
Numerische Mathematik manuscript No.
(will be inserted by the editor)

Pricing Early-Exercise and Discrete Barrier Options by
Shannon Wavelet Expansions

S.C. Maree · L. Ortiz-Gracia · C.W. Oosterlee

Received: date / Accepted: date

Abstract We present a pricing method based on Shannon wavelet expansions for
early-exercise and discretely-monitored barrier options under exponential Lévy as-
set dynamics. Shannon wavelets are smooth, and thus approximate the densities that
occur in finance well, resulting in exponential convergence. Application of the Fast
Fourier Transform yields an efficient implementation and since wavelets give local
approximations, the domain boundary errors can be naturally resolved, which is the
main improvement over existing methods.

Mathematics Subject Classification (2000) 65D30 · 91B24 · 65T60

1 Introduction

Early-exercise options and discrete barrier options are important options for which
no analytic valuation formulas exist. Robust and efficient pricing of these options
outside the Black-Scholes-Merton framework is a challenging problem.

Bermudan options are basically options that can be exercised at a finite set of
dates prior to maturity. This path-dependency and the requirement of the optimal
early-exercise strategy make efficient pricing of Bermudan options challenging.

A broad class of option pricing methods is the class of so-called transform meth-
ods, where computations take place in the Fourier domain, often utilizing the Fast

S.C. Maree
University of Amsterdam, Academic Medical Center, The Netherlands
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
E-mail: maree@cwi.nl

L. Ortiz-Gracia
University of Barcelona, Department of Econometrics, Diagonal 690, 08034 Barcelona, Spain
E-mail: luis.ortiz-gracia@ub.edu

C.W. Oosterlee
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,
Delft University of Technology, Delft Institute of Applied Mathematics, Delft, The Netherlands
E-mail: c.w.oosterlee@cwi.nl

2 S.C. Maree et al.

Fourier Transform (FFT) for fast computations [3,4,8,9,10,16]. Option pricing meth-
ods based on wavelet expansions have been discussed in [12,14,15] for European op-
tions. A method for pricing discrete barrier options with a wavelet expansion method
is introduced in [11].

The SWIFT (Shannon Wavelet Inverse Fourier Technique) method [15] is an op-
tion pricing method for European options based on a Shannon wavelet expansion of
the underlying density function. Shannon wavelets are smooth wavelets generated
from the cardinal sine function [5]. Shannon wavelets have been used before in the
pricing of discrete barrier options in [10], but to approximate Hilbert transforms. In
the SWIFT method, the Shannon wavelet expansion is used to directly approximate
the underlying density function.

In this paper, we extend the theory of the SWIFT method for European options,
and we derive a complete error bound, proving that it exhibits exponential conver-
gence with respect to the wavelet approximation scale.

We furthermore show that the SWIFT method can be reduced to the state of the
art COS method [8] under specific parameter choices. The main difference between
the two methods is that for the COS method, one chooses a finite computational
domain, and recovers the underlying density function by a Fourier series expansion.
The accuracy is then controlled by adding more Fourier terms, but the computational
domain cannot be increased without recomputing all coefficients. In many situations
however, for example in stochastic control problems, backward stochastic differential
equations (BSDEs) or recursive pricing problems like Bermudan option pricing, it
is unclear how to select a proper computational domain a priori. Then due to the
recursion in time, errors caused by an insufficient domain propagate, resulting in
incorrect option prices.

With wavelet series expansions the procedure goes differently. First, one deter-
mines a required accuracy, and then the size of the domain can be controlled by
adding more wavelet terms. An important result is that for Shannon wavelets, the
required wavelet approximation scale can be determined a priori using analytic prop-
erties of the characteristic function, and the computational domain can be determined
recursively, making the method parameter-free.

Finally, we extend the SWIFT method to the pricing of path-dependent and dis-
crete barrier options under exponential Lévy dynamics. We can speed up the com-
putations by benefiting from the FFT, but the main advantage being that we have a
natural solution to prevent domain boundary errors. We show numerically that the
method exhibits exponential convergence with respect to the wavelet scale when the
underlying density is smooth, and algebraic convergence otherwise.

This paper is organized as follows. In Section 2, the basics of wavelet approxi-
mation theory are discussed in the context of the Multi Resolution Analysis (MRA)
framework, together with an analysis of the Shannon MRA. Then, we describe the
SWIFT method for European options in Section 3 and prove exponential convergence
with respect to the wavelet scale.

An efficient algorithm for Bermudan option pricing with the SWIFT method is
presented in Section 4. Moreover, we present a second approach of approximating
the wavelet coefficients in Section 4.2, which is beneficial for short maturity options.
In Section 4.3, we show how to price discretely monitored barrier options according

Pricing Early-Exercise and Discrete Barrier Options 3

to the same principle. Numerical results showing exponential convergence and im-
proved boundary behavior are presented in Section 5 and we conclude in Section 6.

2 Multi Resolution Analysis

Point of departure for a wavelet analysis is the function space L2(R). A Multi Res-
olution Analysis (MRA) consists of a sequence of nested successive approximation
spaces Vm in L2(R), being closed subspaces that satisfy,

· · · ⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ ·· · , (1)

with the properties, ⋃
m∈Z

Vm = L2(R), and
⋂

m∈Z
Vm = {0}. (2)

There are many subspaces that satisfy the two properties above that have nothing to do
with multi resolution. Multi resolution is a consequence of an additional requirement,

f (x) ∈Vm⇔ f (2x) ∈Vm+1, (3)

or equivalently, f (x)∈V0⇔ f (2mx)∈Vm, that is, all the spaces Vm are scaled versions
of the central space V0.

The second feature we require from an MRA is invariance of V0 under integer
translations,

f (x) ∈V0⇒ f (x− k) ∈V0, for all k ∈ Z. (4)
Requirement (3) implies a similar translation for the spaces Vm, i.e., if f (x) ∈ Vm⇒
f (x−2mk) ∈Vm for all k ∈ Z. We are now ready to define MRA.

Definition 1 (MRA) Let φ ∈L2(R) be the generator of a wavelet family {φm,k}m,k∈Z
with φm,k(x) := 2

m
2 φ(2mx− k), and define the spaces Vm ⊂ L2(R) as,

Vm := closure
L2(R)

〈
{φm,k}k∈Z

〉
, m∈ Z . (5)

If Vm satisfies the properties (1)-(4), and {φ0,k} forms an orthogonal basis1 of V0,
then we say that φ generates an MRA, and φ is called a scaling function, or father
wavelet.

In words, Definition 1 states that an MRA is a special structure of nested spaces
generated from a single function, called the scaling function.

Lemma 1 Let us define Pm f as the orthogonal projection of a function f ∈ L2(R)
on the space Vm of (5), which is by construction given by,

Pm f (x) = ∑
k∈Z

〈
f ,φm,k

〉
φm,k(x), (6)

where the inner product is 〈 f , g〉 :=
∫
R f (x)g(x)dx. Then, convergence of the projec-

tion f (x) = limm→∞ Pm f (x) holds in the L2(R)-norm.

For a proof of the L2(R)-convergence of wavelet approximations of Lemma 1 and
more theory on wavelet approximations, see for example [6,7,13].

1 This definition can be relaxed by requiring that the set {φ0,k} forms a Riesz-basis of V0, see [7].

4 S.C. Maree et al.

x
-10 -8 -6 -4 -2 0 2 4 6 8 10

si
nc

(x
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Shannon Scaling Function

Fig. 1 Shannon Scaling function sinc(x) := sin(πx)/(πx).

2.1 Shannon Wavelet Approximations

Shannon wavelets are named after Claude Shannon, “the father of information the-
ory” and founder of the sampling theory in signal analysis [18]. The key function in
that context is the cardinal sine function sinc(x) := sin(πx)

πx , extended by sinc(0) := 1,
as shown in Figure 1. In an MRA setting, this cardinal sine function will perform the
role of scaling function, φ(x) := sinc(x), which we refer to as the Shannon scaling
function. The Shannon scaling function is particularly useful due to its simplicity in
the Fourier domain,

φ̂(ω) :=
∫
R

φ(x)e−iωx dx = rect
(

ω

2π

)
,

where rect() is the rectangle function, defined as,

rect(x) =

1, if |x|< 1

2 ,
1
2 , if |x|= 1

2 ,

0, if |x|> 1
2 .

Due to this simplicity in the Fourier domain, there is a close connection with band-
limited functions.

Definition 2 A function f is called band-limited if there exists a positive constant
B < ∞, such that,

f (x) =
1

2π

∫ Bπ

−Bπ

f̂ (ω)eiωx dω,

i.e., its Fourier transform f̂ is identically zero on |ω| > Bπ . The parameter B is re-
ferred to as the bandwidth of f .

We consider an MRA generated from the Shannon scaling function, defined as
φ(x) := sinc(x), with wavelets defined by φm,k(x) := 2

m
2 sinc(2mx−k), and its Fourier

transform φ̂m,k is given by,

φ̂m,k(ω) = 2−
m
2 e−iω k

2m rect
(

ω

2m+1π

)
.

The relation between the Shannon MRA and band-limited functions is stated in
the following lemma from [19].

Pricing Early-Exercise and Discrete Barrier Options 5

Lemma 2 Consider an MRA generated from the Shannon scaling function φ(x) =
sinc(x). The space Vm as defined in Definition 1 is precisely the space of all functions
f ∈ L2(R) with bandwidth B≤ 2m.

Combining Lemma 2 with Lemma 1 yields an alternative formulation for the
orthogonal Shannon wavelet projection.

Corollary 1 The space Vm as defined in Definition 1 is the space of all functions f ∈
L2(R) with bandwidth B ≤ 2m. Therefore, the orthogonal projection Pm : L2(R)→
Vm of (6) is equivalent to,

Pm f (y) =
1

2π

∫ 2mπ

−2mπ

f̂ (ω)eiωydω. (7)

Proof of Corollary 1 is given in Appendix B.1. Another corollary of Lemma 2 is a
version of the well-known Whittaker-Shannon interpolation formula, see [19].

Corollary 2 Let g be a band-limited function with bandwidth B, then g can be recov-
ered exactly by a Shannon wavelet expansion at scale B < 2m, and we have,

g(x) = ∑
k∈Z

2−
m
2 g(k

2m)φm,k(x),

where the series converges uniformly if g ∈ L2(R) or g ∈ L1(R).

The density functions we encounter in finance are not band-limited, so no exact
recovery is possible with a Shannon wavelet expansion for a finite scale m. However,
these density functions have a fast decay in the Fourier domain, which results in
accurate approximations even at low wavelet scales m, as stated in the following
lemma.

Lemma 3 Let f ∈ L2(R) and let H(ξ) represent the mass in the tails of Fourier
transform f̂ ,

H(ξ) :=
1

2π

∫
|ω|>ξ

∣∣ f̂ (ω)
∣∣ dω. (8)

The pointwise approximation error εm(y) due to the projection of f onto the space
Vm in (5) is given by εm(y) := f (y)−Pm f (y), and can be uniformly bounded by
|εm(y)| ≤ H(2mπ).

Proof We write f as the inverse Fourier transform of f̂ and use Corollary 1 to rewrite
Pm f . Then, the point-wise error is given by,

εm(y;x) := f (y|x)−Pm f (y|x) = 1
2π

∫
|ω|>2mπ

f̂ (ω;x)eiωydω. (9)

The desired bound follows by taking the modulus and noting that
∣∣eiωy

∣∣= 1. ut

6 S.C. Maree et al.

For the Lévy processes we use, the characteristic function is known, and therefore
we can study its decay rate to determine a suitable approximation scale, which we
discuss in Section 3.2.

An important difficulty to realize when working with the sinc-function, is that
no analytic form for its integral Si(t) :=

∫ t
0 sinc(x)dx is available, which we require

in the computation of the wavelet coefficients. This issue is not new in numerical
integration, and was adressed in [2,1]. There, a combination of Vieta’s formula and
a cosine product-to-sum identity was used to approximate the sinc-function by a so-
called incomplete cosine expansion. The same approximation can be derived as well
by writing the sinc-function as its inverse Fourier transform,

sinc(t) =
1

2π

∫
π

−π

eitω dω =
1
π

∫
π

0
cos(tω)dω. (10)

We can then discretize the right hand side to obtain the required approximation, as
summarized in Lemma 4.

Lemma 4 We numerically integrate the r.h.s. of (10) using the midpoint rule with
J sub-intervals, thus obtaining the approximation,

sinc(t)≈ sinc∗(t;J) :=
1
J

J

∑
j=1

Re
{

eitω j
}
, (11)

where ω j := π

J (j− 1
2). The approximation error due to the midpoint rule on a finite

domain |t| ≤ a≤ π

2 J is bounded by,

|sinc(t)− sinc∗(t;J)| ≤ (πa)2

(4J)2− (πa)2 . (12)

The Shannon wavelet can be approximated similarly, and we denote its approxima-
tion by φ ∗m,k(y) := 2

m
2 sinc∗(2my− k;J). By error bound (12), the maximum error for

any 1−κ ≤ k ≤ κ inside the domain |y| ≤ c for a fixed J ≥ π

2 (2
mc+κ) is given by,

max
|y|≤c,1−κ≤k≤κ

∣∣φm,k(y)−φ
∗
m,k(y)

∣∣≤ 2
m
2

(π(2mc+κ))2

(4J)2− (π(2mc+κ))2 .

The approximation of the sinc-function in Lemma 4 can be derived in different
ways. Besides the derivation based on Vieta’s formula in [2], a derivation based on
Parseval’s identity, see [15], was given, which is a discretization of the integral that
arises in Corollary 1. If that integral is approximated by the midpoint rule with J sub-
intervals, it coincides once more with the result in Lemma 4, which was the missing
link between the two approaches.

The derivation here generalizes2 the previous approaches as it is valid for any
natural number J, while in previous results, J = 2η−1 for some η ∈ N was used. The
error bound (12) now follows directly from [15, Lemma 2].

2 It should be mentioned that the FFT is applied most efficiently when the number of coefficients is a
power of two. The generalization here is only of interest from a mathematical point of view.

Pricing Early-Exercise and Discrete Barrier Options 7

Model ψL(ω) Param. Restrictions

GBM − σ2

2 ω2 σ > 0

NIG δ

(√
α2− (β + iω)2−

√
α2−β 2

)
α,δ > 0

VG − σ2

2 ω2− 1
v log

(
1− ivθω + v σ2

v
2 ω2

)
v,σv > 0,σ ≥ 0

CGMY CΓ (−Y)
(
(M− iω)Y −MY +(G+ iω)Y −GY) C,G > 0

Table 1 Characteristic exponents and parameters restrictions for Lévy processes occurring in financial
applications. Model details can be found in [17].

3 European option pricing

Before we discuss Bermudan options, we start by analyzing the SWIFT method for
European pricing problems as in [15] in further detail. We derive an analytic error
bound and derive the appropriate wavelet approximation scale.

The pricing of a European option under Lévy asset price processes in computa-
tional finance is governed by the numerical solution of partial (integro-) differential
equations. The corresponding solution, being the option value at time t, can be found
by means of the Feynman-Kac formula as the discounted expectation of the option
value at final time T . We consider the risk-neutral option valuation formula,

v(x, t) = e−r∆ tE[v(y,T) | x] = e−r∆ t
∫
R

v(y,T) f (y|x)dy, (13)

where v denotes the option value, T the maturity, t the initial date, ∆ t := T − t the
remaining time, E is the expectation operator under the risk-neutral measure, x and y
are state variables at time t and T respectively, f (y|x) is the probability density of y
given x and r is the deterministic risk-neutral interest rate.

Denote by {St}T
t=0 the underlying asset price process and let K be the strike price

of the option. We model the asset price process by an exponential Lévy process, so
that the log-transformed process Xt := log(St/K) is a Lévy process with drift. Let
the state variables be given by x := Xt = log(St/K) and y = XT := log(ST/K). We
are interested in the conditional probability density function f (y|x), but this function
is rarely known in analytic form. However, due to the celebrated Lévy-Khintchine
formula, the Fourier transform f̂ (ω;x) of the density function f (y|x) is known and
given by,

f̂ (ω;x) := E
[
e−iωXT

]
= e−iωxe−iωµT+T ψL(−ω) =: e−iωx f̂ (ω), (14)

where µ is a drift correction term defined as µ := r−ψL(−i), ψL(ω) is the charac-
teristic exponent that uniquely defines the Lévy process, and f̂ (ω) := f̂ (ω;0). For
different models in finance, the characteristic components are listed in Table 1 with
their model specific parameters. See [17] for details about these processes.

8 S.C. Maree et al.

Remark 1 The SWIFT method can be applied to European pricing problems when
the characteristic function of the price process is known. For Bermudan pricing prob-
lems, we require that the density function can be written as f (y|x)= f (y−x|0), which
is possible for Lévy processes and also for the Heston model.

Under the log-asset transformation, the option value at maturity time T of a Eu-
ropean put option can be written as,

v(y,T) = gput(y) := K(1− ey)+ = K ·max(1− ey, 0) . (15)

Similarly, the payoff function for a call option is gcall(y) =K(ey−1)+, but this payoff
grows exponentially for large values of y which could cause significant round-off
errors along the domain boundary. It is therefore highly recommended to price call
options via put options by applying the put-call parity relation.

3.1 SWIFT for European options

We assume that the underlying conditional density function f (y|x) is an L2(R)-
function so that we can apply the theory of MRA of Section 2. The SWIFT method
consists of three steps to approximate the density function by recovering it from its
characteristic function f̂ (ω;x).

Step 1 (Wavelet projection). In the first step, f is approximated by its Shannon
wavelet projection at scale m∈ Z. By Lemma 1, this is,

f (y|x)≈ f1(y|x) := Pm f (y|x) = ∑
k∈Z

Dm,k(x)φm,k(y), (16)

where the density coefficients depend on the initial asset price x and are defined as
Dm,k(x) :=

〈
f (·|x), φm,k

〉
.

Step 2 (Series truncation). To numerically work with the wavelet approximation,
the infinite summation in (16) has to be truncated. If the density function vanishes as
y→±∞, the wavelet coefficients Dm,k vanish as well, which can be seen by noting
that for k∈ Z,

f (2−mk|x)≈ f1(2−mk|x) = 2
m
2 Dm,k(x). (17)

Thus we truncate3 the summation range for some κ∈ N, so that we obtain,

f1(y|x)≈ f2(y|x) :=
κ

∑
k=1−κ

Dm,k(x)φm,k(y). (18)

3 The only reason that we choose a symmetric summation range 1−κ ≤ k ≤ κ is for convenience of
notation. It is straightforward to work with an arbitrary range κ1 ≤ k ≤ κ2 for κ1,κ2∈ Z.

Pricing Early-Exercise and Discrete Barrier Options 9

Step 3 (Coefficient approximation). The final step is to compute the density
coefficients Dm,k(x) :=

〈
f (·|x), φm,k

〉
. We do this by replacing φm,k by φ ∗m,k as in

Lemma 4, so that we obtain,

Dm,k(x)≈ D∗m,k(x) :=
∫
R

f (y|x)φ ∗m,k(y)dy

=
2

m
2

J

J

∑
j=1

Re
{∫

R
f (y|x)e−iω j(2my−k)dy

}

=
2

m
2

J

J

∑
j=1

Re
{

f̂ (ω j2m;x)eiω jk
}
.

(19)

In Appendix A.2 we show how to compute the vector of coefficients D∗m,k(x) ef-
ficiently using the Fast Fourier Transform (FFT). We replace the density coefficients
by their approximation and obtain the SWIFT series approximation of the density
function,

f2(y|x)≈ f3(y|x) :=
κ

∑
k=1−κ

D∗m,k(x)φm,k(y). (20)

To solve the option pricing integral in (13), we truncate the integration range4 to
|y| ≤ c for some positive constant c, so that we obtain,

v(x, t)≈ v0(x, t) := e−r∆ t
∫
|y|≤c

f (y|x)v(y,T)dy. (21)

We substitute the approximation of the density function in (20) that we obtained after
the three consecutive approximation steps into the truncated pricing integral (21),

v(x, t)≈ v3(x, t) := e−r∆ t
∫
|y|≤c

f3(y|x)v(y,T)dy

= e−r∆ t
κ

∑
k=1−κ

D∗m,k(x)
∫
|y|≤c

v(y,T)φm,k(y)dy.
(22)

The remaining integrals are closely related to the wavelet coefficients of the value
function v(y,T) in y. We therefore define the value coefficients Vm,k(T) at time T by,

Vm,k(T) :=
∫
|y|≤c

v(y,T)φm,k(y)dy. (23)

With this definition, the resulting option value at time t can be written as,

v(x, t)≈ v3(x, t) = e−r∆ t
κ

∑
k=1−κ

D∗m,k(x)Vm,k(T). (24)

Remark 2 The truncation of the integration range to |y| ≤ c is required for the ap-
proximation of the sinc-function by the approach in Lemma 4, as this approximation
holds only on a finite domain, which we require in the computation of the value co-
efficients (23). It is however easy to extend this domain, as discussed in the error
analysis in the next section.

4 Truncation to a symmetric domain is not required, but chosen only for ease of notation.

10 S.C. Maree et al.

Remark 3 From the series truncation argument in (17), when f (y|x) is negligible for
|y| > c, it follows that we should choose κ ≥ 2mc. Furthermore, by Lemma 4, we
should choose J ≥ πκ .

3.1.1 Vanilla payoff coefficients

For European options, the option value v(y,T) at maturity equals the payoff function
g(y), see (15). Thus, the value coefficients Vm,k(T) are given by,

Vm,k(T) =
∫
|y|≤c

v(y,T)φm,k(y)dy =
∫
|y|≤c

g(y)φm,k(y)dy =: Gm,k(−c,c), (25)

and we refer to Gm,k as the payoff coefficients. These integrals depend on the payoff
function g, but for the common payoff functions, the integral cannot be solved ana-
lytically. In [15], approximation formulas for the payoff coefficients for put, call and
digital option payoffs were derived. For a European put with payoff function g given
by (15), the approximated payoff coefficients G∗m,k are given by,

G∗m,k(a,b) := K
∫ b

a
(1− ey)+φ

∗
m,k(y)dy

= K
∫ b̄

a
(1− ey)φ ∗m,k(y)dy

= K
2

m
2

J

J

∑
j=1

Re

{
e−iω jk

∫ b̄

a
(1− ey)eiω j2my dy

}
,

(26)

where b̄ := min(0,b). The remaining integral is easily solved analytically, and the
whole vector of coefficients can be computed efficiently using the FFT as explained
in Appendix A.2.

The computation of the payoff coefficients is the final approximation step in the
SWIFT method, and by plugging Vm,k(T) = Gm,k(−c,c)≈ G∗m,k(−c,c) into (22), we
obtain the SWIFT pricing formula for European options,

v(x, t)≈ v4(x, t) := e−r∆ t
κ

∑
k=1−κ

D∗m,k(x)G
∗
m,k(−c,c). (27)

3.2 European option pricing error analysis

We present an error analysis of the SWIFT method for European options, i.e., the ap-
proximation error ε(x) := v(x, t)−v3(x, t) with v3 in (24). We assume that the payoff
coefficients Vm,k(T) are given explicitly, that the payoff function g(y) is bounded5

and to simplify notation, we assume r = 0.

5 The assumption of a bounded payoff holds for put and digital options. For options with an unbounded
payoff, one has to assume a certain decay rate on the density function in order to bound ε0(c) in Lemma 5.
This assumption is introduced to derive an error bound, and is not required for the SWIFT pricing formula
(27), as the pricing integral is truncated before any approximation is made, and the payoff is finite on a
bounded domain.

Pricing Early-Exercise and Discrete Barrier Options 11

Key to the existence of the option pricing integral (13) is that the density function
decays faster than the growth of the payoff function. We make no assumptions on the
decay rate of the density function, as it is unknown in general, but since the mass in
the tails of the density function tends to zero, for every TOL > 0 there exists a value
c > 0 such that,

τ(c) :=
∫
|y|>c

f (y|x)dy≤ TOL. (28)

Using this observation, it follows directly that the error due to the integration range
truncation to |y| ≤ c is bounded, as stated in the following lemma.

Lemma 5 Let ε0(c) := v(x, t)− v0(x, t) be the error caused by the truncation of the
integration range to |y| ≤ c in (21). Then,

ε0(c) =
∫
|y|>c

f (y|x)g(y)dy≤ τ(c)‖g‖
∞
,

where the infinity norm ‖g‖
∞

:= sup{|g(y)| : y∈ R}. The bound can be made arbi-
trarily small by increasing the value c.

In the following lemma, we show how the decay rate of the density and its Fourier
transform relate to the error in the wavelet projection and series truncation.

Lemma 6 The error ε2(m,κ) caused by approximating f by the truncated Shannon
wavelet series f2(y|x) := ∑

κ
k=1−κ

Dm,k(x)φm,k(y) as in (18) is given by,

|ε2(m,κ)|=
∣∣∣∣∫|y|≤c

[f2(y|x)− f (y|x)]g(y)dy
∣∣∣∣

≤ 2c‖g‖
∞

[
(2κ +3)H(2m

π)+2m
τ(κ

2m)
]
.

The proof of Lemma 6 is given in Appendix B.2. The remaining step in the SWIFT
approximation is the replacement of the density coefficients Dm,k by D∗m,k as in (19)
which is discussed in [15]. The midpoint rule approximation of the sinc-functions
yields a summation of cosines, and is thus periodic. To reduce the impact of the
undesired periodic replications of the sinc-function, the density function acts as a
windowing function, but only if the period of sinc∗(· ;J) is ‘large enough’.

Lemma 7 When the mass in the tails of the density function is represented by τ(c)
as in (28), the error ε3(J) := v3(x, t)− v2(x, t) is bounded by,

|ε3(J)| ≤ 2m(2κ +1)‖g‖
∞

(
2τ(c)+

√
2c‖ f‖2

(πκ)2

(2J)2− (πκ)2

)
,

when J ≥ πκ ≥ 2mπc.

The proof of Lemma 7 is be found in Appendix B.3. We are now ready to combine
all of the above results.

12 S.C. Maree et al.

Theorem 1 The SWIFT pricing formula (24) for European options is bounded by,

|v(x, t0)− v3(x, t1)|
‖g‖

∞
e−r∆ t = O

(
2m

τ(c)+H(2m
π)
)
, (29)

whenever J ≥ πκ ≥ 2mπc, where τ(c) represents the mass in the tails of the density
function (28), and H(2mπ) the mass in the tails of the characteristic function (8).

The proof of Theorem 1 can be found in Appendix B.4. Theorem 1 states that the error
of the SWIFT pricing formula depends the decay of both the density function and its
characteristic function. Unfortunately, the uncertainty principle of Fourier transforms
states that a fast decay in the Fourier domain implies a slow decay in the time domain
and vice-versa. Optimal convergence is obtained when f is Gaussian with variance
σ , so that its Fourier transform is a Gaussian with variance σ−1.

In the following sections we discuss how to find a suitable value for the two
remaining parameters, the wavelet scale m and the domain truncation parameter c.

3.3 Wavelet scale determination

It is important that the wavelet scale m is chosen a large enough, as it is not possible
to alter the scale of approximation afterwards without recomputing all that was done
before. We use the Fourier transform f̂ of the density function, which is known in
analytic form, to find an analytic expression to determine a sufficient wavelet scale
m.

All of the processes of interest6 satisfy,∣∣ f̂ (ω;x)
∣∣= ∣∣∣e∆ tψL(ω)

∣∣∣≤Ce−d∆ t|ω|ν , (30)

with constants C,d > 0 and ν ∈ (0,2]. For any process with a Brownian motion com-
ponent, as indicated by − 1

2 σ2ω2, the bound in (30) is satisfied with ν = 2, which is
the ideal case from a computational point of view. For NIG, ν = 1, while ν = Ȳ for
CGMY7, which can be directly read from the characteristic exponents in Table 1.

With (30), the mass in the tails of the characteristic function H(2mπ) is given by,

H(2m
π)≤ C

π

∫
∞

2mπ

e−d∆ t|ω|ν dω =
C

πν(d∆ t)1/ν
Γ

(
1
ν
,d∆ t(2m

π)ν

)
=: ε̄m,

where Γ (a,x) is the incomplete gamma function, and for large values of 2mπ , the
error behaves as,

ε̄m ∼
C(2mπ)1−ν

πνd∆ t
e−d∆ t(2mπ)ν

, (31)

6 Geometric Brownian Motion, Normal Inverse Gaussian, Kou, Merton jump model and CGMY. The
exception is pure jump Variance Gamma, for which | f̂ (ω;x)| = O(C|ω|−2∆ t/v), for which f̂ fails to be
integrable if ∆ t ≤ v/2,

7 We denote the parameters of the CGMY model by (C̄, Ḡ,M̄,Ȳ) to avoid confusion with other model
parameters.

Pricing Early-Exercise and Discrete Barrier Options 13

which holds uniformly for ω and x. From (31), we see that the error converges ex-
ponentially with respect to the wavelet scaling factor 2m. The parameters C and d in
(30) are often not readily available, thus we substitute Ce−d∆ t(2mπ)ν ∼ | f̂ (±2mπ;x)|
back into (31), so that we obtain the approximation,

ε̄m ∼
(2mπ)1−ν

2πν∆ t

(∣∣ f̂ (−2m
π;x)

∣∣+ ∣∣ f̂ (2m
π;x)

∣∣), (32)

which we can now cheaply evaluate. A simple iterative procedure can be performed,
by setting m = 0,1,2, . . . until ε̄m < TOL, for some user defined tolerance TOL.

3.4 Domain truncation determination

In general, the mass τ(c) in the tails of the density function is unknown, but we can
determine its rate of decay from the characteristic function, as stated in the following
lemma, of which the proof can be found in both [19] and [20].

Lemma 8 Consider a function f ∈ L2(R) with Fourier transform f̂ . Define the in-
terval−∞≤ λ− ≤ 0≤ λ+ ≤∞ and let λ := min(|λ−| ,λ+). When f̂ is analytic in the
domain D(λ−,λ+) := {z∈ C : Im{z}∈ (λ−,λ+)} then f (x)=O(e−λ |x|) for x→±∞.

For the asset price models we consider, the strip in which f̂ is analytic is given in
Table 2. It follows from Lemma 8 that all of the models have exponential decay for
some decay rate d > 0, and thus the mass in the tails τ(c) decays exponentially in c.
However, there are no analytic results on how to find the corresponding c such that
τ(c)< TOL for some user selected tolerance TOL. We therefore use a rule of thumb
that was used before in [8].

First, use the cumulants of the density function to heuristically determine an ini-
tial guess for the log-asset domain such that τ(c) < TOL, as introduced in [8], by
setting,

c := |c1|+L
√

c2 +
√

c4, (33)

where ci is the ith cumulant, and given for common Lévy processes in Table 2. Nu-
merical results suggest that L = 6 is sufficient for the SWIFT method, while L = 8 is
sufficient for the COS method [9].

Secondly, we set κ := d2mce, compute the vector of density coefficients using the
FFT, and evaluate the test T1(κ),

T1(κ) :=
∣∣∣∣1−∫R f3(y|x)dy

∣∣∣∣=
∣∣∣∣∣1−2−

m
2

κ

∑
k=1−κ

Dm,k

∣∣∣∣∣ . (34)

If T1(κ) > TOL, we repeat the procedure by increasing κ . Previously computed co-
efficients can still be used, and only the new coefficients have to be computed.

14 S.C. Maree et al.

Model Cumulants Analytic strip (λ−,λ+)

GBM c1 = µt, c2 = σ2t, c4 = 0 R

c1 = µt +δ tβ/
√

α2−β 2

NIG c2 = δ tα2(α2−β 2)−3/2 [β ±α]

c4 = 3δ tα2(α2 +4β 2)(α2−β 2)−7/2

c1 = t(µ +θ)

VG c2 = tσ2 + t(σ2
v + vθ 2)

[
θ

σ2 ±
√

θ 2

σ4
v
+ 2

νσ2
v

]
c4 = 3t(σ2

v v+2θ 4v3 +4σ2
v θ 2v2)

c1 = µt +CtΓ (1−Y)(MY−1−GY−1)
CGMY c2 =CtΓ (2−Y)(MY−2−GY−2) [−M,G]

c4 =CtΓ (4−Y)(MY−4−GY−4)

Table 2 Cumulants for Lévy processes occurring in financial applications. The drift parameter is defined
as µ = r−q−ψL(−i). Corresponding processes are shown in Table 1. Specific parameters for asset pricing
problems can be found in for example [17].

3.5 Domain truncation error

Before we continue to the main contribution of this paper, Bermudan option pric-
ing, we discuss an advantage of the SWIFT method and the motivation for further
research.

The SWIFT method exhibits a close relation to the COS method [8]. That method
recovers the density function by a Fourier cosine expansion, which is defined on a fi-
nite domain and periodically extended outside this domain. This causes price under-
estimation within the computational domain near to the domain boundary where the
payoff function is non-zero, as highlighted in [16]. A ‘workaround’ solution proposed
there is by an extrapolation of the payoff coefficients.

The SWIFT method does not suffer from this problem. Wavelet methods in gen-
eral are approximations on the whole real line. Although we need a truncation of
the integration range to evaluate the wavelet coefficients efficiently (Lemma 4), this
truncation |y| ≤ c can be chosen independently of the truncated summation range
1−κ ≤ k ≤ κ . Let us illustrate this independence by the problem of multiple strike
pricing.

From the definition of the payoff coefficients G∗m,k in (26), it follows that we can
factor the strike price K out of the computation of the payoff coefficients by defining
U∗m,k(a,b) so that G∗m,k(a,b) = K ·U∗m,k(a,b), which therefore becomes independent
of the strike price.

We insert the definition of the density coefficients D∗m,k in (19) into the SWIFT
pricing formula (24), and by interchanging summation and integration, we obtain,

v4(x, t) = e−r∆ tK
J

∑
j=1

Re

{
f̂ (ω j2m;x)

(
2

m
2

J

κ

∑
k=1−κ

U∗m,k(−c,c)eiω jk

)}
.

Pricing Early-Exercise and Discrete Barrier Options 15

x
4.3 4.4 4.5 4.6 4.7 4.8 4.9

O
pt

io
n

P
ric

e

0

10

20

30

40
GBM European Call Price

Black-Scholes
SWIFT
COS

Fig. 2 A European put priced by the COS method on a domain [4.3,4.8]. We observe price underestima-
tion within the computational domain. The SWIFT method behaves fine, as we can integrate the payoff
coefficients independently of the computational domain. Parameters as in [16].

The inner summation, which is independent of x and K, is given by,

Ũ j(−c,c) :=
2

m
2

J

κ

∑
k=1−κ

U∗m,k(−c,c)eiω jk, (35)

which can be computed efficiently using the FFT, see Appendix A.2.
Furthermore, for Lévy models and for the Heston stochastic volatility models, the

SWIFT pricing formula allows for an efficient formulation. Recall from (14) that for
these processes, the Fourier transform f̂ of the density function can be factorized as
f̂ (ω;x) = f̂ (ω)e−iωx, where f̂ (ω) := f̂ (ω;0).

Let us denote vectors with a boldface letter, then we can write the SWIFT option
pricing formula for a vector of strike prices K, with corresponding initial asset values
x := log(S0/K) as,

v4(x, t) = e−r∆ tK
J

∑
j=1

Re
{

f̂ (ω j2m)Ũ j(−c,c)e−iω j2mx
}
, (36)

which requires only two times the FFT in the construction of Ũ j, independent of
the number of strikes. The main observation here is that the integration range −c ≤
y ≤ c within the coefficients Ũ j(−c,c), see (26), can be chosen independent of the
truncation of k. We set Ũ j(min(x)−c,max(x)+c), and we observe that the boundary
problem can be naturally avoided, as shown in Figure 2. We highlight that the SWIFT
method is also periodic, as the approximation of the sinc function in (11) is periodic.
However, now we have the flexibility to cleverly choose the periodicity (in terms of
J) far from the computational domain x ∈ [a,b].

3.6 Relation with the COS method

The close relation between the SWIFT pricing formula (36) and the COS pricing
formula [8, Eqn. (19)] can be made explicit by a specific choice of parameters. In

16 S.C. Maree et al.

the SWIFT method, a local wavelet basis is used, however, we approximate the sinc
function by a global periodic expansion, see (11).

The parameters for the COS method are the truncated domain [a,b] and the num-
ber of Fourier coefficients JCOS, and the pricing formula is given by,

vCOS(x, t) = e−r∆ t
JCOS−1

∑
′

n=0
Re
{

DCOS
n
}

Re
{

VCOS
n

}
,

where, DCOS
n := f̌

(
nπ

b−a
;x
)

e−i nπ

b−a a,

and, VCOS
n :=

∫ b

a
g(y)einπ

y−a
b−a dy.

(37)

We match the SWIFT method to this pricing formula by using the same compu-
tational domain [a,b] and we approximate the wavelet coefficients D∗m,k and V ∗m,k as
in (19) and (26) with the same number of discretization points J := 1

2 JCOS, where k is
in the range 1− J, . . . ,J, and the wavelet scale m is selected according to 2m := JCOS

b−a .
Then, we insert the definition of the payoff coefficients (26) into the SWIFT pricing
formula (27), and by a change of summation and integration we obtain,

vSWIFT (x, t) = e−r∆ t
J

∑
j=1

Re

{(∫ b

a
g(y)eiω j2my dy

)(J

∑
k=1−J

D∗m,k(x)e
−iω jk

)}
, (38)

where D∗m,k is the discrete inverse Fourier transform of f̂ , and when we take the
discrete Fourier transform of it, we return to the original vector. Thus we obtain that
SWIFT estimate v4(x, t) of (27) is equivalently written as,

vSWIFT (x, t) = e−r∆ t

1
2 JCOS−1

∑
′

n=0
Re
{

DCOS
2n+1 ·VCOS

2n+1
}
, (39)

which shows great similarity to (37). The main difference being that the COS method
uses only the real part of the coefficients while the SWIFT method only sums the odd
coefficients. The result is that the SWIFT approximation vSW (x, t) is replicated oddly
and the COS approximation vCOS(x, t) is evenly replicated.

Using this representation the SWIFT method loses its flexibility with respect to
the boundary as κ = J = 2m−1(b− a), and thus the coefficients we use are directly
related to the domain truncation. It gives however insight in the rate of convergence of
the SWIFT method, which is equivalent to the COS method. Furthermore, it suggests
that for the COS method, one should set JCOS := 2m(b−a). Thus, when one wants to
retain accuracy while increasing the computational domain (see [15, Figure 5]), one
knows how to change JCOS, as m is known analytically from (32).

4 Pricing Bermudan and Barrier Options

A Bermudan option is a financial contract, which the holder can exercise at a prede-
termined finite set of exercise moments prior to maturity, and the holder of the option
receives a payoff when she exercises the option.

Pricing Early-Exercise and Discrete Barrier Options 17

Consider a Bermudan option with strike price K and a set of N exercise moments
t1, . . . , tN , and strictly ordered, 0 = t0 < t1 < · · · < tN = T , where T is the option’s
maturity. When the option is exercised at time tn, the holder receives a payoff g(Xtn),
where {Xt}T

t=0 is the underlying log-asset price process. The value v(x, t0) of the
Bermudan option at time t0 is then given by,

v(x, t0) = max
τ∈T

E
[

e−r(τ−t0)g(Xτ)
∣∣∣ X0 = x

]
, (40)

where τ is a stopping time taking values in T = {t0, t1, . . . , tN}. We apply Bellman’s
optimality principle, also known as the dynamic programming principle, stating that
if one follows an optimal exercise strategy up to some observation time, then, given
this information, it remains optimal to use it after that observation time. By the dy-
namic programming principle, one can split the optimization problem into two parts.
The optimal exercise point may be found at some time θ , given the current state Xθ .
Then, the expected value in (40) is maximized over all exercise strategies in [θ ,T].
In continuous time, the dynamic programming principle leads to the well known
Hamilton-Jacobi-Bellman equation.

In the context of Bermudan option pricing, the dynamic programming principle
states that the price of the option at any exercise moment is the maximum of the spot
payoff and the so-called continuation value.

Between two exercise moments, the valuation process can be regarded as a Eu-
ropean option pricing problem, and can be priced with the help of the risk-neutral
option valuation formula (13).

For simplicity of notation, we use an equidistant time grid ∆ tn := tn− tn−1 = ∆ t
and we define, x :=Xtn−1 = log(Stn−1/K), and y :=Xtn = log(Stn/K), where St is price
process of the underlying asset. The payoff of the option is denoted by g(y) and for
vanilla options, the value of the option at maturity is given by,

v(y,T) = g(y) = [αK(ey−1)]+, α =

{
1, for a call,
−1, for a put.

(41)

We consider again a constant risk-neutral rate r. By the dynamic programming
approach, the option value prior to maturity can be expressed recursively for n =
N,N−1, . . . ,2, by, {

v(x, tn−1) = max(g(x),c(x, tn−1)),

c(x, tn−1) = e−r∆ t ∫
R v(y, tn) f (y|x)dy,

(42)

and finally followed by the option value at t0,

v(x, t0) = e−r∆ t
∫
R

v(y, t1) f (y|x)dy, (43)

where c(x, tn−1) is referred to as the continuation value and the probability function
of y given x is denoted by f (y|x) := f∆ t(y|x).

The integrals in (42) and (43) are of the same form as the European pricing for-
mula (13), and we can apply the SWIFT pricing formula to approximate them.

18 S.C. Maree et al.

4.1 SWIFT Bermudan Algorithm

At the initial time t0, the option value is given by the integral representation in (43),
and by application of the SWIFT pricing formula (24), we obtain,

v(x, t0)≈ v∗(x, t0) = e−r∆ t
κ

∑
k=1−κ

D∗m,k(x)Vm,k(t1), (44)

where the density coefficients D∗m,k(x) are as in (19). Thus, the option value can be
determined once the value coefficients Vm,k(t1) are known. We propose a backward
recursion to recover these coefficients, based on (42). We describe the approach by
pricing a vanilla Bermudan put option.

Following (41), the option value at maturity tN = T equals the payoff of the op-
tion, v(y,T) = g(y), and thus we can write the value coefficients for a put option
as,

Vm,k(tN) =Vm,k(T) :=
∫
|y|≤c

v(y,T)φm,k(y)dy

=
∫ 0

−c
g(y)φm,k(y)dy

= Gm,k(−c,0),

(45)

where Gm,k(y1,y2) are the payoff coefficients over the exercise region (y1,y2), as we
saw before in the European case, given in (26), which can be efficiently computed
using the FFT.

Now that we have an expression for the value coefficients at maturity, we can
compute the coefficients at any time tn, for n = N − 1, . . . ,1, prior to maturity re-
cursively, when we know the early-exercise point x∗n, which is the point where the
continuation value equals the payoff, i.e., c(x∗n, tn) = g(x∗n). Once we obtain x∗n, we
can split the integral for the value coefficients Vm,k in two parts, giving,

Vm,k(tn−1) :=
∫
|x|≤c

v(x, tn−1)φm,k(x)dx

=
∫
|x|≤c

max
{

g(x), c(x, tn−1)
}

φm,k(x)dx

=
∫ x∗n

−c
g(x)φm,k(x)dx+

∫ c

x∗n
c(x, tn−1)φm,k(x)dx

=: Gm,k(−c,x∗n)+Cm,k(x∗n,c, tn−1),

(46)

where Cm,k(x1,x2, tn−1) are the continuation coefficients at time tn−1 over the inter-
val (x1,x2).

Theorem 2 The continuation coefficients Cm,k(x1,x2, tn−1) can be efficiently approx-
imated with the use of five times the FFT when the value coefficients at the next time
step {Vm,k(tn)}k are known.

The proof of Theorem 2 is given in Appendix B.5.

Pricing Early-Exercise and Discrete Barrier Options 19

Remark 4 (Early-exercise point) Each time step tn, we have to determine the early-
exercise point x∗n, which is the x value that solves g(x) = c(x, tn). We use Newton’s
method as we know the payoff function g(x) explicitly, and the continuation value in
functional form in (65). The coefficients Ũ j(tn) here are independent of x, and can
be reused for computation of the continuation coefficients, thus Newton’s method
consists only of a few O(J) operations per iteration.

The above theorem leads to the SWIFT method for Bermudan options, and is
summarized in Algorithm 1. The method uses 5 times the Fast Fourier Transform per
time step, which is the same number of times as the COS method [9], but the vectors
we use are about two times longer when the same domain is chosen.

Remark 5 One could improve robustness by adding a check to see if the domain
truncation c is sufficient. This can be done by evaluating T1(c) in (34). When using
equidistant time steps ∆ t, this check has to be performed only once at O(N logN)
cost.

Remark 6 As highlighted in Section 3.5, when recovering the option price for x in a
range [−c,c], the integration domain of the value coefficients as in (46), should be set
larger than this range. However, when the integration range of an integral is extended,
while the number of discretization points J is the same, accuracy decreases. There-
fore, we slightly extend the integration range to c̃ := 3

2 c, so that we have minimal loss
of accuracy, but the error is constant on the whole domain, as confirmed by numerical
results in Section 5.

Initialization:
- Select the value for m such that ε̄m < TOL in (32);
- Determine c by the cumulants as in (33);
- Set κ := d2mce, and J := dπκe;
- Set c̃ := 3

2 c;

At maturity tN = T :
- Compute Vm,k(tN) = G∗m,k(−c̃,0), where G∗m,k is computed with

the FFT as in (26).

for n = N−1, . . . ,1 do
Early-exercise point:
- Construct Ũ j(tn+1) from {Vm,k(tn+1)}k as in (66) using the FFT;
- Run 5 iterations of Newton’s method to find x∗n, see Remark 4.

Continuation coefficients:
- Construct Jq(x∗n, c̃, tn+1) as in (71) from Ũ j(tn+1) using the efficient

Hankel matrix product of Appendix A.1 by use of 3 times the FFT;
- Construct C∗m,k(x

∗
n, c̃, tn) as in (70) from Jq(x∗n, c̃, tn+1) using the FFT;

Value coefficients:
- Set Vm,k(tn) = G∗m,k(−c̃,x∗n)+C∗m,k(x

∗
n, c̃, tn).

end

Recover the option value v(x, t0) at t = t0 by plugging Vm,k(t1) into (44).

Algorithm 1: SWIFT method for Bermudan options.

20 S.C. Maree et al.

Remark 7 (Error Convergence) From Section 3.6, we know that the SWIFT pricing
formula is closely related to the COS method, and the same is true for Bermudan
options if we choose the parameters as mentioned in that section. It is proven [16,9]
that the COS method exhibits exponential convergence for Bermudan options when
the density function is smooth. We show numerically that the same is true for the
SWIFT method.

4.2 Quick SWIFT

When pricing Bermudan options with many exercise moments, a high wavelet scale
m is required to recover the peaked density function accurately. However, the payoff
function does not need such a high wavelet scale to accurately be recovered, as it is
relatively smooth. The main recursion back in time is on the payoff coefficients in the
SWIFT method of Algorithm 1. This suggests that a cheaper approximation of the
payoff function would be beneficial.

We propose a very cheap approximation of the payoff function here, at cost of
some accuracy. From Corollary 2, it follows that when a function g is band-limited,
its wavelet coefficients are given by Gm,k :=

〈
g, φm,k

〉
= 2−

m
2 g(2−mk). Equality does

not hold for non band-limited functions, as are the payoff functions we encounter, but
it serves as a very cheap approximation8.

We price Bermudan options using the same recursion on the payoff coefficients
as the SWIFT method, but now with the quick approximation to compute coefficients
instead of the approximation used before in (11). Similar to (45), we start at maturity
tN , where the option value equals the payoff, which we approximate,

Vm,k(tN) = Gm,k ≈ 2−
m
2 g
(
2−mk

)
=: V Q

m,k(tN). (47)

Then, at any time tn prior to maturity, we can recursively recover the payoff coef-
ficients,

Vm,k(tn−1) =
∫
R

v(x, tn−1)φm,k(x)dx,

≈ 2−
m
2 v(2−mk, tn−1)

= 2−
m
2 max

{
g(2−mk), c(2−mk, tn−1)

}
=: V Q

m,k(tn−1).

(48)

Here, the only unknown quantity is the continuation value c(2−mk, tn−1), which is a
European option pricing problem, and by the application of the SWIFT method for

8 Note that this approximation can be seen as the approximation of the sinc-function by the Dirac-delta,
which holds in the limit when m→ ∞.

Pricing Early-Exercise and Discrete Barrier Options 21

European options (22) we find,

c(2−mk, tn−1)≈ e−r∆ t
κ

∑
p=1−κ

D∗m,p

∫
R

v(y, tn)φm,p(y−2−mk)dy

≈ e−r∆ t
κ

∑
p=1−κ

D∗m,p2−
m
2 v
(

2−m(p+ k), tn
)

= e−r∆ t
κ

∑
p=1−κ

D∗m,pV Q
m,p+k(tn).

(49)

In the first step, we used that wavelets satisfy φm,k(x− 2−m p) = φm,k+p(x). Further-
more, this last summation can be written as a matrix-vector product, with a Hankel
matrix, which we can efficiently compute using three times the FFT, as shown in Ap-
pendix A.1. In case of equidistant time steps, the payoff coefficients D∗m,k, computed
as before in (19), have to be computed only once, and thus we require only two times
the FFT per iteration, as shown in Algorithm 2.

Initialization:
- Select the value for m such that ε̄m < TOL in (32);
- Determine c by the cumulants as in (33);
- Set κ := d2mce, and J := dπκe;
- Set c̃ := 3

2 c;

At maturity tN = T :
- Compute V Q

m,k(tN) from the payoff function g as in (47);
- Compute the payoff coefficients D∗m,k of (19) using the FFT;
- Construct µh := DFT(mh) from D∗m,k as in (55);

for n = N−1, . . . ,1 do

- Construct the vector xh in (55) from V Q
m,k(tn+1);

- Compute c(2−mk, tn) with the FFT from xh and µh as in Appendix A.1;

- Compute V Q
m,k(tn) = 2−

m
2 max

{
g(2−mk), c(2−mk, tn)

}
.

end

Recover the option value v(x, t0) at t = t0 by plugging V Q
m,k(t1) into (44).

Algorithm 2: Quick SWIFT method for Bermudan options.

The efficient evaluation of the continuation value makes this method more than
twice as fast as the COS method with the same number of coefficients and more than
four times faster than the SWIFT method with the same wavelet scale m.

Numerical results in the next section show that for engineering accuracy approxi-
mations up to 10−5, the Quick SWIFT method is generally faster, however, due to its
linear convergence, it is unsuitable for high-accuracy approximations.

Remark 8 Algorithm 2 returns the option value at time t0 for a range of initial asset
values x = 2−mk, with k∈ Z. However, often x := log(S0/K) is not of this form.

22 S.C. Maree et al.

Therefore, the alternative log-transform Xt := log(St/S0) should be used, implying
that x := X0 = 0.

4.3 Discretely-Monitored Barrier Options

Discretely-monitored barrier “out” options are options that cease to exist if the asset
price hits a certain barrier level, B, at one of the pre-specified observation dates. If
B > S0, the option is referred to as “up-and-out”, and “down-and-out” otherwise.

The payoff for an up-and-out option reads,

v(x,T) =
[
{α(ST −K)}+−Rb

]
1{Stn<B}+Rb, (50)

where α = 1 for a call and α = −1 for a put, Rb is a rebate and 1A is the indicator
function, taking value one whenever A is not empty, and zero otherwise. Let the set
of observation dates be t1 < · · · < tN−1 < tN = T . Then, the price of an up-and-out
option, monitored N times, satisfies the following recursion,

c(x, tn−1) = e−r∆ t ∫
R v(x, tn) f (y|x)dy,

v(x, tn−1) =

{
e−r(T−tn−1)Rb, x≥ b,
c(x, tn−1), x < b,

, (51)

where b := log(H/K) and n = N,N−1, . . . ,2.
This approach is very similar to the recursion for Bermudan options, with the

main difference being that for barrier options the barrier point is known in advance,
while the early-exercise point for Bermudans has to be found by a root-searching
algorithm.

Theorem 3 (Backward recursion for discrete barrier options) By the backward
recursion, the following numerical approximation is found for discretely monitored
up-and-out barrier options. At any monitoring date prior to maturity n = N,N −
1, . . . ,1, we obtain,

V ∗m,k(tn) =C∗m,k(−c,h, tn)+ e−r(T−tn−1)R∗m,k(h,c), (52)

where C∗m,k(x1,x2, tn) is as in (70) and the rebate coefficient Rm,k(h,c) defined as,
Rb∗m,k(x1,x2) := Rb

∫ x2
x1

φ ∗m,k(x)dx, which can be computed using the FFT similar to
the payoff coefficients in (26). Let b+ := max{0,b} and b− := min{b,0}, then we
have at maturity tN = T ,

V ∗m,k(tN) =

{
G∗m,k(0,b

+)+Rb∗m,k(b,c), for a call,
G∗m,k(−c,b−)+Rb∗m,k(b,c), for a put.

(53)

In a similar fashion, we can price down-and-out barrier options, barrier “in”-
options and double-barrier options with the same ease.

The proof of this theorem goes along the same lines as the recursion we found
for Bermudan options. The main difference is that the computation of C∗m,k(−c,b, tn)
is less expensive as b is known in advance, and many computations, like Rb∗m,k(b,c),
can be done outside the main loop.

Pricing Early-Exercise and Discrete Barrier Options 23

Initialization:
- Select the value for m such that ε̄m < TOL in (32);
- Determine c by the cumulants as in (33);
- Set κ := d2mce, and J := dπκe;
- Set c̃ := 3

2 c;

At maturity tN = T :
- Compute Rb∗m,k(b, c̃) as in Theorem 3.
- Compute V ∗m,k(tN) as in (53) where G∗m,k is computed with the FFT as in (26).

for n = N−1, . . . ,1 do
Continuation coefficients:
- Construct Jq(−c̃,b, tn+1) as in (71) from Ũ j(tn+1) using the efficient Hankel matrix

product of Appendix A.1 by use of 3 times the FFT;
- Construct C∗m,k(−c̃,b, tn) as in (70) from Jq(−c̃,b, tn+1) using the FFT;

Value coefficients:
- Set V ∗m,k(tn) =C∗m,k(−c̃,b, tn)+ e−r(T−tn−1)Rb∗m,k(b, c̃).

end

Recover the option value v(x, t0) at t = t0 by plugging the coefficients V ∗m,k(t1) into (44).

Algorithm 3: SWIFT method for up-and-out barrier options.

Test No. Model S0 K T r Other Parameters

1 GBM 100 110 1 0.1 σ = 0.2
2 CGMY 100 80 1 0.1 (C̄, Ḡ,M̄,Ȳ) = (1,5,5,1.5)
3 CGMY 100 100 1 0.1 (C̄, Ḡ,M̄,Ȳ) = (1,5,5,0.5)

Table 3 Test parameters for pricing Bermudan options. Characteristic exponents of these Lévy models
can be found in Table 1. For details, we refer the reader to [17].

5 Numerical Results

In this section, we illustrate the performance of the SWIFT method for option types
with early exercise features. All tests are run with Matlab 2016a on an Intel Core
i7-4790 CPU @ 3.60GHz with 16 GB of memory. We compare the SWIFT method
against the COS method and the Quick SWIFT method for different option types
on different underlying price processes. The computational complexity of all of the
methods is O(NJ logJ), where N is the number of early-exercise moments and J is
the number of coefficients, see Section 5.2. The reference prices for our tests, if not
available analytically, are computed by the COS method with JCOS = 20000 Fourier
terms and domain trucation by cumulants with L = 50, see (33).

We start by analyzing convergence behavior in terms of the wavelet scale m, and
confirm numerically that the SWIFT method exhibits exponential convergence with
respect to 2m. We price a Bermudan put option with underlying dynamics and param-
eters given in Table 3. Convergence results are shown in Figure 3 for a Bermudan put
with N = 12 (monthly) exercise dates.

24 S.C. Maree et al.

0 2 4 6 8 10

Wavelet scale m

10-15

10-10

10-5

100

105

O
pt

io
n

pr
ic

e
er

ro
r

Bermudan Put - monthly exercise

0 2 4 6 8 10

Wavelet scale m

10-1

100

101

102

103

C
P

U
 T

im
e

(m
s)

CPU Time

GBM - Test 1
CGMY - Test 2
CGMY - Test 3

Fig. 3 Convergence of the Bermudan put price with 12 exercise moments under different dynamics with
respect to the wavelet scale m. Domain truncated by the cumulants in (33) with L = 6. The diamonds
denote the recommended wavelet scale by the analytic formula (32)

We determined a priori the required wavelet scale m to obtain an error less than
10−10 by application of the analytic result in (32), which we denoted by a diamond
in Figure 3. This simulation confirms the analytic formula.

For a fixed wavelet scale, Test 1, the GBM model, is optimal in terms of CPU
time, which we see in the right sub figure, as it has fast decay in both the asset domain
and the Fourier domain. Test 2, the CGMY model with Ȳ = 1.5 has the fattest tails
and thus a wide domain in the asset-space is required, but due to a fast decay in
the Fourier domain, m = 3 already results in machine accuracy. The contrary is true
for Test 3, CGMY with Ȳ = 0.5, which is a highly peaked density function, and it
requires m = 8 to reach machine accuracy.

5.1 Wavelet scale determination

We test the analytic bound that we determined in Section 3.3. The bound is not exact
as we substitute the upper bound (30) back and forth in the expression for the error
(32). In Figure 4, we see that the bound is very tight for both fat-tailed distributions,
the GBM and CGMY with Y = 1.5. For the peaked CGMY model of Test No. 3, the
bound is an overestimation of the true error. This can be explained by the fact that we
neglect a division of d as a divisor in (32), which is larger for Test No. 3.

5.2 Quick SWIFT and CPU Time

Convergence of the Quick SWIFT is demonstrated with the two CGMY tests from
Table 3 with weekly (N = 50) exercise moments. In the left subfigure of Figure 5, Test
No 2. is used, which has a smooth density function which is easy to approximate with
the SWIFT and COS methods. We observe that the Quick SWIFT method performs
less, and is not able to reach the threshold of an error of 10−10, although it still
outperforms the SWIFT and COS methods for low-accuracy estimates.

Pricing Early-Exercise and Discrete Barrier Options 25

0 2 4 6 8 10

Wavelet scale m

10-15

10-10

10-5

100

105
O

pt
io

n
pr

ic
e

er
ro

r
Bermudan Put - monthly exercise

GBM - Test 1
Test 1 - Predicted Error
CGMY - Test 2
Test 2 - Predicted Error
CGMY - Test 3
Test 3 - Predicted Error

Fig. 4 The three tests from Table 3 with N = 12 exercise moments. We plotted the error bound along with
the true numerical price error.

10-1 100 101 102 103

time (ms)

10-15

10-10

10-5

100

105

op
tio

n
pr

ic
e

er
ro

r

CGMY Bermudan Put (Test 2)

SWIFT
Quick SWIFT
COS

10-1 100 101 102 103 104

time (ms)

10-8

10-6

10-4

10-2

100

102

op
tio

n
pr

ic
e

er
ro

r

CGMY Bermudan Put (Test 3)

SWIFT
Quick SWIFT
COS

Fig. 5 CGMY Bermudan put with weekly (N = 50) exercise moments and parameters as in Test no.3 in
Table 3.

The right sub figure of Figure 5 shows the results for the highly peaked Test No.
3. We observe that the Quick SWIFT method is better than SWIFT, although the rate
of convergence of the Quick SWIFT method decreases around 10−6. This is where
the wavelet scale m is high enough such that the approximation error of the density
coefficients is small and the error in the ‘quickly’ approximated payoff coefficients
dominate.

The reason is that in Test No. 3, the error made in the approximation of the density
function dominates, so the impact of the ‘badly’ approximated payoff coefficients
is negligible. The small time between exercise moments and the naturally peaked
density function cause that wavelet scale m = 11 is required for SWIFT for an option
pricing error less than 10−5 according to (32). The COS method uses JCOS = 2m(b−
a) = 3 ·2m coefficients for a fair comparison (see Section 3.6).

Theoretically, the SWIFT method is twice as slow as the COS method when the
same number of coefficients is used. We observe this in the right sub-figure of Fig-
ure 5 for large m (for m ≤ 5, initialization-time dominates). Furthermore, the Quick
SWIFT method is 2.5 times faster than SWIFT, as expected, since Quick SWIFT only
uses two times the FFT, compared to five times in the normal SWIFT method.

26 S.C. Maree et al.

-0.8-0.6-0.4

Option value surface - GBM Bermudan Put

-0.2

log-asset price x

00.20.40.60.8
1

0.8

0.6

time t

0.4

0.2

10 -20

10 -15

10 -10

10 -5

10 0

10 5

0

O
pt

io
ne

 v
al

ue
 E

rr
or

COS
SWIFT

Fig. 6 Option value surface for a Bermudan put with N = 20 exercise dates, both priced on a small domain
with L = 3. We see that the COS method (blue) suffers from boundary issues, which are minimal for the
SWIFT method (red).

5.3 Domain Boundary Error and Recursion

In Section 3.5, we demonstrated the advantage of the SWIFT method with respect
to the boundary. We show a similar example for a Bermudan option with N = 20
exercise dates. The boundary error plays a big role in Bermudan option pricing due to
the recursive pricing, which has the potential to blow up small errors at the boundary
to significant errors within the domain. This is shown in Figure 6. There, a Bermudan
put option is priced under geometric Brownian motion dynamics and parameters as
in Test no.1 in Table 3. We choose a relatively small domain using the cumulants
method (33) and L = 3 for both methods.

We can see that the COS method has a pricing error for negative x, similar to the
European case, due to periodicity of the Fourier transform, as the payoff function of a
put option is non-zero there. Furthermore, on the positive side of the domain, an error
recursion occurs, which becomes significant after about 6 time steps, and increases
further at every iteration towards t = 0.

The SWIFT method allows us to place the domain truncation outside of the do-
main of computation, decreasing the error recursion as much as possible. For a fair
comparison, we have kept the number of coefficients the same. This results in a loss
of accuracy on the positive side of the x domain, and we see that the SWIFT pric-
ing error is no longer machine accuracy, but around 10−12. This error will become
more apparent when the domain is chosen larger or the number of exercise moments
increases.

Pricing Early-Exercise and Discrete Barrier Options 27

Test No. Model S0 K T r q Other Parameters

4 CGMY 100 100 1 0.05 0.02 (C̄, Ḡ,M̄,Ȳ) = (4,50,60,0.7)
5 NIG 100 100 1 0.05 0.02 α = 15,β =−5,δ = 0.5

Table 4 Test parameters for pricing barrier options. Characteristic exponents of these Lévy models can be
found in Table 1. For details, we refer the reader to [17].

0 5 10 15

time (ms)

10-15

10-10

10-5

100

105

op
tio

n
pr

ic
e

er
ro

r

Barrier option CGMY dynamics

UOP
UOC
DOP
DOC

0 5 10 15

time (ms)

10-15

10-10

10-5

100

105

op
tio

n
pr

ic
e

er
ro

r

Barrier option NIG dynamics

UOP
UOC
DOP
DOC

Fig. 7 Barrier options priced with the SWIFT method. Parameters from Table 4. Wavelet scales
m = 2, . . . ,8 are shown. Domain truncated by (33) and L = 6.

5.4 Barrier Options

We consider monthly-monitored (N = 12) up-and-out call and put options (UOC)
and (UOP), down-and-out call and put options, (DOC) and (DOP), with up barrier
Bup = 120 and the down barrier Bdown = 80, without rebates. Reference method is
the COS method [9]. The test parameters we use are also from [9], and are shown in
Table 4, where q is the dividend yield.

The computation of option values for barrier options is faster than for Bermudan
options, as the barrier is known in advance, in contrast to the early-exercise point, and
we observe in Figure 7 accurate prices are computed within milliseconds. The down-
and-out put (DOP) and the up-and-out call (UOC) have a bounded payoff domain,
which results in a higher accuracy as no artificial truncation is required. Furthermore,
the NIG model with parameters as in Table 4 has a a high-peaked density function,
thus a higher wavelet scale is required.

6 Conclusion and Discussion

In this paper, we examined the SWIFT method for pricing European options [15]. We
gave a complete proof of exponential convergence with respect to the wavelet scale
and gave an analytic argument to determine a suitable approximation scale m. De-
termination of the appropriate domain truncation can then be carried out recursively.
Furthermore, we showed a close relation to the COS method [8] for specific param-

28 S.C. Maree et al.

eter choices and we highlighted the advantage of the SWIFT method with respect to
the domain boundary for multiple strike pricing.

The main contribution of this paper is the extension of the SWIFT method for
pricing Bermudan options and discretely monitored barrier options under Lévy dy-
namics. The SWIFT method for options with early-exercise features is competitive
to the state-of-the-art methods like the COS method [16], both with a computational
complexity of O(NJ logJ), where J is the number of coefficients and N the number
time steps. The advantage of our method is preservation of the exponential conver-
gence of the COS method, while being able to solve boundary issues recursively.
This is particularly useful for smooth density functions and options with a long time
to maturity.

The difficulty of this method is that the sinc function has to be approximated
in order to compute its integral, and a global artificial truncation of the integration
range is required if one want to apply the FFT. We introduced a second approach, the
Quick SWIFT method, based on the observation that the sinc-function converges to
the Dirac-delta when the wavelet scale m goes to infinity. This approach is very quick,
but resulting convergence of the error in the option price is linear. If only engineering
accuracy is required, this method is preferable over the COS method, especially when
the density function contains high-frequency moments, which happens for peaked
densities when for example the time between exercise moments is small.

As for possible extensions, it is interesting to apply the SWIFT method to higher
dimensions and other option types or exploring different approximations of the sinc
integral to balance between accuracy and computational time. We leave these for
future research.

A The Fast Fourier Transform

The SWIFT Bermudan method relies on the application of the Fast Fourier Transform (FFT) for fast
computations. Point of departure is the discrete Fourier transform (DFT), which is defined analogously to
the continuous Fourier transform, but only on a set of discrete frequencies ω .

Definition 3 (DFT) Let z ∈ CN with entries z = {z j}N
j=1. Then the discrete Fourier transform is defined

as,

DFTk(z) =
N

∑
j=1

z je−
2πi
N (k−1)(j−1), where k = 1−N/2, . . . ,N/2. (54)

Remark 9 There are different definitions regarding the DFT, but we use the one as implemented in Matlab
to reduce the differences between notation and implementation. Expression (54) is equivalent to Z =

fftshift(fft(z)) in Matlab-code.

We discuss Hankel matrices that have a special structure, which allows us to compute matrix-vector
products with a complexity of O(N log2 N) instead of O(N2). This is in detail described in [9].

Pricing Early-Exercise and Discrete Barrier Options 29

A.1 Hankel Matrix Multiplication

A Hankel matrix M is an N×N matrix with constant anti-diagonals, i.e.,

M :=

m0 m1 m2 · · · mN−1
m1 m2 · · · mN−1 mN
... . .

. ...
mN−2 mN−1 · · · · · · m2N−3
mN−1 · · · · · · m2N−3 m2N−3

 .

For a vector x∈ RN , the matrix-vector product M x is equal to the first N elements of the circular convo-
lution mh ~xh, with the 2N-vectors,

mh := [m0,m−1,m−2, · · · ,m1−N ,0,mN−1,mN−2, · · · ,m1]
T ,

xh := [x0,x1,x2, · · · ,xN1 ,0, · · · ,0]
T .

(55)

A circular convolution of two vectors is equal to the inverse discrete Fourier transform (DFT−1) of
the product of the forward DFTs, DFT, i.e.,

x~y = DFT−1 (DFT(x) ·DFT(y)) .

Thus, in total 3 times the FFT algorithm has to be applied on a vector of length 2N.

A.2 Wavelet coefficient computation with the FFT

We show that we can benefit from the Fast Fourier Transform in the computation of the Shannon wavelet
coefficients when we make use of the approximation of the sinc-function as in Lemma 4.

Recall that wavelet coefficients of an arbitrary function g are defined as Gm,k :=
〈
g, φm,k

〉
, and by

approximating the wavelet φm,k by φ∗m,k we obtain,

G∗m,k :=
∫
R

g(y)φ∗m,k(y)dy

=
2

m
2

J
Re

{
J

∑
j=1

(∫
R

g(y)e−iω j2my dy
)

eiω jk

}

=:
2

m
2

J
Re

{
J

∑
j=1

g jeiω jk

}
.

(56)

The inner integral g j in the second step can be solved using the Fourier transform ĝ whenever it exists, or
it can be solved numerically, depending on the properties of the function g. To apply the FFT, recall that
ω j =

π

J (j− 1
2). We define N = 2J and apply zero padding to g j := 0 for j = J+1, . . . ,N, to obtain,

G∗m,1−k =
2

m
2

J
Re

{
e−i π

N (k−1)
N

∑
j=1

g je−i 2π
N (j−1)(k−1)

}
, (57)

which is in the form of the Matlab fft-function as in Definition 3 and the whole vector of coefficients
{Gm,k}N

k=1 can be computed at a computational cost of O(N logN).

Remark 10 The FFT is used most efficient when the number of sub intervals J is a power of two, thus by
setting J = 2η , where η∈ N.

30 S.C. Maree et al.

B Technical Details

B.1 Proof of Corrolary 1

Fix a wavelet scale m ∈ R and recall from (6) that by construction, the projection onto Vm is given by
Pm f (y) = ∑k∈Z

〈
f , φm,k

〉
φm,k(y), where we can rewrite the coefficient

〈
f , φm,k

〉
by application of Parse-

val’s identity, 〈
f , φm,k

〉
=

1
2π

〈
f̂ , φ̂m,k

〉
=

2−
m
2

2π

∫ 2mπ

−2mπ

f̂ (ω)eiωk/2m
dω.

When substituting this expression of the density coefficients in the projection Pm f , we obtain by inter-
changing integration and summation,

Pm f (y) =
2−

m
2

2π

∫ 2mπ

−2mπ

f̂ (ω)

[
∑
k∈Z

φm,k(y)eiωk/2m

]
dω. (58)

It follows now from the Fourier series expansion of eiωy in y that,

∑
k∈Z

φm,k(y)eiωk/2m
= 2

m
2 eiωy, when, ω ∈ (−2m

π,2m
π), (59)

see [19]. Substituting (59) into (58) yields the desired result. ut

B.2 Proof of Lemma 6

If f is a band-limited function, it follows from Corollary 2 that the density coefficients are given by
Dm,k(x) = 2−

m
2 f (k

2m |x). In our application, density f is not band-limited, but this motivates us to write
Dm,k(x) = 2−

m
2 [f (k

2m |x)− εm(
k

2m ;x)], where εm(y;x) is as in (9). Inserting this formulation of the density
coefficients into f2 of (18) results in,

f2(y|x) = 2−
m
2

κ

∑
k=1−κ

[
f (k

2m |x)− εm(
k

2m ;x)
]

φm,k(y). (60)

The difference between f2 and f can be expressed using (60), so that we obtain,

f2(y|x)− f (y|x) = 2−
m
2

κ

∑
k=1−κ

f (k
2m |x)φm,k(y)− f (y|x)−2−

m
2

κ

∑
k=1−κ

εm(
k

2m ;x)φm,k(y).

The right-side sum is a finite summation of which each term can be bounded by noting that
∣∣φm,k(y)

∣∣≤ 2
m
2

and |εm(y;x)| ≤ H(2mπ), see Lemma 3, where H(ω) is the mass in the tails of the Fourier transform as in
(8) Thus we obtain,

| f2(y|x)− f (y|x)| ≤

∣∣∣∣∣ κ

∑
k=1−κ

2−
m
2 f (k

2m |x)φm,k(y)− f (y|x)

∣∣∣∣∣+(2κ +1)H(2m
π). (61)

The part in absolute signs is a truncated sinc approximation, and convergence is proven in [19, Theorem
1.3.5, eqn. (1.3.28)], and bounded by,∣∣∣∣∣ κ

∑
k=1−κ

2−
m
2 f (k

2m |x)φm,k(y)− f (y|x)

∣∣∣∣∣≤ 2H(2m
π)+ ∑

|k|>κ

f (k
2m |x). (62)

This remaining summation can be interpreted as a Riemann-sum over the tails of the density function.
We assume monotonic decay of the density function, and we consider the left and right tails separately.
Then, for the left tail, if we interpret the summation as a left Riemann sum, it is bounded by 2m times the
integral of f (y|x) over (−∞, 1−κ

2m). Similarly, a right Riemann sum is bounded from above by the integral
over the right tail (κ

2m ,∞). Thus, we find,

∑
|k|>κ

f (k
2m |x)≤ 2m

τ(κ

2m). (63)

If we summarize the results from (61)-(63), the desired result follows immediately. ut

Pricing Early-Exercise and Discrete Barrier Options 31

B.3 Proof of Lemma 7

We use the definition of f2 and f3 in respectively (18) and (20) so that,

|ε3(J)|=

∣∣∣∣∣ κ

∑
k=1−κ

(
Dm,k(x)−D∗m,k(x)

)
Vm,k

∣∣∣∣∣≤ 2
m
2 (2κ +1)‖g‖

∞
max
|k|≤κ

∣∣Dm,k(x)−D∗m,k(x)
∣∣

≤ 2m(2κ +1)‖g‖
∞

(
2τ(c)+

√
2c‖ f‖2

(πκ)2

(2J)2− (πκ)2

)
,

where the last step is a result of Lemma 2 in [15]. ut

B.4 Proof of Theorem 1

We combine the results the error bounds derived in Lemmas 5-7. That is,

|v(x, t0)− v3(x, t1)|
‖g‖

∞
e−r∆ t =

|ε3(J)+ ε2(m,κ)+ ε0(c)|
‖g‖

∞
e−r∆ t

≤ 2c
[
(2κ +3)H(2m

π)+2m
τ(κ

2m)
]
+ τ(c)

+2m(2κ +1)
(

2τ(c)+
√

2c‖ f‖2
(πκ)2

(2J)2− (πκ)2

)
,

(64)

and when J ≥ πκ ≥ 2mπc, the desired result follows. ut

B.5 Proof of Theorem 2

We show that the continuation coefficients,

Cm,k(x1,x2, tn−1) :=
∫ x2

x1

c(x, tn−1)φm,k(x)dx,

can be approximated by the SWIFT method for European options by a repeated use of Lemma 4.
As noted above, the continuation value c(x, tn−1) in (42) resembles a European pricing option problem,

which we can approximate once more with the SWIFT pricing formula. We use the formulation of the
SWIFT method for multiple strikes (36), so that we obtain

c(x, tn−1)≈ c∗(x, tn−1) := e−r∆ t
J

∑
j=1

Re
{

f̂
(
ω j2m)Ũ j(tn)e−iω j2mx

}
, (65)

where the factor Ũ j(tn) is as (35), but due to the time recursion, it now depends on Vm,k(tn) so that it is
given by,

Ũ j(tn) :=
2

m
2

J ∑
|p|≤κ

Vm,p(tn)eiω j p. (66)

This expression can be efficiently constructed using the FFT as explained in Appendix A.2. We use the
same truncation |p| ≤ κ at each time step for simplicity of notation and to make optimal use of the FFT.

When substituting this SWIFT approximation of the continuation value (65) in the definition of the
continuation coefficients (46), we obtain,

Cm,k(x1,x2, tn−1) :=
∫ x2

x1

c(x, tn−1)φm,k(x)dx

≈ e−r∆ t
∫ x2

x1

J

∑
j=1

Re
{

f̂
(
ω j2m)Ũ j(tn)e−iω j2mx

}
φm,k(x)dx

= e−r∆ t
J

∑
j=1

Re
{

f̂
(
ω j2m)Ũ j(tn)

∫ x2

x1

φm,k(x)e−iω j2mx dx
}
,

(67)

32 S.C. Maree et al.

Thus, the continuation coefficients at time tn−1 can be recovered from the value coefficients at time tn. The
remaining step is the computation of integrals at the right hand side, which we do by replacing φm,k by
φ∗m,k as in Lemma 4, but we use the complex form,

sinc∗(x) =
1
2J

J

∑
q=1−J

eitωq , (68)

so that we will not be confused by two real-parts functions Re{} in one equation. Then, the integrals at
the right hand side of (67) can be approximated by,

I∗j,k(x1,x2) :=
∫ x2

x1

φ
∗
m,k(x)e

−iω j2mx dx =
2

m
2

2J

J

∑
q=1−J

M j,q(x1,x2)eiωqk, (69)

where the integrals M j,q(x1,x2) are defined as,

M j,q(x1,x2) :=
∫ x2

x1

e−i(ω j+ωq)2mx dx.

These integrals can be solved analytically, and the solutions are given by,

M j,q(x1,x2) =

x2− x1, for q = 1− j,

i
e−i(ω j+ωq)2mx2 − e−i(ω j+ωq)2mx1

(ω j +ωq)2m , else.

Substituting the approximation I∗j,k(x1,x2) into (67) and changing the order of the summations yields,

C∗m,k(x1,x2, tn−1) := e−r∆ t Re

{
J

∑
q=1−J

Jq(x1,x2)eiωqk

}
, (70)

where the coefficients Jq(x1,x2) are defined as,

Jq(x1,x2) :=

(
J

∑
j=1

[
f̂
(
ω j2m)Ũ j(tn)

]
M j,q(x1,x2)

)
. (71)

This represents a matrix-vector product, where {M j,q} j,q is a Hankel matrix, as its values only depend
on j and q through (j+ q). By Appendix A.1, we can recover this matrix-vector product with a Hankel
matrix by application of three times the FFT. Then finally, the summation over q in (70) can be once more
computed using the FFT, see Appendix A.2. ut

References

1. Abrarov, S.M., Quine, B.M.: A rational approximation for efficient computation of the Voigt function
in quantitative spectroscopy. J. Math. Research 7(2), 163–174 (2015)

2. Abrarov, S.M., Quine, B.M.: Sampling by incomplete cosine expansion of the sinc function: Applica-
tion to the Voigt/complex error function. Appl. Math. Comput. 258, 425–435 (2015)

3. Broadie, M., Yamamoto, Y.: Application of the fast Gauss transform algorithm for pricing discrete
path-dependent options. Management Science 8(49), 1071–1088 (2003)

4. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73
(1999)

5. Cattani, C.: Shannon wavelets theory. Mathematical problems in Enigneering 2008, 164,808 (2008)
6. Chui, C.K.: An introduction to wavelets. Academic Press (1992)
7. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992)
8. Fang, F., Oosterlee, C.W.: A novel option pricing method based on Fourier-cosine series expansions.

SIAM J. Sci. Comput. 31(2), 826–848 (2008)

Pricing Early-Exercise and Discrete Barrier Options 33

9. Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series
expansions. Numerische Mathematik 114(1), 27–62 (2009)

10. Feng, L., Linetsky, V.: Pricing discretely monitored barrier options and defaultable bonds in Lévy
process models: a fast Hilbert transform approach. Math. Finance 18(3), 337–384 (2008)

11. Kirkby, J.L.: Robust barrier option pricing by frame projection under exponential Lévy dynamics.
Working Paper (2014)

12. Kirkby, J.L.: Efficient option pricing by frame duality with the fast Fourier transform. SIAM J. on
Financial Mathematics (2015)

13. Mallat, S.: A wavelet tour of signal processing. Academic Press (2009)
14. Ortiz-Gracia, L., Oosterlee, C.W.: Robust pricing of european options with wavelets and the charac-

teristic function. SIAM J. Sci. Comput. 35(5), B1055–B1084 (2013)
15. Ortiz-Gracia, L., Oosterlee, C.W.: A highly efficient Shannon wavelet inverse Fourier technique for

pricing european options. SIAM J. Sci. Comput. 38(1), B118–B143 (2016)
16. Ruijter, M.J., Oosterlee, C.W., Aalbers, R.F.T.: On the Fourier cosine series expansion method for

stochastic control problems. Numerical Linear Algebra with Applications 20(4), 598–625 (2013)
17. Schoutens, W.: Levy processes in Finance: Pricing Financial Derivatives. Hohn Wiley & Sons Ltd.

(2003)
18. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)
19. Stenger, F.: Handbook of Sinc Numerical Methods. CRC PRess (2011)
20. Ushakov, U.: Selected topics in characteristic functions. De Gruyter (1999)

	Introduction
	Multi Resolution Analysis
	European option pricing
	Pricing Bermudan and Barrier Options
	Numerical Results
	Conclusion and Discussion
	The Fast Fourier Transform
	Technical Details

