between weather conditions (W) and quality of life (Q):

c3 = 0.3W + 0.7Q

The Quality of Life Index ([7] in Bibliography) has been used to measure the variable Q.

Criteria 4

The information to evaluate the scoring for tax regulations has been obtained from the
website www.taxfoundation.org. The maximum scoring has only been assigned in the case
of tax-free state. Otherwise, the scoring is gradual; the higher the taxes, the lower the
scoring.

Criteria 5

Evaluating the current situation of each team in order to apply a value between 0 and
1 is quite subjective. The scoring has been assigned depending on last year’s results and

49

team progression; current results, standings and short-term historic performance.

Criteria 6

Team projection is even more subjective than the current situation of the team. The
scoring for this criteria has been based on the mean age of the roster, the future expectations
for each player, team stability, team cohesion and immediate future plans.

Criteria 7

Playoff chances for every franchise have been calculated by projecting the franchise
trajectory in the last years together with the expected improvement or deterioration of the
team.

Criteria 8

Scoring for marketing income has been determined based on a Forbes study measuring
income for each team, and grouping it according to the nature of the income. The graph
below shows the results of Forbes study:

Criteria 9

Scoring for media income has been determined based on a Forbes study measuring
income for each team, and grouping it according to the nature of the income. The graph
shown under Criteria 8 also provides information about media income.

Criteria 10

This criteria makes reference to the stability of the franchise and its board. The way to
determine the scoring for this criteria has been to consider the key events that have taken
place in each franchise during the last 3 years.

50 Appendix

Criteria 11

Scoring for arena attendance has been determined using data obtained from the official
website of ESPN ([8] in the Bibliography).
The first 3 teams have been given a scoring of 1, the following three a scoring of 0.9, and
so forth until the worst three teams in terms of attendance which were given a scoring of
0.1.

Criteria 12

Scoring for arena facilites has been determined following a ranking by the website
Bleacher Report ([9] in the Bibliography) analyzing the facilities of all the NBA arenas.
The first 3 teams have been given a scoring of 1, the following three a scoring of 0.9, and
so forth until the three worst three teams in the ranking which were given a scoring of 0.1.

Criteria 13

Scoring for the popularity of every team in the USA is based on a popular ranking on
the website Ranker.com ([10] in the Bibliography) where people have been registering their
votes since 2014.

Criteria 14

As there are no rankings for popularity of NBA franchises outside the USA, this scoring
has been calculated with a high component of subjectivity based on last years experiences
and facts.

51

Fu
zz

y
pr

ef
er

en
ce

s
m

at
ri

x

O
F
=

  C
el

ti
cs

N
et

s
K

ni
ck

s
Si

xe
rs

R
ap

to
rs

B
ul

ls
C

av
s

P
is

to
ns

P
ac

er
s

B
uc

ks
H

aw
ks

H
or

ne
ts

H
ea

t
M

ag
ic

W
iz

ar
ds

M
av

s
R

oc
ke

ts
G

ri
zz

li
es

P
el

ic
an

s
S

pu
rs

N
ug

ge
ts

W
ol

ve
s

T
hu

nd
er

B
la

ze
rs

Ja
zz

W
ar

ri
or

s
C

li
pp

er
s

La
ke

rs
Su

ns
K

in
gs

C
el

ti
cs

X
0.

92
86

0.
71

43
0.

92
86

0.
71

43
0.

71
43

0.
50

00
0.

92
86

0.
85

71
0.

85
71

0.
92

86
0.

92
86

0.
78

57
0.

85
71

0.
85

71
0.

78
57

0.
85

71
0.

92
86

0.
92

86
0.

85
71

0.
85

71
0.

92
86

0.
85

71
0.

71
43

0.
78

57
0.

42
86

0.
85

71
0.

71
43

0.
85

71
0.

85
71

N
et

s
0.

28
57

X
0.

21
43

0.
50

00
0.

28
57

0.
28

57
0.

35
71

0.
42

86
0.

42
86

0.
42

86
0.

42
86

0.
57

14
0.

35
71

0.
50

00
0.

42
86

0.
28

57
0.

42
86

0.
42

86
0.

57
14

0.
42

86
0.

50
00

0.
64

29
0.

42
86

0.
21

43
0.

28
57

0.
35

71
0.

35
71

0.
28

57
0.

42
86

0.
50

00
K

ni
ck

s
0.

42
86

0.
85

71
X

0.
71

43
0.

50
00

0.
57

14
0.

42
86

0.
92

86
0.

71
43

0.
71

43
0.

71
43

0.
92

86
0.

71
43

0.
92

86
0.

64
29

0.
78

57
0.

64
29

0.
71

43
0.

78
57

0.
57

14
0.

85
71

0.
85

71
0.

64
29

0.
71

43
0.

85
71

0.
50

00
0.

78
57

0.
85

71
0.

85
71

0.
85

71
Si

xe
rs

0.
21

43
0.

57
14

0.
35

71
X

0.
14

29
0.

42
86

0.
28

57
0.

71
43

0.
64

29
0.

50
00

0.
57

14
0.

71
43

0.
57

14
0.

57
14

0.
28

57
0.

50
00

0.
28

57
0.

64
29

0.
85

71
0.

21
43

0.
57

14
0.

78
57

0.
42

86
0.

50
00

0.
57

14
0.

14
29

0.
50

00
0.

50
00

0.
50

00
0.

64
29

R
ap

to
rs

0.
35

71
0.

78
57

0.
57

14
0.

85
71

X
0.

64
29

0.
57

14
0.

92
86

0.
85

71
0.

85
71

0.
85

71
0.

92
86

0.
71

43
0.

92
86

0.
85

71
0.

78
57

0.
92

86
0.

85
71

0.
92

86
0.

71
43

0.
85

71
0.

92
86

0.
92

86
0.

85
71

0.
92

86
0.

42
86

0.
78

57
0.

57
14

0.
92

86
0.

85
71

B
ul

ls
0.

35
71

0.
78

57
0.

50
00

0.
78

57
0.

50
00

X
0.

50
00

0.
92

86
0.

85
71

0.
57

14
0.

85
71

0.
85

71
0.

78
57

0.
85

71
0.

50
00

0.
78

57
0.

57
14

0.
71

43
0.

85
71

0.
57

14
0.

85
71

0.
92

86
0.

71
43

0.
71

43
0.

78
57

0.
50

00
0.

78
57

0.
78

57
0.

78
57

0.
78

57
C

av
s

0.
50

00
0.

64
29

0.
57

14
0.

71
43

0.
64

29
0.

57
14

X
0.

85
71

0.
71

43
0.

78
57

0.
71

43
0.

92
86

0.
78

57
0.

78
57

0.
71

43
0.

71
43

0.
71

43
0.

85
71

0.
92

86
0.

64
29

0.
64

29
0.

85
71

0.
78

57
0.

71
43

0.
78

57
0.

57
14

0.
71

43
0.

57
14

0.
78

57
0.

71
43

P
is

to
ns

0.
07

14
0.

64
29

0.
14

29
0.

35
71

0.
14

29
0.

14
29

0.
14

29
X

0.
42

86
0.

28
57

0.
42

86
0.

64
29

0.
28

57
0.

71
43

0.
21

43
0.

42
86

0.
14

29
0.

35
71

0.
50

00
0.

14
29

0.
71

43
0.

57
14

0.
14

29
0.

21
43

0.
42

86
0.

21
43

0.
28

57
0.

42
86

0.
35

71
0.

64
29

P
ac

er
s

0.
14

29
0.

64
29

0.
35

71
0.

50
00

0.
14

29
0.

21
43

0.
28

57
0.

78
57

X
0.

50
00

0.
71

43
0.

78
57

0.
50

00
0.

57
14

0.
28

57
0.

50
00

0.
14

29
0.

57
14

0.
78

57
0.

28
57

0.
71

43
0.

78
57

0.
35

71
0.

14
29

0.
64

29
0.

14
29

0.
28

57
0.

42
86

0.
64

29
0.

57
14

B
uc

ks
0.

14
29

0.
57

14
0.

35
71

0.
50

00
0.

21
43

0.
42

86
0.

28
57

0.
78

57
0.

57
14

X
0.

71
43

0.
71

43
0.

57
14

0.
64

29
0.

50
00

0.
57

14
0.

35
71

0.
64

29
0.

85
71

0.
28

57
0.

57
14

0.
78

57
0.

57
14

0.
50

00
0.

64
29

0.
14

29
0.

50
00

0.
42

86
0.

57
14

0.
57

14
H

aw
ks

0.
14

29
0.

64
29

0.
28

57
0.

57
14

0.
14

29
0.

42
86

0.
28

57
0.

64
29

0.
57

14
0.

42
86

X
0.

78
57

0.
50

00
0.

57
14

0.
35

71
0.

50
00

0.
21

43
0.

50
00

0.
64

29
0.

28
57

0.
64

29
0.

78
57

0.
42

86
0.

21
43

0.
64

29
0.

21
43

0.
42

86
0.

42
86

0.
64

29
0.

57
14

H
or

ne
ts

0.
07

14
0.

57
14

0.
14

29
0.

35
71

0.
07

14
0.

14
29

0.
21

43
0.

64
29

0.
28

57
0.

35
71

0.
28

57
X

0.
28

57
0.

64
29

0.
28

57
0.

35
71

0.
21

43
0.

42
86

0.
64

29
0.

14
29

0.
64

29
0.

64
29

0.
07

14
0.

07
14

0.
35

71
0.

14
29

0.
28

57
0.

42
86

0.
28

57
0.

64
29

H
ea

t
0.

28
57

0.
78

57
0.

42
86

0.
50

00
0.

28
57

0.
28

57
0.

42
86

0.
85

71
0.

57
14

0.
42

86
0.

50
00

0.
85

71
X

0.
92

86
0.

42
86

0.
57

14
0.

42
86

0.
57

14
0.

78
57

0.
35

71
0.

78
57

0.
78

57
0.

50
00

0.
50

00
0.

57
14

0.
35

71
0.

50
00

0.
64

29
0.

71
43

0.
85

71
M

ag
ic

0.
14

29
0.

57
14

0.
14

29
0.

50
00

0.
14

29
0.

21
43

0.
28

57
0.

50
00

0.
50

00
0.

35
71

0.
42

86
0.

50
00

0.
28

57
X

0.
28

57
0.

14
29

0.
28

57
0.

50
00

0.
57

14
0.

28
57

0.
71

43
0.

50
00

0.
35

71
0.

28
57

0.
42

86
0.

28
57

0.
28

57
0.

28
57

0.
42

86
0.

64
29

W
iz

ar
ds

0.
28

57
0.

71
43

0.
42

86
0.

78
57

0.
28

57
0.

57
14

0.
28

57
0.

85
71

0.
71

43
0.

78
57

0.
71

43
0.

85
71

0.
57

14
0.

71
43

X
0.

57
14

0.
57

14
0.

71
43

0.
85

71
0.

42
86

0.
78

57
0.

85
71

0.
64

29
0.

57
14

0.
71

43
0.

28
57

0.
64

29
0.

50
00

0.
57

14
0.

71
43

M
av

s
0.

21
43

0.
78

57
0.

35
71

0.
50

00
0.

28
57

0.
21

43
0.

35
71

0.
85

71
0.

57
14

0.
50

00
0.

57
14

0.
92

86
0.

64
29

0.
92

86
0.

50
00

X
0.

57
14

0.
57

14
0.

71
43

0.
50

00
0.

78
57

0.
71

43
0.

42
86

0.
50

00
0.

64
29

0.
35

71
0.

50
00

0.
57

14
0.

64
29

0.
85

71
R

oc
ke

ts
0.

21
43

0.
78

57
0.

35
71

0.
71

43
0.

42
86

0.
50

00
0.

28
57

0.
85

71
0.

85
71

0.
85

71
0.

85
71

0.
85

71
0.

57
14

0.
71

43
0.

85
71

0.
57

14
X

0.
85

71
0.

92
86

0.
57

14
0.

71
43

0.
78

57
0.

71
43

0.
64

29
0.

71
43

0.
28

57
0.

64
29

0.
42

86
0.

71
43

0.
64

29
G

ri
zz

li
es

0.
14

29
0.

57
14

0.
42

86
0.

57
14

0.
14

29
0.

42
86

0.
21

43
0.

64
29

0.
64

29
0.

57
14

0.
78

57
0.

71
43

0.
42

86
0.

50
00

0.
42

86
0.

42
86

0.
14

29
X

0.
78

57
0.

21
43

0.
57

14
0.

71
43

0.
42

86
0.

42
86

0.
64

29
0.

14
29

0.
57

14
0.

50
00

0.
50

00
0.

57
14

P
el

ic
an

s
0.

14
29

0.
57

14
0.

21
43

0.
35

71
0.

07
14

0.
28

57
0.

07
14

0.
64

29
0.

42
86

0.
28

57
0.

42
86

0.
57

14
0.

50
00

0.
57

14
0.

14
29

0.
35

71
0.

07
14

0.
50

00
X

0.
07

14
0.

57
14

0.
71

43
0.

14
29

0.
21

43
0.

42
86

0.
14

29
0.

28
57

0.
42

86
0.

42
86

0.
57

14
S

pu
rs

0.
28

57
0.

64
29

0.
42

86
0.

78
57

0.
50

00
0.

42
86

0.
35

71
0.

85
71

0.
85

71
0.

85
71

0.
78

57
0.

92
86

0.
64

29
0.

78
57

0.
78

57
0.

64
29

0.
78

57
0.

85
71

0.
92

86
X

0.
71

43
0.

85
71

0.
85

71
0.

64
29

0.
71

43
0.

14
29

0.
64

29
0.

42
86

0.
71

43
0.

71
43

N
ug

ge
ts

0.
14

29
0.

64
29

0.
21

43
0.

50
00

0.
21

43
0.

21
43

0.
35

71
0.

50
00

0.
42

86
0.

42
86

0.
35

71
0.

57
14

0.
28

57
0.

64
29

0.
21

43
0.

28
57

0.
28

57
0.

42
86

0.
50

00
0.

28
57

X
0.

57
14

0.
35

71
0.

14
29

0.
35

71
0.

21
43

0.
28

57
0.

28
57

0.
28

57
0.

42
86

W
ol

ve
s

0.
07

14
0.

57
14

0.
28

57
0.

28
57

0.
14

29
0.

28
57

0.
14

29
0.

64
29

0.
35

71
0.

35
71

0.
28

57
0.

57
14

0.
50

00
0.

64
29

0.
14

29
0.

50
00

0.
21

43
0.

28
57

0.
64

29
0.

14
29

0.
64

29
X

0.
14

29
0.

21
43

0.
42

86
0.

14
29

0.
28

57
0.

42
86

0.
35

71
0.

57
14

T
hu

nd
er

0.
14

29
0.

64
29

0.
42

86
0.

71
43

0.
21

43
0.

35
71

0.
42

86
0.

85
71

0.
71

43
0.

64
29

0.
71

43
0.

92
86

0.
64

29
0.

78
57

0.
57

14
0.

57
14

0.
42

86
0.

64
29

0.
85

71
0.

35
71

0.
71

43
0.

85
71

X
0.

57
14

0.
71

43
0.

14
29

0.
57

14
0.

42
86

0.
71

43
0.

71
43

B
la

ze
rs

0.
35

71
0.

78
57

0.
42

86
0.

78
57

0.
21

43
0.

42
86

0.
35

71
0.

85
71

0.
92

86
0.

57
14

0.
85

71
0.

92
86

0.
64

29
0.

92
86

0.
50

00
0.

50
00

0.
42

86
0.

71
43

0.
92

86
0.

35
71

0.
85

71
0.

78
57

0.
57

14
X

0.
78

57
0.

35
71

0.
71

43
0.

57
14

0.
78

57
0.

85
71

Ja
zz

0.
21

43
0.

71
43

0.
50

00
0.

64
29

0.
14

29
0.

35
71

0.
21

43
0.

64
29

0.
57

14
0.

42
86

0.
57

14
0.

71
43

0.
57

14
0.

71
43

0.
42

86
0.

50
00

0.
28

57
0.

50
00

0.
64

29
0.

28
57

0.
71

43
0.

78
57

0.
35

71
0.

35
71

X
0.

35
71

0.
50

00
0.

57
14

0.
57

14
0.

78
57

W
ar

ri
or

s
0.

71
43

0.
78

57
0.

50
00

0.
85

71
0.

64
29

0.
64

29
0.

78
57

0.
78

57
0.

85
71

0.
85

71
0.

85
71

0.
85

71
0.

71
43

0.
71

43
0.

78
57

0.
64

29
0.

85
71

0.
85

71
0.

85
71

0.
85

71
0.

78
57

0.
85

71
0.

85
71

0.
71

43
0.

64
29

X
0.

85
71

0.
71

43
0.

78
57

0.
78

57
C

li
pp

er
s

0.
28

57
0.

71
43

0.
28

57
0.

64
29

0.
28

57
0.

42
86

0.
35

71
0.

71
43

0.
71

43
0.

57
14

0.
71

43
0.

78
57

0.
50

00
0.

78
57

0.
35

71
0.

50
00

0.
42

86
0.

50
00

0.
78

57
0.

35
71

0.
71

43
0.

71
43

0.
57

14
0.

64
29

0.
57

14
0.

35
71

X
0.

57
14

0.
71

43
0.

78
57

La
ke

rs
0.

35
71

0.
78

57
0.

35
71

0.
50

00
0.

50
00

0.
50

00
0.

42
86

0.
85

71
0.

64
29

0.
57

14
0.

57
14

0.
85

71
0.

42
86

0.
85

71
0.

50
00

0.
64

29
0.

57
14

0.
57

14
0.

64
29

0.
57

14
0.

85
71

0.
71

43
0.

57
14

0.
50

00
0.

50
00

0.
50

00
0.

71
43

X
0.

64
29

0.
85

71
Su

ns
0.

14
29

0.
71

43
0.

21
43

0.
50

00
0.

28
57

0.
21

43
0.

35
71

0.
71

43
0.

50
00

0.
42

86
0.

50
00

0.
78

57
0.

50
00

0.
71

43
0.

50
00

0.
50

00
0.

42
86

0.
57

14
0.

71
43

0.
42

86
0.

78
57

0.
78

57
0.

42
86

0.
28

57
0.

64
29

0.
28

57
0.

28
57

0.
42

86
X

0.
71

43
K

in
gs

0.
14

29
0.

64
29

0.
21

43
0.

50
00

0.
21

43
0.

21
43

0.
28

57
0.

57
14

0.
50

00
0.

42
86

0.
42

86
0.

71
43

0.
28

57
0.

64
29

0.
28

57
0.

42
86

0.
35

71
0.

42
86

0.
50

00
0.

28
57

0.
78

57
0.

57
14

0.
28

57
0.

21
43

0.
35

71
0.

35
71

0.
42

86
0.

57
14

0.
35

71
X

  

52 Appendix

B
oo

le
an

pr
ef

er
en

ce
s

m
at

ri
x

O
B
=

  C
el

ti
cs

N
et

s
K

ni
ck

s
Si

xe
rs

R
ap

to
rs

B
ul

ls
C

av
s

P
is

to
ns

P
ac

er
s

B
uc

ks
H

aw
ks

H
or

ne
ts

H
ea

t
M

ag
ic

W
iz

ar
ds

M
av

s
R

oc
ke

ts
G

ri
zz

li
es

P
el

ic
an

s
S

pu
rs

N
ug

ge
ts

W
ol

ve
s

T
hu

nd
er

B
la

ze
rs

Ja
zz

W
ar

ri
or

s
C

li
pp

er
s

La
ke

rs
Su

ns
K

in
gs

C
el

ti
cs

X
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

N
et

s
0

X
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
K

ni
ck

s
0

1
X

1
0

0
0

1
1

1
1

1
1

1
0

1
0

1
1

0
1

1
0

1
1

0
1

1
1

1
Si

xe
rs

0
0

0
X

0
0

0
1

0
0

0
1

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

R
ap

to
rs

0
1

0
1

X
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
0

1
1

B
ul

ls
0

1
0

1
0

X
0

1
1

0
1

1
1

1
0

1
0

1
1

0
1

1
1

1
1

0
1

1
1

1
C

av
s

0
0

0
1

0
0

X
1

1
1

1
1

1
1

1
1

1
1

1
0

0
1

1
1

1
0

1
0

1
1

P
is

to
ns

0
0

0
0

0
0

0
X

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

P
ac

er
s

0
0

0
0

0
0

0
1

X
0

1
1

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

B
uc

ks
0

0
0

0
0

0
0

1
0

X
1

1
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
H

aw
ks

0
0

0
0

0
0

0
0

0
0

X
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

H
or

ne
ts

0
0

0
0

0
0

0
0

0
0

0
X

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

H
ea

t
0

1
0

0
0

0
0

1
0

0
0

1
X

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
1

1
M

ag
ic

0
0

0
0

0
0

0
0

0
0

0
0

0
X

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

W
iz

ar
ds

0
1

0
1

0
0

0
1

1
1

1
1

0
1

X
0

0
1

1
0

1
1

0
0

1
0

0
0

0
1

M
av

s
0

1
0

0
0

0
0

1
0

0
0

1
0

1
0

X
0

0
1

0
1

1
0

0
0

0
0

0
0

1
R

oc
ke

ts
0

1
0

1
0

0
0

1
1

1
1

1
0

1
1

0
X

1
1

0
1

1
1

0
1

0
0

0
1

0
G

ri
zz

li
es

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
X

1
0

0
1

0
0

0
0

0
0

0
0

P
el

ic
an

s
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
X

0
0

1
0

0
0

0
0

0
0

0
S

pu
rs

0
0

0
1

0
0

0
1

1
1

1
1

0
1

1
0

1
1

1
X

1
1

1
0

1
0

0
0

1
1

N
ug

ge
ts

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

X
0

0
0

0
0

0
0

0
0

W
ol

ve
s

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
X

0
0

0
0

0
0

0
0

T
hu

nd
er

0
0

0
1

0
0

0
1

1
0

1
1

0
1

0
0

0
0

1
0

1
1

X
0

1
0

0
0

1
1

B
la

ze
rs

0
1

0
1

0
0

0
1

1
0

1
1

0
1

0
0

0
1

1
0

1
1

0
X

1
0

1
0

1
1

Ja
zz

0
1

0
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

1
1

0
0

X
0

0
0

0
1

W
ar

ri
or

s
1

1
0

1
0

0
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
0

X
1

1
1

1
C

li
pp

er
s

0
1

0
0

0
0

0
1

1
0

1
1

0
1

0
0

0
0

1
0

1
1

0
0

0
0

X
0

1
1

La
ke

rs
0

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

X
0

1
Su

ns
0

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
X

1
K

in
gs

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
X

  

53

Draft workouts

Pichat algorithm calculation

The result of the Pichat algorithm has been calculated as follows:

P = (1 + 2, 3, 4, 5, 12)(2 + 3, 4, 6, 7, 8, 10, 11)(3 + 4, 5, 6, 8, 9, 10, 11, 12)(4 + 6, 8, 9, 10, 11)(5 + 7, 8)(6 + 7, 8, 11)(7 + 8, 9, 10, 11)(8 + 9, 10, 11, 12)(10 + 11)(11 + 12)

= (1, 2, 3 + 1, 2, 4, 5, 6, 8, 9, 10, 11, 12 + 1, 3, 4, 6, 7, 8, 10, 11 + 2, 3, 4, 5, 12 + 2, 3, 4, 6, 7, 8, 10, 11)(4 + 6, 8, 9, 10, 11)(5 + 7, 8)(6 + 7, 8, 11)(7 + 8, 9, 10, 11)(8 + 9, 10, 11, 12)(10 + 11)(11 + 12)

= (1, 2, 3, 4, 5, 6, 7 + 1, 2, 3, 4, 6, 7, 8 + 1, 2, 3, 4, 7, 8, 11 + 1, 2, 3, 5, 6, 8, 9, 10, 11 + 1, 2, 3, 6, 7, 8, 9, 10, 11 + 1, 2, 4, 5, 6, 8, 9, 10, 11, 12 + 1, 3, 4, 6, 7, 8, 10, 11 + 2, 3, 4, 5, 6, 7, 12 + 2, 3, 4, 5, 6, 8, 9, 10, 11, 12+

+ 2, 3, 4, 5, 7, 8, 11, 12 + 2, 3, 4, 6, 7, 8, 10, 11)(8 + 9, 10, 11, 12)(10 + 11)(11 + 12)

= 1, 2, 3, 4, 6, 7, 8, 10, 12 + 1, 2, 3, 4, 7, 8, 11 + 1, 2, 3, 5, 6, 8, 9, 10, 11 + 1, 2, 3, 6, 7, 8, 9, 10, 11 + 1, 2, 4, 5, 6, 8, 9, 10, 11, 12 + 1, 3, 4, 6, 8, 10, 11 + 2, 3, 4, 5, 6, 7, 8, 10, 12 + 2, 3, 4, 5, 6, 7, 9, 10, 11, 12+

+ 2, 3, 4, 5, 6, 8, 9, 10, 11, 12 + 2, 3, 4, 5, 7, 8, 11, 12 + 2, 3, 4, 6, 7, 8, 10, 11

Hamming distances

The Hamming distances matrix, calculated with the programmed algorithm in the
section called Hamming distances and similarities matrices in this Appendix, is as follows:



Fultz Ball Jackson Fox Tatum Isaac Smith Monk Ntilikina Collins Markannen Allen

Fultz 0.00 0.15 0.13 0.13 0.13 0.10 0.12 0.12 0.10 0.08 0.12 0.17
Ball 0.15 0.00 0.18 0.15 0.12 0.15 0.17 0.23 0.12 0.13 0.17 0.12

Jackson 0.13 0.18 0.00 0.13 0.20 0.20 0.12 0.22 0.20 0.18 0.25 0.20
Fox 0.13 0.15 0.13 0.00 0.10 0.13 0.12 0.18 0.13 0.15 0.22 0.10

Tatum 0.13 0.12 0.20 0.10 0.00 0.10 0.15 0.18 0.07 0.08 0.12 0.07
Isaac 0.10 0.15 0.20 0.13 0.10 0.00 0.18 0.15 0.10 0.12 0.15 0.10
Smith 0.12 0.17 0.12 0.12 0.15 0.18 0.00 0.17 0.18 0.17 0.20 0.12
Monk 0.12 0.23 0.22 0.18 0.18 0.15 0.17 0.00 0.15 0.20 0.13 0.15

Ntilikina 0.10 0.12 0.20 0.13 0.07 0.10 0.18 0.15 0.00 0.05 0.08 0.10
Collins 0.08 0.13 0.18 0.15 0.08 0.12 0.17 0.20 0.05 0.00 0.13 0.12

Markannen 0.12 0.17 0.25 0.22 0.12 0.15 0.20 0.13 0.08 0.13 0.00 0.15
Allen 0.17 0.12 0.20 0.10 0.07 0.10 0.12 0.15 0.10 0.12 0.15 0.00


Recall that the similarities matrix is built from the Hamming distances matrix as follows:

MS = M1 −MH ,

where MS is the similarities matrix, M1 is the matrix with ones in all boxes, and MH the
Hamming distances matrix.

Hungarian algorithm application

The Hungarian algorithm begins with the following square matrix:



c1 c2 c3 c4 c5

g1 0.9394 0.9394 0.9091 1 1
g2 0.8485 0.9394 0.9091 0.9394 0.8182
g3 0.6061 0.6667 0.7273 0.7576 0.6667
g4 0.6061 0.6364 0.6667 0.6970 0.5758
gF 1 1 1 1 1



54 Appendix

As a fictitious row has been added, the first step is to subtract from each element in the
matrix the minimum value in the column:



c1 c2 c3 c4 c5

g1 0.3333 0.3030 0.2424 0.3030 0.4242
g2 0.8485 0.9394 0.9091 0.9394 0.8182
g3 0.6061 0.6667 0.7273 0.7576 0.6667
g4 0.6061 0.6364 0.6667 0.6970 0.5758
gF 1 1 1 1 1


The following step is to subtract to each element the minimum value in the row:



c1 c2 c3 c4 c5

g1 0.0909 0.0606 0 0.0606 0.1818
g2 0 0.0606 0 0 0
g3 0 0.6667 0.7273 0.7576 0.6667
g4 0 0 0 0 0
gF 0.0909 0.0606 0.0303 0 0.1212


If an assignation between groups and coaches is possible, then the process is finished. If
not, the process has to be iterated until a solution is found.
In bold type below, a possible assignation can be seen:



c1 c2 c3 c4 c5

g1 0.0909 0.0606 0 0.0606 0.1818
g2 0 0.0606 0 0 0
g3 0 0.6667 0.7273 0.7576 0.6667
g4 0 0 0 0 0
gF 0.0909 0.0606 0.0303 0 0.1212


Therefore, the algorithm is stopped because an optimal assignation has been found.

55

Programming codes for the algorithms

Creation of the boolean order matrix

Notation:

- M is the initial fuzzy matrix.

- B is the final boolean matrix.

- orderMatrix is the final fuzzy matrix.

- c1,...,c14 are the matrices for each criteria.

1 # include < s t d l i b . h>
2 # include < s t d i o . h>
3 # include <math . h>
4
5 void f i l l M a t r i x (double ∗∗ , int , i n t) ;
6 double∗∗ createMemory (int , i n t) ;
7 i n t ∗∗ createIntMemory (int , i n t) ;
8 void c r i t e r i a M a t r i x (double ∗∗ , double ∗∗ , int , i n t) ;
9 void f i n a l M a t r i x (double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ ,

10 double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ ,
11 double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ , double ∗∗ , i n t) ;
12 void pr intMatr ix (double ∗∗ , int , i n t) ;
13 void p r i n t I n t M a t r i x (i n t ∗∗ , int , i n t) ;
14 void alphaCut (i n t ∗∗ , double ∗∗ , int , int , double) ;
15
16
17 i n t main (void) {
18 double ∗∗M,∗∗ c1 ,∗∗ c2 ,∗∗ c3 ,∗∗ c4 ,∗∗ c5 ,∗∗ c6 ,∗∗ c7 ,∗∗ c8 ,
19 ∗∗c9 ,∗∗ c10 ,∗∗ c11 ,∗∗ c12 ,∗∗ c13 ,∗∗ c14 ,∗∗ orderMatrix ;
20 i n t i , j , dim ;
21 i n t ∗∗B ;
22 double alpha ;
23 FILE ∗ f ;
24
25 f = fopen (" printMalgrange . t x t " , "w") ;
26
27 alpha = 0 . 6 5 ;
28
29 /∗ C r e a t e s p a c e f o r t h e m a t r i c e s ∗ /
30 M = createMemory (3 0 , 1 4) ;
31 c1 = createMemory (3 0 , 3 0) ;
32 c2 = createMemory (3 0 , 3 0) ;
33 c3 = createMemory (3 0 , 3 0) ;

56 Appendix

34 c4 = createMemory (3 0 , 3 0) ;
35 c5 = createMemory (3 0 , 3 0) ;
36 c6 = createMemory (3 0 , 3 0) ;
37 c7 = createMemory (3 0 , 3 0) ;
38 c8 = createMemory (3 0 , 3 0) ;
39 c9 = createMemory (3 0 , 3 0) ;
40 c10 = createMemory (3 0 , 3 0) ;
41 c11 = createMemory (3 0 , 3 0) ;
42 c12 = createMemory (3 0 , 3 0) ;
43 c13 = createMemory (3 0 , 3 0) ;
44 c14 = createMemory (3 0 , 3 0) ;
45 orderMatrix = createMemory (3 0 , 3 0) ;
46 B = createIntMemory (3 0 , 3 0) ;
47
48
49 /∗ F i l l in t h e i n i t i a l ma t r i x ∗ /
50 f i l l M a t r i x (M, 3 0 , 1 4) ;
51
52 /∗ F i l l in c r i t e r i a m a t r i c e s ∗ /
53 c r i t e r i a M a t r i x (c1 ,M, 3 0 , 0) ;
54 c r i t e r i a M a t r i x (c2 ,M, 3 0 , 1) ;
55 c r i t e r i a M a t r i x (c3 ,M, 3 0 , 2) ;
56 c r i t e r i a M a t r i x (c4 ,M, 3 0 , 3) ;
57 c r i t e r i a M a t r i x (c5 ,M, 3 0 , 4) ;
58 c r i t e r i a M a t r i x (c6 ,M, 0 , 5) ;
59 c r i t e r i a M a t r i x (c7 ,M, 3 0 , 6) ;
60 c r i t e r i a M a t r i x (c8 ,M, 3 0 , 7) ;
61 c r i t e r i a M a t r i x (c9 ,M, 3 0 , 8) ;
62 c r i t e r i a M a t r i x (c10 ,M, 3 0 , 9) ;
63 c r i t e r i a M a t r i x (c11 ,M, 3 0 , 1 0) ;
64 c r i t e r i a M a t r i x (c12 ,M, 3 0 , 1 1) ;
65 c r i t e r i a M a t r i x (c13 ,M, 3 0 , 1 2) ;
66 c r i t e r i a M a t r i x (c14 ,M, 3 0 , 1 3) ;
67
68 /∗ B u i l d t h e f i n a l m at r ix ∗ /
69 f i n a l M a t r i x (orderMatrix , c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , c9 ,
70 c10 , c11 , c12 , c13 , c14 , 3 0) ;
71
72 /∗ P r i n t t h e f i n a l ma t r i x ∗ /
73 f p r i n t f (f , " F i n a l matrix :\n") ;
74 for (i =0 ; i <30; i ++) {
75 for (j =0 ; j <30; j ++) {
76 f p r i n t f (f , " %6.4 l f " , orderMatrix [i] [j]) ;
77 }
78 f p r i n t f (f , "\n") ;

57

79 }
80 /∗ p r i n t M a t r i x (o rde rMatr ix , 3 0 , 3 0 ,) ; ∗ /
81
82 /∗ Apply t h e a lpha−c u t t o our f i n a l mat r i x ∗ /
83 alphaCut (B , orderMatrix , 3 0 , 3 0 , alpha) ;
84
85 /∗ P r i n t t h e b o o l e a n ma t r ix ∗ /
86 f p r i n t f (f , "\n\n\nBoolean matrix :\n") ;
87 for (i =0 ; i <30; i ++) {
88 for (j =0 ; j <30; j ++) {
89 f p r i n t f (f , "%d " ,B [i] [j]) ;
90 }
91 f p r i n t f (f , "\n") ;
92 }
93
94 f c l o s e (f) ;
95
96 return 0 ;
97 }
98
99

100 /∗−−∗ /
101
102 double∗∗ createMemory (i n t rows , i n t c o l s) {
103 i n t i ;
104 double ∗∗M;
105
106 M = (double ∗∗) c a l l o c (rows , s i ze of (double ∗)) ;
107 for (i =0 ; i <rows ; i ++)
108 M[i] = (double ∗) c a l l o c (co ls , s i ze of (double)) ;
109
110 return M;
111 }
112
113
114 /∗−−∗ /
115
116 i n t ∗∗ createIntMemory (i n t rows , i n t c o l s) {
117 i n t i ;
118 i n t ∗∗M;
119
120 M = (i n t ∗∗) c a l l o c (rows , s i ze of (i n t ∗)) ;
121 for (i =0 ; i <rows ; i ++)
122 M[i] = (i n t ∗) c a l l o c (co ls , s i ze of (i n t)) ;
123

58 Appendix

124 return M;
125 }
126
127
128 /∗−−∗ /
129
130 void f i l l M a t r i x (double∗∗ M, i n t nrows , i n t ncols) {
131 i n t i , j ;
132 double value ;
133 FILE ∗ f ;
134
135 /∗ Read t h e m at r i x in t h e f i l e O r d e r I n i t i a l M a t r i x . t x t ∗ /
136 f = fopen (" O r d e r I n i t i a l M a t r i x . t x t " , " r ") ;
137
138 i =0;
139 j =0;
140
141 value = getc (f) ;
142 while (value !=EOF) {
143 M[i] [j]= value ;
144
145 j ++;
146 value = getc (f) ;
147
148 i f (j ==30) {
149 i ++;
150 j =0;
151 }
152 }
153
154 f c l o s e (f) ;
155
156 return ;
157 }
158
159
160 /∗−−∗ /
161
162
163 void c r i t e r i a M a t r i x (double∗∗ c , double∗∗ M, i n t nrows , i n t c o l) {
164 i n t i , j ;
165
166 for (i =0 ; i <nrows ; i ++) {
167 for (j =0 ; j <nrows ; j ++) {
168 i f (M[i] [c o l] >= M[j] [c o l])

59

169 c [i] [j] = 1 ;
170 e lse
171 c [i] [j] = 0 ;
172 }
173 }
174
175 return ;
176 }
177
178
179 /∗−−∗ /
180
181
182 void f i n a l M a t r i x (double ∗∗orderMatrix , double ∗∗c1 , double ∗∗c2 ,
183 double ∗∗c3 , double ∗∗c4 , double ∗∗c5 , double ∗∗c6 ,
184 double ∗∗c7 , double ∗∗c8 , double ∗∗c9 , double ∗∗ c10 ,
185 double ∗∗ c11 , double ∗∗ c12 , double ∗∗ c13 , double ∗∗ c14 , i n t n) {
186 i n t i , j ;
187
188 for (i =0 ; i <n ; i ++) {
189 for (j =0 ; j <n ; j ++) {
190 orderMatrix [i] [j] = (c1 [i] [j]+ c2 [i] [j]+ c3 [i] [j]+ c4 [i] [j]+
191 c5 [i] [j]+ c6 [i] [j]+ c7 [i] [j]+ c8 [i] [j]+
192 c9 [i] [j]+ c10 [i] [j]+ c11 [i] [j]+ c12 [i] [j]+
193 c13 [i] [j]+ c14 [i] [j]) / 1 4 . ;
194 }
195 }
196
197 return ;
198 }
199
200
201 /∗−−∗ /
202
203
204 void pr intMatr ix (double ∗∗M, i n t nrows , i n t ncols) {
205 i n t i , j ;
206
207 for (i =0 ; i <nrows ; i ++) {
208 for (j =0 ; j <ncols ; j ++) {
209 p r i n t f (" %6.4 l f " ,M[i] [j]) ;
210 }
211 p r i n t f ("\n") ;
212 }
213

60 Appendix

214 return ;
215 }
216
217
218 /∗−−∗ /
219
220
221 void p r i n t I n t M a t r i x (i n t ∗∗M, i n t nrows , i n t ncols) {
222 i n t i , j ;
223
224 for (i =0 ; i <nrows ; i ++) {
225 for (j =0 ; j <ncols ; j ++) {
226 p r i n t f ("%d " ,M[i] [j]) ;
227 }
228 p r i n t f ("\n") ;
229 }
230
231 return ;
232 }
233
234
235 /∗−−∗ /
236
237
238 void alphaCut (i n t ∗∗B , double ∗∗M, i n t nrows , i n t ncols , double alpha) {
239 i n t i , j ;
240
241 for (i =0 ; i <nrows ; i ++) {
242 for (j =0 ; j <ncols ; j ++) {
243 i f (M[i] [j] >= alpha)
244 B [i] [j] = 1 ;
245 e lse
246 B [i] [j] = 0 ;
247 }
248 }
249
250 return ;
251 }

61

Hamming distances and similarities matrices

Notation:

- Mqualities is the matrix containing the qualities for each player.

- Mone is a matrix with all elements equal to 1.

- MHamming is the Hamming distances matrix.

- MSimil is the similarities matrix.

1 # include < s t d l i b . h>
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < f l o a t . h>
5
6 double∗∗ createMemory (int , i n t) ;
7 void d e c l a r e M q u a l i t i e s (double ∗∗) ;
8 void declareMone (double ∗∗) ;
9 void HammingDist (double ∗∗ , double ∗∗ , int , i n t) ;

10 void s u b s t r a c t M a t r i x (double ∗∗ , double ∗∗ , double ∗∗ , int , i n t) ;
11 void pr intMatr ix (double ∗∗ , int , i n t) ;
12 void freeUpMemory (double ∗∗ , i n t) ;
13
14
15 i n t main (void) {
16 double ∗∗Mquali t ies , ∗∗MHamming, ∗∗Mone , ∗∗MSimil ;
17 i n t players , q u a l i t i e s , i , j ;
18 FILE ∗ f ;
19
20 f = fopen (" HammingSimilMatrix . t x t " , "w") ;
21
22 /∗ Read t h e number o f e l e m e n t s in s e t X∗ /
23 players = 1 2 ;
24 /∗ Read t h e number o f e l e m e n t s in s e t Y∗ /
25 q u a l i t i e s = 1 2 ;
26
27 /∗ C r e a t e memory f o r a l l t h e m a t r i c e s i n v o l v e d in t h e a l g o r i t h m ∗ /
28 Mqual i t ies = createMemory (players , q u a l i t i e s) ;
29 MHamming = createMemory (players , p layers) ;
30 Mone = createMemory (players , p layers) ;
31 MSimil = createMemory (players , p layers) ;
32
33 /∗ D e c l a r a t i o n o f t h e m a t r i c e s ∗ /
34 d e c l a r e M q u a l i t i e s (Mqual i t ies) ;
35 declareMone (Mone) ;

62 Appendix

36
37 /∗ C a l c u l a t i o n o f Hamming ma t r ix ∗ /
38 HammingDist (MHamming, Mqual i t ies , players , q u a l i t i e s) ;
39
40 /∗ C a l c u l a t i o n o f S i m i l a r i t i e s Matrix ∗ /
41 s u b s t r a c t M a t r i x (MSimil , Mone ,MHamming, players , p layers) ;
42
43 /∗ P r i n t t h e Hamming Matrix ∗ /
44 pr intMatr ix (MHamming, players , p layers) ;
45
46 /∗ F r e e up memory f o r a l l m a t r i c e s i n v o l v e d in t h e a l g o r i t h m ∗ /
47 freeUpMemory (Mqual i t ies , p layers) ;
48 freeUpMemory (MHamming, p layers) ;
49 freeUpMemory (Mone , p layers) ;
50 freeUpMemory (MSimil , p layers) ;
51
52 return 0 ;
53 }
54
55
56
57
58 /∗−−∗ /
59
60 double∗∗ createMemory (i n t rows , i n t c o l s) {
61 i n t i ;
62 double ∗∗M;
63
64 M = (double ∗∗) c a l l o c (rows , s i ze of (double ∗)) ;
65 for (i =0 ; i <rows ; i ++)
66 M[i] = (double ∗) c a l l o c (co ls , s i ze of (double)) ;
67
68 return M;
69 }
70
71
72 /∗−−∗ /
73
74 void d e c l a r e M q u a l i t i e s (double∗∗ Mqual i t ies) {
75 i n t i , j ;
76 double value ;
77 FILE ∗ f ;
78
79 /∗ Read t h e m at r i x in t h e f i l e HammingQual i t ies . t x t ∗ /
80 f = fopen (" HammingQualities . t x t " , " r ") ;

63

81
82 i =0;
83 j =0 ;
84
85 value = getc (f) ;
86 while (value !=EOF) {
87 Mqual i t ies [i] [j]= value ;
88
89 j ++;
90 value = getc (f) ;
91
92 i f (j ==12) {
93 i ++;
94 j =0;
95 }
96 }
97
98 f c l o s e (f) ;
99

100 return ;
101 }
102
103
104 /∗−−∗ /
105
106 void declareMone (double∗∗ Mone) {
107 i n t i , j ;
108
109 for (i =0 ; i <12; i ++) {
110 for (j =0 ; j <12; j ++) {
111 Mone[i] [j] = 1 ;
112 }
113 }
114
115 return ;
116 }
117
118
119 /∗−−∗ /
120
121
122 void HammingDist (double∗∗ Hamming, double∗∗ or ig in ,
123 i n t dimHamming , i n t n c r i t e r i a) {
124 i n t i , j , k ;
125 double d i s t ;

64 Appendix

126
127 for (i =0 ; i <dimHamming ; i ++) {
128 for (j =0 ; j <dimHamming ; j ++) {
129 for (k =0;k< n c r i t e r i a ; k++) {
130 d i s t = o r i g i n [i] [k]−o r i g i n [j] [k] ;
131 i f (d i s t <0)
132 d i s t = −d i s t ;
133 Hamming[i] [j] = Hamming[i] [j] + d i s t ;
134 }
135 Hamming[i] [j] = (Hamming[i] [j]) /12;
136 }
137 }
138
139 return ;
140 }
141
142
143 /∗−−∗ /
144
145 void s u b s t r a c t M a t r i x (double∗∗ substr , double∗∗ M1, double∗∗ M2,
146 i n t rows , i n t c o l s) {
147 i n t i , j ;
148
149 for (i =0 ; i <rows ; i ++) {
150 for (j =0 ; j < c o l s ; j ++) {
151 subs t r [i] [j] = M1[i] [j] − M2[i] [j] ;
152 }
153 }
154
155 return ;
156 }
157
158
159 /∗−−∗ /
160
161 void pr intMatr ix (double∗∗ M, i n t rows , i n t c o l s) {
162 i n t i , j ;
163 FILE ∗ f ;
164
165 f = fopen (" HammingSimilMatrix . t x t " , "w") ;
166
167 for (i =0 ; i <rows ; i ++) {
168 for (j =0 ; j < c o l s ; j ++)
169 f p r i n t f (f , " %4.2 l f " , M[i] [j]) ;
170 f p r i n t f (f , "\n") ;

65

171 }
172
173 f c l o s e (f) ;
174
175 return ;
176 }
177
178
179 /∗−−∗ /
180
181 void freeUpMemory (double∗∗ M, i n t rows) {
182 i n t i ;
183
184 for (i =0 ; i <rows ; i ++)
185 f r e e (M[i]) ;
186 f r e e (M) ;
187
188 return ;
189 }

66 Appendix

Forgotten Effects algorithm

Notation:

- Set X is the set of causes.

- Mx is the relation matrix between causes and causes.

- Set Y is the set of effects.

- My is the relation matrix between effects and effects.

- Rxy is the relation matrix between causes and effects.

1 # include < s t d l i b . h>
2 # include < s t d i o . h>
3 # include <math . h>
4 # include < f l o a t . h>
5
6 double∗∗ createMemory (int , i n t) ;
7 void declareMx (double ∗∗) ;
8 void declareMy (double ∗∗) ;
9 void declareRxy (double ∗∗) ;

10 void MaxMinConvolution (double ∗∗ , double ∗∗ , double ∗∗ , int , int , i n t) ;
11 void s u b s t r a c t M a t r i x (double ∗∗ , double ∗∗ , double ∗∗ , int , i n t) ;
12 void pr intMatr ix (double ∗∗ , int , i n t) ;
13 void freeUpMemory (double ∗∗ , i n t) ;
14 double min (double , double) ;
15
16
17 i n t main (void) {
18 double ∗∗Mx, ∗∗My, ∗∗Rxy , ∗∗MxConvRxy ,
19 ∗∗CumulativeEffects , ∗∗ F o r g o t t e n E f f e c t s ;
20 i n t elementsSetX , elementsSetY , i , j ;
21 FILE ∗ f ;
22
23 f = fopen (" F o r g o t t e n P r i n t . t x t " , "w") ;
24
25 /∗ r e a d t h e number o f e l e m e n t s in s e t X∗ /
26 elementsSetX = 1 1 ;
27 /∗ r e a d t h e number o f e l e m e n t s in s e t Y∗ /
28 elementsSetY = 5 ;
29
30 /∗ C r e a t e memory f o r a l l t h e m a t r i c e s i n v o l v e d in t h e a l g o r i t h m ∗ /
31 Mx = createMemory (elementsSetX , elementsSetX) ;
32 My = createMemory (elementsSetY , elementsSetY) ;
33 Rxy = createMemory (elementsSetX , elementsSetY) ;

67

34 MxConvRxy = createMemory (elementsSetX , elementsSetY) ;
35 Cumulat iveEffects = createMemory (elementsSetX , elementsSetY) ;
36 F o r g o t t e n E f f e c t s = createMemory (elementsSetX , elementsSetY) ;
37
38 /∗ D e c l a r a t i o n o f t h e m a t r i c e s ∗ /
39 declareMx (Mx) ;
40 declareMy (My) ;
41 declareRxy (Rxy) ;
42
43 /∗MaxMinConv f o r Mx and Rxy ; ou t pu t=MxConvRxy∗ /
44 MaxMinConvolution (MxConvRxy ,Mx, Rxy , elementsSetX ,
45 elementsSetX , elementsSetY) ;
46
47 /∗MaxMinConv f o r MxConvRxy and My; ou t pu t= C u m u l a t i v e E f f e c t s ∗ /
48 MaxMinConvolution (Cumulat iveEffects , MxConvRxy ,My, elementsSetX ,
49 elementsSetY , elementsSetY) ;
50
51 /∗ s u b t r a c t M a t r i x f o r C u m u l a t i v e E f f e c t s and Rxy ; o u t put= F o r g o t t e n E f f e c t s ∗ /
52 s u b s t r a c t M a t r i x (F o r g o t t e n E f f e c t s , Cumulat iveEffects , Rxy ,
53 elementsSetX , elementsSetY) ;
54
55 /∗ P r i n t F o r g o t t e n E f f e c t s ma t r ix ∗ /
56 pr intMatr ix (F o r g o t t e n E f f e c t s , elementsSetX , elementsSetY) ;
57
58 /∗ F r e e up memory f o r a l l m a t r i c e s i n v o l v e d in t h e a l g o r i t h m ∗ /
59 freeUpMemory (Mx, elementsSetX) ;
60 freeUpMemory (My, elementsSetY) ;
61 freeUpMemory (Rxy , elementsSetX) ;
62 freeUpMemory (MxConvRxy , elementsSetX) ;
63 freeUpMemory (Cumulat iveEffects , elementsSetX) ;
64 freeUpMemory (F o r g o t t e n E f f e c t s , elementsSetX) ;
65
66 return 0 ;
67 }
68
69
70
71
72 /∗−−∗ /
73
74 double∗∗ createMemory (i n t rows , i n t c o l s) {
75 i n t i ;
76 double ∗∗M;
77
78 M = (double ∗∗) c a l l o c (rows , s i ze of (double ∗)) ;

68 Appendix

79 for (i =0 ; i <rows ; i ++)
80 M[i] = (double ∗) c a l l o c (co ls , s i ze of (double)) ;
81
82 return M;
83 }
84
85
86 /∗−−∗ /
87
88 void declareMx (double∗∗ Mx) {
89 i n t i , j ;
90 double value ;
91 FILE ∗ f ;
92
93 /∗ Read t h e m at r i x in t h e f i l e ForgottenMx . t x t ∗ /
94 f = fopen (" ForgottenMx . t x t " , " r ") ;
95
96 i =0;
97 j =0 ;
98
99 value = getc (f) ;

100 while (value !=EOF) {
101 Mx[i] [j]= value ;
102
103 j ++;
104 value = getc (f) ;
105
106 i f (j ==11) {
107 i ++;
108 j =0;
109 }
110 }
111
112 f c l o s e (f) ;
113
114 return ;
115 }
116
117
118 /∗−−∗ /
119
120 void declareMy (double∗∗ My) {
121 i n t i , j ;
122 double value ;
123 FILE ∗ f ;

69

124
125 /∗ Read t h e mat r i x in t h e f i l e ForgottenMy . t x t ∗ /
126 f = fopen (" ForgottenMy . t x t " , " r ") ;
127
128 i =0;
129 j =0;
130
131 value = getc (f) ;
132 while (value !=EOF) {
133 My[i] [j]= value ;
134
135 j ++;
136 value = getc (f) ;
137
138 i f (j ==5) {
139 i ++;
140 j =0;
141 }
142 }
143
144 f c l o s e (f) ;
145
146 return ;
147 }
148
149
150 /∗−−∗ /
151
152 void declareRxy (double∗∗ Rxy) {
153 i n t i , j ;
154 double value ;
155 FILE ∗ f ;
156
157 /∗ Read t h e mat r i x in t h e f i l e Forgo t t enRxy . t x t ∗ /
158 f = fopen (" ForgottenRxy . t x t " , " r ") ;
159
160 i =0;
161 j =0;
162
163 value = getc (f) ;
164 while (value !=EOF) {
165 Rxy [i] [j]= value ;
166
167 j ++;
168 value = getc (f) ;

70 Appendix

169
170 i f (j ==5) {
171 i ++;
172 j =0;
173 }
174 }
175
176 f c l o s e (f) ;
177
178 return ;
179 }
180
181
182 /∗−−∗ /
183
184 void MaxMinConvolution (double∗∗ conv , double∗∗ M1, double∗∗ M2,
185 i n t rowsM1 , i n t colsM1 , i n t colsM2) {
186 i n t i , j , k ;
187 double m;
188
189
190 for (i =0 ; i <rowsM1 ; i ++) {
191 for (j =0 ; j <colsM2 ; j ++) {
192 conv [i] [j] = 0 ;
193 for (k =0;k<colsM1 ; k++) {
194 m = min (M1[i] [k] ,M2[k] [j]) ;
195 i f (m>conv [i] [j]) {
196 conv [i] [j] = m;
197 }
198 }
199 }
200 }
201
202 return ;
203 }
204
205
206 /∗−−∗ /
207
208 void s u b s t r a c t M a t r i x (double∗∗ substr , double∗∗ M1, double∗∗ M2,
209 i n t rows , i n t c o l s) {
210 i n t i , j ;
211
212 for (i =0 ; i <rows ; i ++)
213 for (j =0 ; j < c o l s ; j ++)

71

214 subs t r [i] [j] = M1[i] [j] − M2[i] [j] ;
215
216 return ;
217 }
218
219
220 /∗−−∗ /
221
222 void pr intMatr ix (double∗∗ M, i n t rows , i n t c o l s) {
223 i n t i , j ;
224 FILE ∗ f ;
225
226 f = fopen (" F o r g o t t e n P r i n t . t x t " , "w") ;
227
228 for (i =0 ; i <rows ; i ++) {
229 for (j =0 ; j < c o l s ; j ++)
230 f p r i n t f (f , " %4.2 l f " , M[i] [j]) ;
231 f p r i n t f (f , "\n") ;
232 }
233
234 f c l o s e (f) ;
235
236 return ;
237 }
238
239
240 /∗−−∗ /
241
242 void freeUpMemory (double∗∗ M, i n t rows) {
243 i n t i ;
244
245 for (i =0 ; i <rows ; i ++)
246 f r e e (M[i]) ;
247 f r e e (M) ;
248
249 return ;
250 }
251
252
253 /∗−−∗ /
254
255 double min (double a , double b) {
256 double r ;
257
258 i f (a<=b)

72 Appendix

259 r=a ;
260 i f (a>b)
261 r=b ;
262
263 return r ;
264 }

