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Abstract

The SWIFT method for pricing European-style options on one underlying asset was recently
published and presented as an accurate, robust and highly efficient technique. The purpose of
this paper is to extend the method to higher dimensions by pricing exotic option contracts,
called rainbow options, whose payoff depends on multiple assets. The multidimensional exten-
sion inherits the properties of the one-dimensional method, being the exponential convergence
one of them. Thanks to the nature of local Shannon wavelets basis, we do not need to rely on
a-priori truncation of the integration range, we have an error bound estimate and we use fast
Fourier transform (FFT) algorithms to speed up computations. We test the method for similar
examples with state-of-the-art methods found in the literature, and we compare our results
with analytical expressions when available.
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1 Introduction

Financial derivatives such as options are traded all over the world. In the general class of exotic
options that are not listed on regulated exchanges, multi-asset options form a class for which
efficient solution methods are not easily obtained.

Analytical formulae to price multi-asset derivatives are only available for the most simple cases.
Hence, there is a need to develop numerical methods to approximate their prices and develop
efficient algorithms to implement them, so that they provide useful information in a market that
changes rapidly. Recently, multidimensional option pricing has become an important topic, but
this is an area with high computational demands. Some examples of multidimensional options
are exotic option contracts called multicolour rainbow options whose payoff depends on multiple
assets.

One of the most commonly used methods for pricing options is Monte Carlo simulation. This
method has the advantage of scaling linearly with the number of dimensions. However, convergence
is slow and a large number of simulations is needed if accurate results are desired. Different
approaches are based on partial differential equations (PDE) and Fourier methods. This last
class of approximations relies on a transformation to the Fourier domain. The probability density
function appears in the time domain, and it is not known for many relevant multidimensional
processes. However, its characteristic function, this is its Fourier transform, is often available in
closed form. Nevertheless, in both PDE and Fourier-based methods the curse of dimensionality
plays a prominent role. The curse of dimensionality is the exponential growth of the complexity of
the problem when the dimension increases, and modern computer systems cannot handle this huge
amount of computations. For this reason, and despite their drawbacks, Monte Carlo methods are
the most commonly used alternatives when the dimension is bigger than four or five, depending
on the specific product.
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One well-developed multidimensional Fourier-based method is the multidimensional COS method
presented in [11] and called 2D-COS when the dimension is two. However, it may exhibit prob-
lems in the vicinity of the integration boundaries because of the periodic behaviour of cosines.
This problem becomes evident for long maturity options, where round-off errors may accumulate
near domain boundaries. Also for short maturity options, typically governed by a highly peaked
density function, many cosine terms may be needed for an accurate representation. In addition,
an accurate integration interval is important to capture the whole mass of the recovered density,
but the choice of the interval is entirely based on the cumulants, which sometimes are not easily
available or do not provide a good truncation range.

In the one-dimensional case, local wavelets bases have been considered in [9, 10], which overcome
some of the problems of the well known one-dimensional COS method [2]. Wavelets give flexibility
and enhance robustness when pricing long maturity options and heavy tailed asset processes. In
particular, Shannon wavelets used in the SWIFT method [10], are smooth wavelets based on the
cardinal sine (sinc in short) function. The SWIFT method has been used for European option
pricing and it is based on a wavelet expansion of the underlying density function recovered from
its Fourier transform. Haar wavelets and B-splines of order one were used in [9]. These wavelets
have compact support and the pricing formula is particularly easy to implement with the Haar
basis, although the method converges slower than SWIFT. Higher order B-splines are considered
in [3].

The aim of the present work is to extend the one-dimensional SWIFT method to a higher
dimension to be able to price European-style financial contracts with a payoff depending on more
than one asset. For two-dimensional contracts we call it 2D-SWIFT. The unknown density function
is approximated in terms of a finite combination of multidimensional Shannon scaling functions
and the coefficients of the approximation are recovered by inverting its Fourier transform. Then,
the payoff coefficients are calculated by means of the approximated density within the discounted
expected payoff pricing formula setting, and the final price of the contract is readily obtained.
Central to this two-step process is the use of an appropriate approximation of the sinc function.
As opposed to the one-dimensional case, where the Vieta’s formula was employed, we approximate
the sinc function in terms of a sum of complex exponentials. Proceeding this way, the algebraic
manipulation to obtain the pricing formulae is drastically simplified. Further, we provide an
error analysis which facilitates the choice of the parameters of the new method and enhance the
overall speed with an FFT algorithm. We test our method with examples and methods from the
literature, like for instance the well-known 2D-COS in [11]. We price basket (both geometric and
arithmetic), spread, call-on-max, put-on-min, and correlation options. It is worth mentioning that
we can perform a consistency check of our method, since there exists a closed form solution for
spread options with strike zero (the Margrabe formula [6]), as well as an analytical method for
the valuation of a geometric basket option (since it can be transformed into a one-dimensional
European option). The 2D-SWIFT method appears to be a very competitive pricing machinery,
showing exponential convergence with a very short run time. We also benefit from the local
behaviour of Shannon wavelets. Due to that fact, the accurate treatment of options with long
maturities is possible since we can remove the density coefficients affected by the exponential
growth of the payoff without changing the remaining part of the approximation. Finally, it is
not necessary to rely on a-priori truncation of the integration range. We use an initial guess
of the truncation range, which allows to compute the density coefficients much faster with an
FFT algorithm, and we adaptively compute the final integration range if necessary. It is worth
remarking that the number of terms needed in the expansion is automatically calculated once the
scale of approximation has been fixed, which is a central step in our method.

The outline of this paper is as follows. We start with the presentation of the two-dimensional
option pricing problem in Section 2 and the related theory of the multidimensional wavelets frame-
work. In Section 3 the 2D-SWIFT pricing formula is derived and the respective extension to higher
dimensions is also introduced. In Section 4 we present an error analysis along with a study on
how to select the parameters of the method. Numerical tests are performed in Section 5 and a
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specific study of 2D-SWIFT strengths is carried out in Section 6, such as the behaviour for extreme
maturities or the automatic computation of the number of coefficients. Section 7 concludes.

2 Motivation: rainbow option pricing

In this section we define the two-dimensional pricing formula as a discounted expectation of the
option value at expiration. From now on, bold letters will denote vectors.

Assume (Ω,F , P ) is a probability space, T > 0 is the finite terminal time, and F = (FS)0≤S≤T is
a filtration with the usual conditions. Then, the process Xt = (X1

t , X
2
t ) denotes a two-dimensional

stochastic process on the filtered probability space (Ω,F ,F, P ), representing the log-asset prices
of the underlying. We assume that the bivariate characteristic function of the stochastic process
is known.

The value of a European rainbow option with payoff function g(·), which depends on the
underlying asset price, is given by the risk-neutral option valuation formula,

v(t0,x) = e−r∆tE [g (XT )] = e−r∆t
∫∫

R2

g(y)f(y|x) dy, (2.1)

where x = (x1, x2) is the current state, f(y1, y2|x1, x2) is the underlying conditional density func-
tion, r is the risk-free rate and ∆t := T − t0 denotes time to expiration.

Whereas f is typically not known, its characteristic function is often available, this is, the
Fourier transform of f . The strategy followed to determine the price of the option consist of
approximating the density function f in (2.1) by a finite combination of Shannon scaling functions
and recovering the coefficients of the approximation from its Fourier transform. A brief review of
the basic theory of wavelets is given in the next section.

2.1 Multidimensional wavelets framework

We introduce some useful definitions for the two-dimensional framework which can be easily ex-
tended to more dimensions.

The space L2(R2) is the vector space of measurable, square-integrable two dimensional functions
f(x, y). For any two functions h(x, y), p(x, y) ∈ L2(R2), their inner product in L2

(
R2
)

is defined
by

〈h (x, y) , p (x, y)〉 :=

∫∫
R2

h (x, y) p̄ (x, y) dxdy, (2.2)

where p̄ is the complex conjugate of p. The bivariate Fourier transform of a function h(x, y) ∈
L2(R2) is defined by,

ĥ(u1, u2) :=

∫∫
R2

h(x, y)e−i(u1x+u2y) dxdy. (2.3)

Now, we can introduce the wavelet theory in two dimensions. To begin with, we give a brief
description of the one-dimensional case because the multidimensional derivations are based on
that approach. There are two functions that play a primary role in wavelet analysis, the scaling
function (or father wavelet) φ and the wavelet (or mother wavelet) ψ. By the following definition
one can define a general structure for wavelets in L2(R), which is called a multiresolution analysis
(MRA).

Definition 1. Let Vj, j = · · · ,−2,−1, 0, 1, 2, · · · be a sequence of subspaces of functions in L2(R).
The collection of spaces (Vj)j∈Z is called a multiresolution analysis of L2(R) with scaling function
φ, if the following conditions hold

1. (nested) Vj ⊂ Vj+1,

2. (dense) ∪Vj = L2(R),
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3. (separation) ∩Vj = {0},

4. (scaling) The function f(x) belongs to Vj if and only if the function f(2x) belongs to Vj+1,

5. (orthonormal basis) The function φ belongs to V0 and the set {φ(x − k), k ∈ Z} is an or-
thonormal basis (using the L2 inner product) for V0.

The Vj are called approximation spaces. Different choices of φ yield different multiresolution
analysis. If (Vj)j∈Z is an MRA with scaling function φ, then for any j ∈ Z, the set of functions
{φj,k(x) = 2j/2φ(2jx − k); k ∈ Z} is an orthonormal basis for Vj . We define Wj ⊂ Vj+1 as the
orthogonal complement of Vj in Vj+1, and it is called the detail space. Furthermore, there exist
ψ ∈W0 such that

{
ψj,k(x) := 2j/2ψ(2jx− k), k ∈ Z

}
is an orthornormal basis for Wj . In addition,

we have that
L2(R) = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · . (2.4)

Multiresolution analysis which defines general wavelet structures in L2 spaces, can be general-
ized to any dimension d ∈ N (see [7] for details). We illustrate the two-dimensional case.

A multiresolution approximation of L2(R2) is a sequence of subspaces of L2(R2) which satisfies
a straightforward two-dimensional extension of the properties of MRA presented in Definition

1. Let
(
V 2
j

)
j∈Z

be such a multiresolution approximation of L2(R2). One can show that there

exists a unique two-dimensional scaling function Φ(x, y) whose dilation and translation give an
orthonormal basis of each space V 2

j (see [1, 4]).
We stay in the particular case of separable wavelet bases and separable multiresolutions, due to

the direct connection to the one-dimensional case, and because it avoids mixing of information at
two different scales. For such multiresolution approximations, each vector space V 2

j is decomposed

as a tensor product of two identical subspaces of L2(R) whose elements are products of functions
dilated at the same scale,

V 2
j = Vj ⊗ Vj . (2.5)

The sequence of vector spaces
(
V 2
j

)
j ∈Z

forms a multiresolution approximation of L2(R2) if and

only if (Vj)j∈Z is a multiresolution analysis of L2(R). It is easy to see that the two-dimensional
scaling function Φ(x, y) can be written as

Φ(x, y) := φ(x)φ(y), (2.6)

where φ(x) is the one-dimensional scaling function of Vj .
As stated, {φj,m;m ∈ Z} is an orthonormal basis of Vj . Since V 2

j = Vj ⊗ Vj , for x = (x1, x2)
and k = (k1, k2),

{Φj,k(x) = φj,k1(x1)φj,k2(x2)}k∈Z2 (2.7)

is an orthonormal basis of V 2
j .

Let W 2
j be the detail space equal to the orthogonal complement of the lower resolution approx-

imation space V 2
j in V 2

j+1,

V 2
j+1 = V 2

j ⊕W 2
j . (2.8)

The following theorem builds a wavelet basis of each detail space W 2
j , to construct later a wavelet

orthonormal basis of L2(R2). A separable orthonormal wavelet basis of L2(R2) is constructed with
separable products of a scaling function φ and a wavelet ψ.

Theorem 1 (Theorem 7.24 of [4]). Let φ be a scaling function and ψ be the corresponding wavelet
generating a wavelet orthonormal wavelet basis of L2(R). We define the three wavelets

Ψ1(x) = φ(x1)ψ(x2), Ψ2(x) = ψ(x1)φ(x2), Ψ3(x) = ψ(x1)ψ(x2), (2.9)

and denote, for 1 ≤ n ≤ 3,

Ψn
j,k(x) = 2jΨn

(
2jx1 − k1, 2

jx2 − k2

)
. (2.10)
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Then, the wavelet family {
Ψ1
j,k, Ψ2

j,k, Ψ3
j,k

}
k∈Z2 (2.11)

forms an orthonormal basis of W 2
j . And{

Ψ1
j,k, Ψ2

j,k, Ψ3
j,k

}
(j,k)∈Z×Z2 (2.12)

forms an orthonormal basis of L2(R2).

For any function f(x1, x2) ∈ L2(R2), a projection map of L2(R2) onto V 2
m, Pm : L2(R2)→ V 2

m,
is defined as

Pmf(x1, x2) : =
m−1∑
j=−∞

∑
n=1,2,3

∑
k1 ∈Z

∑
k2 ∈Z

dnj,k1,k2Ψn
j,k1,k2(x1, x2)

=
∑
k1 ∈Z

∑
k2 ∈Z

cm,k1,k2Φm,k1,k2(x1, x2)

=
∑
k1 ∈Z

∑
k2 ∈Z

cm,k1,k2φm,k1(x1)φm,k2(x2),

(2.13)

where

cm,k1,k2 :=

∫∫
R2

f(x1, x2)Φm,k1,k2(x1, x2) dx1dx2 (2.14)

are the scaling coefficients, and

dnj,k1,k2 :=

∫∫
R2

f(x1, x2)Ψn
m,k1,k2(x1, x2) dx1dx2 (2.15)

are the wavelets coefficients. And the convergence is in the L2(R2) space, this is,

‖f − Pmf‖2 −→
m→+∞

0. (2.16)

In this work, we consider the Shannon father function rather than the mother wavelet, due to
its tractability and simplicity. Hence, our wavelet bases are a set of Shannon scaling functions in
the subspace Vm, given by, for x ∈ R,

φm,k(x) = 2m/2sinc (2mx− k) , (2.17)

where the sinc function is defined as

sinc (x) :=
sin (πx)

πx
. (2.18)

The two-dimensional Shannon scaling function is given by, see Figure 1,

Φm,k1,k2(x1, x2) := φm,k1(x1)φm,k2(x2) = 2m sinc(2mx1 − k1) sinc(2mx2 − k2). (2.19)

2.1.1 Wavelets bases in higher dimensions

Separable orthonormal wavelet bases of L2(Rp) can be constructed for any p ≥ 2 with a procedure
similar to the two-dimensional extension. Let φ be a scaling function and ψ a wavelet that yields
an orthogonal basis of L2(R). Now, V p

j = Vj ⊗ · · · ⊗ Vj and W p
j is the detail space, i.e. the

orthogonal complement of the lower resolution approximation space.
We denote θ0 := φ and θ1 := ψ. For an integer 0 ≤ ε ≤ 2p written in binary form, ε = ε1 · · · εp,

we associate p-dimensional functions defined in x = (x1, · · · , xp) by

ψε(x) := θε1 (x1) · · · θεn (xp) , (2.20)
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Figure 1: Two-dimensional Shannon wavelet Φ0,0,0(x1, x2), with (x1, x2) ∈ [−6, 6]2.

For ε = 0, we obtain a p−dimensional scaling function

ψ0 (x) = φ (x1) · · ·φ (xp) . (2.21)

Non-zero indexes ε correspond to 2p − 1 wavelets. At any scale 2j and for n = (n1, · · · , np) we
denote

ψεj,n (x) := 2pj/2ψε
(
2jx1 − n1, · · · , 2jxp − np

)
. (2.22)

Theorem 2 (Theorem 7.25 in [4]). The family obtained by dilating and translating the 2p − 1
wavelets for ε 6= 0 {

ψεj,n
}

1≤ε<2p,n∈Zp (2.23)

is an orthonormal basis of W p
j . And the family{

ψεj,n
}

1≤ε<2p,(j,n)∈Zp+1 (2.24)

is an orthonormal basis of L2 (Rp).

For any function f ∈ L2(Rp), a projection map of L2(Rp) onto V p
m, Pm : L2(Rp) → V p

m, is
defined as

Pmf(x) : =

m−1∑
j=−∞

∑
0<ε≤2p

∑
k1 ∈Z

∑
k2 ∈Z

· · ·
∑
kp ∈Z

dεj,k1,··· ,kpψ
ε
j,k1,··· ,kp(x)

=
∑
k1 ∈Z

∑
k2 ∈Z

· · ·
∑
kp ∈Z

cm,k1,··· ,kpφm,k1(x1)φm,k2(x2) · · ·φm,kp(xp),
(2.25)

where cm,k1,··· ,kp are the scaling coefficients and dnj,k1,k2 the wavelets coefficients.
The p-dimensional Shannon scaling function is given by,

Φm,k1,··· ,kp(x) := φm,k1(x1) · · ·φm,kp(xp) = 2
pm
2 sinc(2mx1 − k1) · · · sinc(2mxp − kp). (2.26)

Further details about wavelets in high dimensions can be found in Section 7.7.4 of [4].

2.1.2 Approximation of the sinc function

Central to the option pricing process, that will be presented later, is a convenient approximation
of the sinc function by means of a midpoint quadrature rule. For t, x ∈ R,

sinc(t) =
1

2π

∫
R

ŝinc(x)eitx dx =
1

2π

∫
R

rect
( x

2π

)
eitx dx =

1

2π

∫ π

−π
eitx dx ≈ sinc∗N (t) :=

1

N

N∑
j=1

eiΩjt,

(2.27)
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where ŝinc represents the Fourier transform of sinc and rect is the rectangle function,

rect(x) =


1, if |x| < 1

2 ,
1
2 , if |x| = 1

2 ,

0, if |x| > 1
2 ,

(2.28)

being N the number of points in the midpoint quadrature and Ωj := −π + 2j−1
N π.

The approximation presented in the one-dimensional case in [10] reads,

sinc(t) ≈ sinc∗(t) :=
1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
=

1

2J−1

2J−1∑
j=1

cos (ωjt) , (2.29)

for ωj = 2j−1
2J

π, where the authors approximate the cardinal sine function by a finite combination
of cosines through the application of Vieta’s formula.

It can be easily shown that the approximation (2.29) is a particular case of the approximation
(2.27) for N = 2J , indeed,

sinc∗(t) =
2

N

N/2∑
j=1

cos

(
2j − 1

N
πt

)
=

1

N

N/2∑
j=1

(
ei(

2j−1
N )πt + e−i(

2j−1
N )πt

)
=

1

N

N/2∑
j=1

ei(
2j−1
N )πt

+
1

N

0∑
j=1−N/2

ei(
2j−1
N )πt =

1

N

N/2∑
j=1−N/2

ei(
2j−1
N )πt =

1

N

N∑
j=1

ei(
2j−N−1

N )πt = sinc∗N (t).

(2.30)

The complex exponential form (2.27) will facilitate the derivation of the density and payoff
coefficients along the option pricing procedure presented in the next section.

3 European rainbow option pricing

We present the 2D-SWIFT formula to recover the density function f in expression (2.1) assuming
that its Fourier transform f̂ is known. The density function of the asset price process at terminal
time T is usually not known, but often its characteristic function is known. The method is based
on the approximation of the density function by a finite combination of Shannon wavelets in
dimension two. Once the density has been recovered, we replace f by its approximation in formula
(2.1) to get the final price of the financial contract. This two-step procedure is explained in detail
in Section 3.1, while the general case for higher dimensions is briefly exposed in Section 3.2.

3.1 Derivation of the 2D-SWIFT method

As mentioned before, the first step during the derivation of the 2D-SWIFT pricing formula is the
recovery of the density function. We distinguish three main steps,

Step 1. We approximate the conditional density function by a finite combination of Shannon
scaling functions,

f(y|x) ≈ f1(y|x) := Pmf(y|x) =
∑
k1 ∈Z

∑
k2 ∈Z

Dm,k1,k2(x)Φm,k1,k2(y), (3.1)

where Dm,k1,k2 , the density coefficients, are defined by,

Dm,k1,k2(x) :=

∫∫
R2

f(y|x)Φm,k1,k2(y) dy. (3.2)
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Step 2. Next, we truncate the summation range such that k1 ∈ {l1, . . . , u1} and k2 ∈
{l2, . . . , u2}, and thus, the density approximation becomes,

f1(y|x) ≈ f2(y|x) :=

u1∑
k1=l1

u2∑
k2=l2

Dm,k1,k2(x)Φm,k1,k2(y). (3.3)

Step 3. Using the complex exponential formula (2.27), we approximate the two-dimensional
Shannon scaling function as,

Φm,k1,k2(y) ≈ Φ∗m,k1,k2(y) :=
2m

N2

N∑
j1=1

eiΩj1 (2my1−k1)
N∑
j2=1

eiΩj2 (2my2−k2), (3.4)

where Ωj = −π + 2j−1
N π. For convenience, we use in both dimensions the same discretization in

the sinc approximation, this is, N points.
Then, from (3.2) and (3.4), we approximate the density coefficients Dm,k1,k2(x) by,

D∗m,k1,k2(x) : =

∫∫
R2

f(y|x)Φ∗m,k1,k2(y)dy

=
2m

N2

N∑
j1=1

N∑
j2=1

e−i
∑
n=1,2 Ωjnkn

∫∫
R2

f(y|x)ei
∑
n=1,2 Ωjn2myndy1dy2

=
2m

N2

N∑
j1=1

N∑
j2=1

e−i
∑
n=1,2 Ωjnkn f̂ (−Ωj12m,−Ωj22m|x) .

(3.5)

Finally, from (3.3) and (3.5) we obtain the density approximation,

f2(y|x) ≈ f∗(y|x) :=

u1∑
k1=l1

u2∑
k2=l2

D∗m,k1,k2(x)Φm,k1,k2(y). (3.6)

The 2D-SWIFT formula for the approximation of v(t0,x) in (2.1) is obtained first by truncating
the integration range,

v(t0,x) ≈ v1(t0,x) := e−r∆t
∫ b1

a1

∫ b2

a2

g(y)f(y|x) dy, (3.7)

for some values a1, a2, b1, b2, and then replacing the density f(y|x) by the approximation f∗(y|x)
from (3.6). Finally, the 2D-SWIFT pricing formula is given by,

v1(t0,x) ≈ v∗(t0,x) := e−r∆t
∫ b1

a1

∫ b2

a2

g(y)f∗(y|x) dy

= e−r∆t
u1∑

k1=l1

u2∑
k2=l2

D∗m,k1,k2(x)

∫ b1

a1

∫ b2

a2

g(y)Φm,k1,k2(y) dy

= e−r∆t
u1∑

k1=l1

u2∑
k2=l2

D∗m,k1,k2(x)Gm,k1,k2 ,

(3.8)

where we define the payoff coefficients as,

Gm,k1,k2 :=

∫ b1

a1

∫ b2

a2

g(y)Φm,k1,k2(y) dy. (3.9)
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Remark 1. An alternative method to get the density coefficients would be a straightforward ex-
tension of the one-dimensional method [10],which basically considers the approximation in (2.29)
for the sinc function. We approximate the two-dimensional Shannon scaling function as,

Φm,k1,k2(y) ≈ 2m

22(J−1)

2J−1∑
j1=1

2J−1∑
j2=1

cos(ωj1(2my1 − k1)) cos(ωj2(2my2 − k2)), (3.10)

where ωj := 2j−1
2J

π. Hence, the density coefficients can also be approximated by,

D∗∗m,k1,k2(x) =
2m

22(J−1)

2J−1∑
j1=1

2J−1∑
j2=1

∫∫
R2

f(y|x)
∏
n=1,2

cos(ωjn(2myn − kn)) dy. (3.11)

Using the goniometric relation 2 cos(α) cos(β) = cos(α+ β) + cos(α− β), we obtain from (3.11),

D∗∗m,k1,k2(x) =
2m+1

22(J−1)

2J−1∑
j1=1

2J−1∑
j2=1

∫∫
R2

f(y|x) cos(
∑
n=1,2

ωjn(2myn − kn)) dy

+

∫∫
R2

f(y|x) cos(
∑
n=1,2

(−1)n+1ωjn(2myn − kn))) dy

 .
(3.12)

Observe that −ωj2 = ω1−j2. Then,

D∗∗m,k1,k2(x) =
2m+1

22(J−1)

2J−1∑
j1=1

2J−1∑
j2=1−2J−1

∫∫
R2

f(y|x) cos(
∑
n=1,2

ωjn(2myn − kn)) dy. (3.13)

Since Re
{
e−iα

}
= cos(α), we find,

D∗∗m,k1,k2(x) =
2m+1

22(J−1)
Re


2J−1∑
j1=1

2J−1∑
j2=1−2J−1

∫∫
R2

f(y|x)e(−i
∑
n=1,2 ωjn (2myn−kn)) dy


=

2m+1

22(J−1)
Re


2J−1∑
j1=1

2J−1∑
j2=1−2J−1

e(i
∑
n=1,2 ωjnkn)

∫∫
R2

f(y|x)e(−i
∑
n=1,2 ωjn2myn) dy


=

2m+1

22(J−1)
Re


2J−1∑
j1=1

2J−1∑
j2=1−2J−1

f̂(ωj12m, ωj22m|x)e(i
∑
n=1,2 ωjnkn)

 ,

(3.14)

where f̂ is the Fourier transform of f . Observe that, for N = 2J , we have D∗m,k1,k2(x) =
D∗∗m,k1,k2(x). We note that Vieta’s formula is more tedious to use and we will therefore consider
the approximation (2.27) to compute the payoff coefficients in Section 5.

Remark 2. In our search for an efficient method, formula (3.5) can be conveniently rearranged
to get a new expression where an FFT algorithm can be applied. Using the fact that,

−iΩjk =
−i2πk
N

(j − 1)− iπk
(

1

N
− 1

)
, (3.15)

we get,

D∗m,k1,k2(x) =
2m

N2
e−iπ(

1
N
−1)(k1+k2)

N∑
j1=1

N∑
j2=1

f̂ (−Ωj12m,−Ωj22m|x)e
−i2πk2
N

(j2−1)e
−i2πk1
N

(j1−1).

(3.16)
We apply N times an FFT for each sum in (3.16) and the computational complexity to perform
this task is O(N2 log2(N)).
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3.2 General multidimensional SWIFT formula

The 2D-SWIFT formula can be easily generalized to higher dimensions. It is clear, however, that
if we choose the dimension d to be very large, the curse of dimensionality issue will occur and
numerical techniques turn out to be useless in practical terms.

For x ∈ Rd, the d-dimensional formula reads,

v∗(t0,x) = e−r∆t
u1∑

k1=l1

u2∑
k2=l2

· · ·
ud∑

kd=ld

D∗m,k1,k2,··· ,kd(x)Gm,k1,k2,··· ,kd , (3.17)

where,

D∗m,k1,k2,··· ,kd(x) =
2
dm
2

Nd
e−iπ(

1
N
−1)(k1+k2+···+kd)

u1∑
j1=l1

u2∑
j2=l2

· · ·
ud∑

jd=ld

f̂(−Ωj12m,−Ωj22m, · · · ,−Ωjd2
m)

· e
−i2πkd
N

(jd−1) · · · e
−i2πk2
N

(j2−1)e
−i2πk1
N

(j1−1),

(3.18)

and,

Gm,k1,k2,··· ,kd =

∫ b1

a1

∫ b2

a2

· · ·
∫ bd

ad

g(y)Φm,k1,k2,··· ,kd(y)dy. (3.19)

4 Error analysis and parameters selection

In this section we present an error analysis of the 2D-SWIFT method and give a prescription on
the selection of the parameters.

4.1 Error analysis

There are two main sources of error. The first one is the error due to the truncation of the
integration range in (2.1), while the second one is the error caused by replacing the density function
f in (3.7) by f∗. If we define,

E1 := |v(t0,x)− v1(t0,x)|, and, E2 := |v1(t0,x)− v∗(t0,x)|, (4.1)

then the overall error E := |v(t0,x) − v∗(t0,x)| can be bounded by E ≤ E1 + E2. In what follows,
we give a detailed analysis of the error. Let us start by considering,

E1 = |v(t0,x)− v1(t0,x)| ≤
∫
R\[a1,b1]

∫
R\[a2,b2]

|g(y)f(y|x)| dy. (4.2)

Since the mass in the tails of the density function f tends to zero at infinity, for every ε1 > 0 there
exist values a1, a2, b1, b2 > 0 such that,

τ :=

∫
R\[a1,b1]

∫
R\[a2,b2]

f(y|x) dy ≤ ε1. (4.3)

If we assume that g is bounded in the domain of integration, then,

E1 ≤ τ‖g‖∞, (4.4)

where ‖g‖∞ is the infinity norm of g. This error can be made arbitrarily small by increasing the
size of the truncation intervals. Observe that the assumption on the boundedness of function g is
satisfied for put options. If we consider call options, then we may impose some assumptions on
the decay rate of the density function f to have an estimation of the error. For sake of clarity and
simplicity in the exposition, we stay within the assumption of bounded payoffs.

As mentioned in Section 3.1, there are three sources of error when approximating f by f∗. If
we define,

10



(i) the projection error, given by,

εp := |f(y|x)− f1(y|x)| =

∣∣∣∣∣∣f(y|x)−
∑
k1 ∈Z

∑
k2 ∈Z

Dm,k1,k2(x)Φm,k1,k2(y)

∣∣∣∣∣∣ , (4.5)

where Dm,k1,k2 and Φm,k1,k2 are in (3.2) and (2.19) respectively,

(ii) the sum truncation error,

εt := |f1(y|x)− f2(y|x)| =

∣∣∣∣∣∣
∑

k1 /∈{l1,··· ,u1}

∑
k2 /∈{l2,··· ,u2}

Dm,k1,k2(x)Φm,k1,k2(y)

∣∣∣∣∣∣ , (4.6)

(iii) and the coefficients approximation error,

εc := |f2(y|x)− f∗(y|x)| =

∣∣∣∣∣∣
u1∑

k1=l1

u2∑
k2=l2

(
Dm,k1,k2(x)−D∗m,k1,k2(x)

)
Φm,k1,k2(y)

∣∣∣∣∣∣ , (4.7)

then,

E2 = |v1(t0,x)− v∗(t0,x)| =
∣∣∣∣e−r∆t ∫ b1

a1

∫ b2

a2

g(y)(f(y|x)− f∗(y|x))dy

∣∣∣∣
≤ e−r∆t |b1 − a1| |b2 − a2| ‖g‖∞(εp + εt + εc),

(4.8)

and,

E ≤
(
τ + e−r∆t |b1 − a1| |b2 − a2| (εp + εt + εc)

)
‖g‖∞. (4.9)

The projection error in one dimension is studied in [5], and we use a similar procedure to give
an estimation of that error for the two-dimensional case.

Lemma 1. Consider an MRA generated by Shannon scaling function Φ defined in (2.6). With
the same notation as before,

εp ≤ K(2mπ, 2mπ), (4.10)

where,

K(v1, v2) :=
1

4π2

∫
|ω1|>v1

∫
|ω2|>v2

|f̂(ω)|dω, (4.11)

and f̂ is the bivariate Fourier transform of f defined in (2.3).

Proof. See Appendix A.

The sum truncation error εt depends on the size of the scaling coefficients Dm,k1,k2 , since from
(4.6) we have,

εt ≤ 2m ·
∑

k1 /∈{l1,··· ,u1}

∑
k2 /∈{l2,··· ,u2}

|Dm,k1,k2(x)| , (4.12)

and by Lemma 1, ∣∣∣∣∣∣f(y|x)−
∑
k1 ∈Z

∑
k2 ∈Z

Dm,k1,k2(x)Φm,k1,k2(y)

∣∣∣∣∣∣ ≤ K(2mπ, 2mπ). (4.13)

In particular, if we evaluate expression (4.13) in y =
(
k1
2m ,

k2
2m

)
then,∣∣∣∣f ( k1

2m
,
k2

2m

∣∣∣∣ x

)
− 2mDm,k1,k2(x)

∣∣∣∣ ≤ K(2mπ, 2mπ), (4.14)
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which means that the coefficients Dm,k1,k2 are very well approximated by,

Dm,k1,k2(x) ≈ 1

2m
f

(
k1

2m
,
k2

2m

∣∣∣∣ x

)
, (4.15)

when |f̂(ω)| in (4.11) decays very fast, as typically happens with the densities considered in this
work. Finally, if we assume that the density f tends to zero at minus and plus infinity, then the
error εt can be neglected for sufficiently big truncation values l1, l2, u1, u2 in (3.3). In Section 4.2
we give a detailed explanation on how to select these values.

The last error we need to estimate is εc defined in (4.7). For this purpose, we present the
following two lemmas.

Lemma 2 (Lemma 2 of [10]). Define the absolute error EV (t) := sinc(t)− sinc∗(t). Then,

|EV (t)| ≤ (πc)2

22(J+1) − (πc)2
, (4.16)

for t ∈ [−c, c], where c ∈ R, c > 0 and J ≥ log2(πc).

Lemma 3. Define the error ĒV (t1, t2) := sinc(t1)sinc(t2)− sinc∗(t1)sinc∗(t2). Then,∣∣ĒV (t1, t2)
∣∣ ≤ |EV (t1)|+ |EV (t2)|. (4.17)

Proof. We observe that,

ĒV (t1, t2) = sinc(t1)sinc(t2)− sinc∗(t1)sinc∗(t2)− sinc∗(t1)sinc(t2) + sinc∗(t1)sinc(t2)

= sinc(t2)[sinc(t1)− sinc∗(t1)] + sinc∗(t1)[sinc(t2)− sinc∗(t2)]

= sinc(t2)EV (t1) + sinc∗(t1)EV (t1).

(4.18)

The proof concludes by noting that |sinc(t2)| = |sinc∗(t1)| = 1 for all t1, t2 ∈ R.

Theorem 3. Let F (x) be the distribution function of a two-dimensional random variable X and
define H(x) := F (−x) + 1 − F (x). Let c1, c2 > 0 be constants such that H(c1, c2) < ε, for ε > 0,
and let c := max (c1, c2). Define,

M1
m,k1 := max (|2mc− k1|, |2mc+ k1|) , M2

m,k2 := max (|2mc− k2|, |2mc+ k2|) ,

Mm,k1,k2 := max
(
M1
m,k1 ,M

2
m,k2

)
,

and consider J ≥ log2 (πMm,k1,k2). Then,

|Dm,k1,k2(x)−D∗m,k1,k2(x)| ≤ 2m

(
2ε+ 4c‖f( · | x)‖2

(πMm,k1,k2)2

22(J+1) − (πMm,k1,k2)2

)
, (4.19)

and limJ→+∞D
∗
m,k1,k2

(x) = Dm,k1,k2(x).

Proof. See Appendix B.

Finally, from (4.7) and Theorem 3,

εc ≤ 2m(u1 − l1 + 1)(u2 − l2 + 1)
∣∣Dm,k1,k2(x)−D∗m,k1,k2(x)

∣∣
≤ 22m(u1 − l1 + 1)(u2 − l2 + 1)

(
2ε+ 4c‖f( · | x)‖2

(πMm,k1,k2)2

22(J+1) − (πMm,k1,k2)2

)
.

(4.20)
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4.2 Parameters selection

The parameters of the method are the scale of approximation m in (3.1), the range of coefficients
l1 ≤ k1 ≤ u1, l2 ≤ k2 ≤ u2 in (3.3), the number of terms N = 2J to approximate the cardinal sine
function in (3.4), and the truncation of the integration domain [a1, b1]× [a2, b2] in expression (3.7).

Concerning the scale of approximation m, we know from Lemma 1 that the approximation
error decreases with m. Further, this error is even smaller when the modulus of the characteristic
function decays rapidly. We propose an adaptive computation of m by following this strategy. We
select m such that given a tolerance ε2 > 0,

|f̂(−2mπ,−2mπ)|+ |f̂(−2mπ, 2mπ)|+ |f̂(2mπ,−2mπ)|+ |f̂(2mπ, 2mπ)| < ε2. (4.21)

An initial guess of the integration domain [a1, b1] × [a2, b2] is given (for example) by the nth
cumulant1 ci,n of Xi

t := logSit and the parameter L = 10, like for the 2D-COS method in [11],

[a1, b1]× [a2, b2] =
[
c1,1 − L

√
c2,1 +

√
c4,1, c1,1 + L

√
c2,1 +

√
c4,1

]
×
[
c1,2 − L

√
c2,2 +

√
c4,2, c1,2 + L

√
c2,2 +

√
c4,2

]
.

(4.22)

We compute the coefficients D∗m,k1,k2 by means of an FFT algorithm, with ki ranging from li =
b2maic to ui = d2mbie and i = 1, 2. It is worth underlining that this a-priori truncation facilitates
the application of an FFT algorithm as mentioned in Remark 2 to get the stated computational
complexity. Then, in order to know whether the initial truncated range is accurate or not, we
measure the size of the density coefficients at the boundaries. For this purpose, we compute
D∗m,l1,0, D

∗
m,u1,0

, D∗m,0,l2 , D
∗
m,0,u2

, since as we have seen in (4.15) the size of those coefficients is
closely related to the value of the density at the boundary points. If necessary, we can compute
extra coefficients until the desired precision is reached. Moreover, we can also calculate the volume
underneath the surface represented by the density f as a byproduct and verify that the volume is
close to 1. Considering the partition of the domain [a1, b1] × [a2, b2] given by points of the form(
h1

2m
,
h2

2m

)
for h1, h2 ∈ Z, the two-dimensional composite trapezoidal rule gives us the following

approximation,

V(f∗) :=

∫∫
R2

f∗(y|x) dy ≈ S :=
1

2m+2

[
D∗m,l1,l2 +D∗m,u1,l2 +D∗m,l1,u2 +D∗m,u1,u2

+2

K1−1∑
i=1

(
D∗m,l1+i,l2 +D∗m,l1+i,u2

)
+ 2

K2−1∑
j=1

(
D∗m,l1,l2+j +D∗m,u1,l2+j

)

+ 4

K2−1∑
j=1

(
K1−1∑
i=1

D∗m,l1+i,l2+j

) ,
(4.23)

with Ki = ui − li + 1. For sake of simplicity, we will consider a = min(a1, a2) and b = max(b1, b2),
and work with a, b instead of a1, a2, b1 and b2, being this selection more conservative.

Finally, the selection of J is related to the error studied in Theorem 3. Although a different
J can be selected for each pair (k1, k2), we prefer to consider a constant J , defined here by
J = dlog2(πmaxk1,k2 Mm,k1,k2)e where d·e stands for the ceiling function. The reason is that, in

practice, the computationally most involved part in (3.5) is the evaluation of f̂ at the grid points.
Those values can be computed only once and used in the FFT algorithm mentioned in Remark 2.

1The cumulants of a random variable X are the power series coefficients of the cumulant generating function
c(s) = logE

(
esX

)
.
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5 Numerical experiments

We present a wide variety of examples to test the 2D-SWIFT method for pricing European rainbow
options. We consider arithmetic basket call options in Section 5.1, spread options in Section 5.2,
call-on-max and put-on-min options in Section 5.3, and correlation options in Section 5.4. In order
to perform a consistency check, we also consider the pricing of a geometric basket put option as
well as the valuation of a spread option with strike equal to zero, for which a closed form solution
exists. These two examples are presented in Appendix C.

For simplicity, and without loss of generality, in all examples we assumed t0 = 0. The asset
price is modelled by either correlated geometric Brownian motions (GBM) or by Merton’s jumps-
diffusion (JD) process (but any other Lévy process or process with known characteristic function
could be used). The cumulants for these dynamics are well-known and we therefore consider them
as our initial guess in (4.22). It is worth remarking that this selection of the interval appears to
be accurate in all the examples considered in this work, and we do not need to compute extra
coefficients. The programs were coded in MATLAB and run on a Dell Vostro 320 with Intel Core
2 Duo E7500 2.93GHz processor and 4GB RAM.

Under GBM dynamics the risk-neutral asset prices evolve according to the following dynamics,

dSit = rSitdt+ σiS
i
tdW

i
t , i = 1, 2, (5.1)

with correlation dW i
t dW

j
t = ρijdt, r the risk-free rate, and σi the volatility of asset i. We switch

to the log-process Xi
t := logSit ,

dXi
t = (r − 1

2
σ2
i )dt+ σidW

i
t . (5.2)

The log-asset prices at time t given the current state at t0 = 0 are bivariate normally distributed,
i.e.,

Xt ∼ N (X0 + µ∆t,Σ), (5.3)

with µi = r− 1
2σ

2
i and covariance matrix Σij = σiσjρij∆t. The Fourier transform function (defined

in (2.3)) reads f̂(u|x) = e−ix
′uf̂Lévy(−u), with,

f̂Lévy(u) = exp(iµ′∆tu− 1

2
u′Σu). (5.4)

Under a Merton’s jump-diffusion process the asset prices follow the dynamics described by the
stochastic differential equation,

dSit = (r − λκi)Sitdt+ σiS
i
tdW

i
t + JiS

i
tdqt, i = 1, 2, (5.5)

with κi := E
[
eJi − 1

]
, qt a Poisson process with mean arrival date λ, and J = (J1, J2) bivariate

normally distributed jump sizes with mean µJ = [µJ1 , µ
J
2 ]′ and covariance matrix ΣJ

ij = σJi σ
J
j ρ

J
ij .

The log-processes Xi
t := logSit read,

dXi
t = (r − λκi −

1

2
σ2
i )dt+ σidW

i
t + Jidqt. (5.6)

The Fourier transform function is f̂(u|x) = e−ix
′uf̂Lévy(−u), with,

f̂Lévy(u) = exp

(
iµ′∆tu− 1

2
u′Σu

)
exp

(
λ∆t

(
exp

(
iµ′Ju

1

2
u′ΣJu

)
− 1

))
, (5.7)

where µi = (r − λκi − 1
2σ

2
i )∆t, Σij = σiσjρij∆t and κi = eµ

J
i + 1

2
(σJi )2 − 1.
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Arithmetic Geometric

Call g(y1, y2) =
(
1
2
ey1 + 1

2
ey2 −K

)+
g(y1, y2) = (

√
ey1
√
ey2 −K)+

Put g(y1, y2) =
(
K − ( 1

2
ey1 + 1

2
ey2)

)+
g(y1, y2) = (K −

√
ey1
√
ey2)+

Table 1: Payoffs for basket options on two underlyings.

5.1 Basket options on two underlyings

We present the pricing of arithmetic basket call options driven by two-dimensional correlated
GBM. Table 1 contains the payoff of arithmetic and geometric basket options on two underlyings.

In the arithmetic case, the payoff coefficients (3.9) are given by,

Gm,k1,k2 =

∫∫
R2

(
1

2
ey1 +

1

2
ey2 −K

)+

Φm,k1,k2(y) dy. (5.8)

If we truncate the integration range, use the exponential approximation (2.27) of the sinc
function and interchange sums with integrals, then Gm,k1,k2 ≈ G∗m,k1,k2 , where,

G∗m,k1,k2 :=
2m

N2

N∑
j2=1

N∑
j1=1

e−iΩj1k1e−iΩj2k2
∫ b

a

∫ b

a

(
1

2
ey1 +

1

2
ey2 −K

)+

eiΩj12my1eiΩj22my2 dy1 dy2,

(5.9)
and Ωj1 = −π + 2j1−1

N π,Ωj2 = −π + 2j2−1
N π. The double integral in (5.9) cannot be solved

analytically, and we therefore apply numerical integration. We approximate it by a midpoint
quadrature with Q terms, obtaining,

G∗m,k1,k2 ≈
2m (b− a)2

N2Q2

N∑
j2=1

N∑
j1=1

Q∑
l2=1

Q∑
l1=1

(
1

2
eηl1 +

1

2
eηl2 −K

)+

eiΩj12mηl1eiΩj22mηl2e−iΩj1k1e−iΩj2k2 ,

(5.10)
where ηli = a+ b−a

2Q (2li − 1). After rearranging terms, we end up with the following formula,

G∗m,k1,k2 ≈
2m (b− a)2

N2Q2
e

2i2mπ(1+ 1
N )
(
b−a
2Q
−a
)
eiπ(1+ 1

N )(k1+k2)
N∑
j2=1

N∑
j1=1

e
i2m 2π

N

(
a+ b−a

2Q

)
(j1+j2)

·
M∑
l2=1

M∑
l1=1

X(l1, l2)e
i2π
M
j1(l1−1)e

i2π
M
j2(l2−1)e

−i2π
N

k1(j1−1)e
−i2π
N

k2(j2−1),

(5.11)

for M := NQ
2m(b−a) . In order to ensure that M ∈ Z, we choose Q of the form Q = 2n(b − a), for

n ≥ m, and,

X(l1, l2) :=


(

1
2e
ηl1 + 1

2e
ηl2 −K

)+
e
−
i2mπ(b−a)(1+ 1

N )(l1+l2)
Q , if l1 ≤ Q and l2 ≤ Q,

0, otherwise.

(5.12)

Clearly we can apply a combination of FFT and inverse FFT algorithms to compute the sums
efficiently in (5.11). Figure 2 shows the log-scale plots of the errors (left) and CPU time (right),
where n is chosen such that Q = 2n(b−a) and m is the level of resolution. We take the parameters
and reference price from [11]. We observe that 2D-SWIFT converges exponentially.

5.2 Spread options

Next we price a two-dimensional European spread call option with strike K on two assets driven
by a two-dimensional correlated GBM. Because of their generic nature, spread options are used in
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Figure 2: Error (left) and CPU time (right) in seconds of a two-dimensional arithmetic basket call
option under the GBM dynamics. The parameter values are S0 = (90, 110), r = 0.04, σ1 = 0.2,
σ2 = 0.3, ρ = 0.25, T = 1, K = 100 and L = 10. Reference: 10.173230.

markets like the fixed income markets, the currency and foreign exchange markets, the commodity
futures markets and the energy markets. The payoff function for the European call spread is given
by,

g(y1, y2) = max(ey1 − ey2 −K, 0). (5.13)

We distinguish two cases, when K = 0 (this case is known as the exchange of assets) the payoff
coefficients in (3.9) can be obtained analytically, while for K > 0 we use the midpoint quadrature,
as presented in the previous example. We give results for K = 0 in Appendix C, and the general
case with K > 0 is considered here.

We report in Figure 3 the error and CPU time for 2D-SWIFT method when the underlying
processes follow GBM dynamics. We observe exponential convergence and competitive CPU time
for 2D-SWIFT method. We take as reference price the result of the 2D-SWIFT with m = 12 and
n = 12.
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Figure 3: Error (left) and CPU time in seconds (right) corresponding to the pricing of a
two-dimensional European call spread under the GBM dynamics. The parameters are S0 =
(90, 110), r = 0.04, σ1 = 0.2, σ2 = 0.3, ρ = 0.25,K = 20, L = 10 and T = 1. Reference:
1.352591908717933.
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5.3 Options on the minimum or the maximum of two risky assets

Here we consider a two-dimensional European option either on the minimum or on the maximum
of two assets. Table 2 shows the corresponding payoffs.

on minimum on maximum

Call g(y1, y2) = (min(ey1 , ey2)−K)+ g(y1, y2) = (max(ey1 , ey2)−K)+

Put g(y1, y2) = (K −min(ey1 , ey2))+ g(y1, y2) = (K −max(ey1 , ey2))+

Table 2: Payoffs for options on the minimum/maximum of two assets.

For the payoffs described in Table 2, the double integral of the payoff coefficients in (3.9) can
be solved analytically. In Figure 4 we present the error of some of these options driven by different
dynamics and compare them with 2D-COS method. Again the 2D-SWIFT method converges
exponentially.
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Figure 4: Pricing errors by means of 2D-SWIFT and 2D-COS methods under different dynamics.
The left plot corresponds to a call-on-max driven by GBM dynamics, with parameters S0 =
(40, 40), r = 0.048799, σ1 = 0.2, σ2 = 0.3, ρ = 0.5,K = 40, L = 10 and T = 7/12. The right plot
stands for a put-on-min driven by JD dynamics, with parameters S0 = (90, 110), r = 0.05, σ =
(0.12, 0.15), ρ = 0.3,K = 100, λ = 0.6, µJ = (−0.1, 0.1), σJ = (0.17, 0.13), ρJ = 0.2, L = 10 and
T = 1.

5.4 Correlation options

A correlation option is an extension of the plain vanilla European call to two dimensions. Its payoff
is the product of two European calls with different strikes. Similar to spread options, correlation
options allow the purchaser to speculate on how asset prices will move together, as the option
requires both assets to move in the same direction in order to have at maturity time a non-zero
value. The payoff of a correlation option is given by,

g(y1, y2) = (ey1 −K1)+ (ey2 −K2)+ . (5.14)

The payoff coefficients in this case are computed analytically. We present in Table 3 the relative
error when pricing with 2D-SWIFT method under GBM and JD dynamics. The parameters
corresponding to the GBM process are S0 = (90, 100), r = 0.04, σ1 = 0.2, σ2 = 0.3, ρ = 0.25, T =
1,K1 = 90,K2 = 110, L = 10. The parameters for JD dynamics are the same as GBM with
the jump component λ = 0.6, µJ = (−0.1, 0.1), σJ = (0.17, 0.13) and correlation ρJ = −0.2. The
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reference value for the GBM case is computed by means of Monte Carlo simulation with one million
paths and the 95% confidence interval is given. Regarding the JD dynamics, the reference price is
given by 2D-SWIFT with scale of approximation m = 10. We select the scale of approximation m
by means of formula (4.21) where we set ε2 = 1.0e− 04.

Dynamics m Relative error

GBM 3 1.9e− 03
JD 3 8.5e− 07

Table 3: Reference price for GBM: 204.2355, 95% confidence interval: [203.0214, 205.4495], price
given by 2D-SWIFT: 204.6172. Reference price for JD: 212.9888744552966.

With this example we can see how correlation options behave in the presence of jumps. We
study the dependence on the parameter λ, i.e. the mean arrival rate in the Merton’s jump-diffusion
model. We see in Figure 5 the evolution of the option value according to this parameter. The rest
of parameters of the model are the same as before. We can clearly observe the increasing value of
the option when λ increases its value.
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Figure 5: Correlation option prices with respect to the parameter λ under JD dynamics.

6 Strengths of 2D-SWIFT

For the cases shown in the numerical experiments section, the convergence is similar for 2D-SWIFT
and 2D-COS. The difference is that 2D-SWIFT is computationally a bit slower than 2D-COS,
although it is still very competitive. It is worth mentioning that 2D-SWIFT could be speeded up
by running in different threads (i.e. in parallel) the density and payoff coefficients. In this section
we present the strengths of 2D-SWIFT with respect to 2D-COS, so that we can appreciate the
advantages of using the new method presented in this work.

6.1 Integration range and scale of approximation

The 2D-COS method has a strong dependence on the integration range based on the cumulants in
expression (4.22). On the contrary, as explained in Section 4.2, the 2D-SWIFT method considers
the integration range as an initial guess, being able to adapt it if necessary.

Once the integration range has been calculated, the accuracy of the 2D-COS method depends
on the number of coefficients used in the approximation of the density. If the number of terms in
the expansion is not properly chosen, the 2D-COS method does not perform well. The larger the
interval the more terms we should consider, although it is not a-priori clear how many coefficients
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should be used. In regards to the 2D-SWIFT method, the scale of approximation m is a-priori
fixed with the help of formula (4.21) and the number of coefficients is determined automatically.
In Figure 6 we have fixed the number of terms employed for the 2D-COS approximation and m
for 2D-SWIFT, and we have changed the size of the integration range by modifying the parameter
L in both methods. As we can observe, the approximation deteriorates for the 2D-COS while it
remains very accurate for the 2D-SWIFT method, showing that 2D-SWIFT is not sensitive with
respect to this parameter.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

L

P
ri
c
e
 e

rr
o
r 

(l
o
g
−

s
c
a
le

)
Pricing a European geometric basket call option on 2 underlyings

 

 

2D−SWIFT

2D−COS

Figure 6: Absolute errors corresponding to the 2D-COS (red) and 2D-SWIFT (blue).

6.2 Behaviour for extreme maturities

Small maturities

Small maturity options are important in high-frequency trading, also short term binary options
are well-known in the markets. The density function for small maturities is highly peaked. Thus,
the characteristic function is very smooth with fat tails as we see in Figure 7.

Figure 7: Density (left) and characteristic function (right) for GBM dynamics when T = 0.001.

In these situations, the length of the interval goes to zero, and the scale m increases when
T tends to 0, because of the shape of the density. It can be seen numerically that the interval
length goes to zero quicker than the scale goes to infinity. Thus, the number of coefficients needed
by the 2D-SWIFT method tends to be very low, providing advantage in the use of the method
for high dimensions. For example, when pricing with 2D-SWIFT a geometric call option on two
assets driven by GBM dynamics with parameters S0 = (100, 100), r = 0.1, σ1 = 0.2, σ2 = 0.3, ρ =
0.2, T = 0.001 and K = 100, using a scale of m = 6 with just 6 coefficients we obtain an error of
3.32e−03.
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Long maturities

Long maturity options are present in insurance markets. For example in [8], insurance contracts of
a call spread up to 50 years are considered. Moreover, in recent years the long-dated FX option’s
market has grown considerably. Currently, some traded and liquid long-dated FX hybrid products
are Power-Reverse Dual-Currency swaps (PRDC) as well as vanilla or exotic long-dated products
such as barrier options. In the case of large maturities, the density function has fat tails and the
respective characteristic function is very peaked as shown in Figure 8.

Figure 8: Density (left) and characteristic function (right) for GBM dynamics when T = 100.

Thus, the interval length increases and the scale value decreases when T takes large values. As
we show in Figure 9, the choice of L when working with large maturities is again a problem. If L
is set around 10 as suggested in [11] for moderate maturities, then the results are not accurate.
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Figure 9: Absolute errors when pricing by means of the 2D-COS (with 200 terms) and 2D-SWIFT
methods (at scale m = 1) a European geometric basket call option on two underlyings with
parameters S0 = (100, 100), r = 0.5, σ = (0.4, 0.4), ρ = 0.2,K = 90. The reference price is
20.189651798215621.

As studied in [9], when dealing with long maturities roundoff errors appear for unbounded
payoff options. We see in Figure 10 the behaviour of the payoff functions that we consider and the
domains where they can grow rapidly. The payoff functions for put options are bounded. However,
for calls and spreads roundoff errors may appear. Due to the local nature of Shannon wavelets, we
can remove part of the sum in the final pricing formula (3.8) to avoid roundoff errors by eliminating
some coefficients. We note that this is possible because each coefficient is only relevant for a very
small interval within the integration range, while in the case of the 2D-COS method, all coefficients
intervene in the approximation along the whole integration range. Table 4 confirms the quality
of the 2D-SWIFT method. We use 50 (respectively 100) terms in the 2D-COS expansion, and
the same number of coefficients for 2D-SWIFT, corresponding to the scale m = 0 (respectively
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Figure 10: Some two-dimensional payoff functions.

m = 1). Although a direct implementation of both methods gives inaccurate results, 2D-SWIFT
performs much better when we remove some terms at the boundaries.

Method Error (m = 0) Range Error (m = 1) Range

2D-COS 1.18e+01 − 4.48e−07 −
2D-SWIFT 1.59e+01 −14 ≤ k1, k2 ≤ 37 5.99e−07 −28 ≤ k1, k2 ≤ 73

2D-SWIFT (terms removed) 5.40e−02 −14 ≤ k1, k2 ≤ 24 4.60e−07 −28 ≤ k1, k2 ≤ 65

Table 4: Absolute errors when pricing a geometric basket call option with parameters S0 =
(100, 100), r = 0.1, σ = (0.25, 0.25), ρ = 0.8,K = 120, T = 100, L = 10. Reference price is
73.156120362425582.

7 Conclusions

In this paper we have presented the multidimensional SWIFT method motivated by multidimen-
sional option pricing of European rainbow options.

First we presented the multiresolution analysis framework in two and higher dimensions for
separable spaces as well as the Shannon wavelets representation, which theoretically supports our
method. We also presented pricing formulas for European options in two and higher dimensions
using a more convenient approximation than the one previously followed in the literature for
the cardinal sine function. We give a complete error analysis of the new method and provide a
prescription on how to select the parameters appearing in the method according to the precision
required.

We tested with a wide variety of numerical examples the efficiency of the method in the two-
dimensional case for different kinds of European rainbow options of assets driven by different
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dynamics like GBM or JD. Basket options, spread options, options on the minimum or the maxi-
mum of two risky assets and correlation options are considered. We compared 2D-SWIFT results
with the state-of-the-art 2D-COS method, with closed-form solutions when available, with Mote
Carlo simulation or with 2D-SWIFT with a large scale of approximation. Finally, we presented
the strengths of the 2D-SWIFT machinery, which includes the domain truncation issue, the cal-
culation of the scale of approximation and the number of coefficients used as well as the results
when dealing with extreme maturities. As it has been mentioned, extending the method to large
dimensions, more than 4 or 5 depending on the specific kind of product, will not be useful because
the curse of dimensionality appears.

We have shown that 2D-SWIFT inherits the strengths of the one-dimensional technique pre-
sented in [10] for European-style options, like for instance, the a-priori knowledge of the approx-
imation scale. Therefore, this fact opens the door to future applications of 2D-SWIFT to other
financial contracts in two dimensions. For instance, previous work in [5] shows the valuation of
one-dimensional barrier and early-exercise options using SWIFT, addressing important issues like
boundary errors within the recursion backwards in time. We expect similar benefits in two di-
mensions as well. Further, either multidimensional path dependent options pricing or Heston’s
stochastic volatility dynamics seem plausible to be considered, although these challenging topics
will be treated in future work.
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Appendix A. Proof of Lemma 1

From (3.1), (3.2) and (4.5) we write,

εp = |f(y|x)− Pmf(y|x)| , (7.1)

where,

Pmf(y|x) =
∑
k1 ∈Z

∑
k2 ∈Z

Dm,k1,k2(x)Φm,k1,k2(y), (7.2)

and,

Dm,k1,k2(x) :=

∫∫
R2

f(y|x)Φm,k1,k2(y) dy. (7.3)

By Parseval’s identity,

Dm,k1,k2(x) =
1

4π2

∫∫
R2

f̂(ω)Φ̂m,k1,k2(ω)dω, (7.4)

where ω = (ω1, ω2) and f̂ and Φ̂m,k1,k2 denote the Fourier transform of f and Φm,k1,k2 respectively.
We observe that by (2.19) we can write,

Φ̂m,k1,k2 =

∫∫
R2

Φm,k1,k2(y)e−i(w1y1+w2y2) dy = φ̂m,k1(w1)φ̂m,k2(w2), (7.5)

where, as pointed out in [10],

φ̂m,k(w) =
e−i

k
2m

w

2m/2
rect

( w

2m+1π

)
, (7.6)
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and rect is the rectangle function, defined as,

rect(x) =


1, if |x| < 1/2,

1/2, if |x| = 1/2,

0, if |x| > 1/2.

(7.7)

Now by (7.4), (7.5) and (7.6),

Dm,k1,k2(x) =
1

4π2

1

2m

∫ ∫
C
f̂(ω)ei

k1
2m

w1ei
k2
2m

w2dω, (7.8)

where C := [−2mπ, 2mπ] × [−2mπ, 2mπ]. If we replace this last expression of coefficients in (7.2)
and interchange the summation and integration we get,

Pmf(y|x) =
1

4π2

1

2m

∫ ∫
C
f̂(ω)

∑
k1 ∈Z

∑
k2 ∈Z

Φm,k1,k2(y)ei
k1
2m

w1ei
k2
2m

w2

 dω, (7.9)

It we have into account that by Theorem 1.2.1 of [12],∑
k∈Z

φm,k(y)ei
k

2m
w = 2

m
2 eiwy, when w ∈ (−2mπ, 2mπ), (7.10)

then the projection Pmf can be written as,

Pmf(y|x) =
1

4π2

∫ ∫
C
f̂(ω)eiω

′ydω. (7.11)

Finally, by (7.11) and the definition of the inverse Fourier transform2 of f , we have,

εp = |f(y|x)− Pmf(y|x)| = 1

4π2

∣∣∣∣∣
∫ ∫

R2\C
f̂(ω)eiω

′ydω

∣∣∣∣∣ ≤ 1

4π2

∫ ∫
R2\C
|f̂(ω)|dω, (7.13)

and this concludes the proof.

Appendix B. Proof of Theorem 3

From (2.19), (3.2), (3.4), (3.5) and having into account the equivalence (2.30), we write,∣∣Dm,k1,k2(x)−D∗m,k1,k2(x)
∣∣

= 2m
∣∣∣∣∫∫

R2

f(y|x) [sinc(2my1 − k1) sinc(2my2 − k2) − sinc∗(2my1 − k1) sinc∗(2my2 − k2)] dy

∣∣∣∣
≤ 2m

[∫ ∫
Dc
f(y|x) |sinc(2my1 − k1) sinc(2my2 − k2) − sinc∗(2my1 − k1) sinc∗(2my2 − k2)| dy

+

∣∣∣∣∫ ∫
D
f(y|x) (sinc(2my1 − k1) sinc(2my2 − k2) − sinc∗(2my1 − k1) sinc∗(2my2 − k2)) dy

∣∣∣∣
]
.

(7.14)
where D := [−c1, c1] ∪ [−c2, c2] and Dc := R2\D.

2The inverse Fourier transform f of f̂ is by definition,

f(y|x) =
1

4π2

∫∫
R2

f̂(ω)eiω
′ydω. (7.12)
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Since the mass in the tails of the density f tends to zero when c1 and c2 tend to infinity, for
all ε > 0 there exist c1, c2 > 0 such that H(c1, c2) < ε. Further,

|sinc(2my1 − k1) sinc(2my2 − k2)− sinc∗(2my1 − k1) sinc∗(2my2 − k2)| ≤ 2,

for all y ∈ R2, and therefore the first integral at the right hand-side of inequality (7.14) is bounded
by 2ε.

Now if we apply the Cauchy-Schwarz inequality to the second integral then,∣∣∣∣∫ ∫
D
f(y|x) (sinc(2my1 − k1) sinc(2my2 − k2)− sinc∗(2my1 − k1) sinc∗(2my2 − k2)) dy

∣∣∣∣
≤ ‖f(·|x)‖2

(∫ ∫
D

(
ĒV (2my1 − k1, 2

my2 − k2)
)2
dy

) 1
2

≤ ‖f(·|x)‖2
(∫ ∫

D
(EV (2my1 − k1) + EV (2my2 − k2))2 dy

) 1
2

,

(7.15)

where the last inequality is satisfied by Lemma 3. We observe that if −c ≤ yi ≤ c, then −2mc−ki ≤
2myi−ki ≤ 2mc−ki and therefore, 2myi−ki ∈ [−M i

m,ki
,M i

m,ki
], where by definition c = max(c1, c2)

and i = 1, 2. We note that,

[−M i
m,ki

,M i
m,ki

] ⊂ [−Mm,k1,k2 ,Mm,k1,k2 ], i = 1, 2,

then by Lemma 2, the integral at the right hand-side of the second inequality in (7.15) is bounded
by,

2c ·
2(πMm,k1,k2)2

22(J+1) − (πMm,k1,k2)2
, (7.16)

when J ≥ log2 (πMm,k1,k2).
Finally, by (7.14), (7.15) and (7.16) we end up with the error estimate,

|Dm,k1,k2(x)−D∗m,k1,k2(x)| ≤ 2m

(
2ε+ 4c‖f( · | x)‖2

(πMm,k1,k2)2

22(J+1) − (πMm,k1,k2)2

)
. (7.17)

Appendix C. Other numerical examples

Geometric basket put option

It is worth mentioning that the price of a geometric basket option under GBM equals the Black-
Scholes price of the corresponding European option with initial price Ŝ0 =

√
S1

0

√
S2

0 , volatility σ̂

and dividend rate δ̂, where,

σ̂ =
1

2

√∑
i,j

σiσjρij and δ̂ =
1

2

∑
i

(
δi +

1

2
σ2
i

)
− 1

2
σ̂2.

So, we can perform a consistency check and compare the results of our method with the analytical
option values.

Here, we price a geometric put option driven by two-dimensional correlated GBM. When pricing
any option with 2D-SWIFT we need first to compute payoff coefficients, it can be done analogously
as shown in the numerical experiments section. The payoff coefficients in this kind of options can
be obtained analytically.

In Figure 11, we compare the error and the CPU time (expressed in seconds) between 2D-COS
and 2D-SWIFT methods when using the same number of coefficients. We observe exponential
convergence of the 2D-SWIFT method as well as 2D-COS in the left-side graph, and that the CPU
time for 2D-SWIFT is higher than 2D-COS, although 2D-SWIFT is a very competitive method.
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Figure 11: Log-error and CPU time in seconds of a two-dimensional geometric basket put option
under the GBM dynamics. The parameter values are S0 = (90, 110), r = 0.04, σ1 = 0.2, σ2 =
0.3, ρ = 0.25,K = 100, L = 10 and T = 1.

Depending on the type of option, the double integral in (5.8) can not be solved analytically,
and we therefore need to apply a numerical quadrature. In this example we also solve the integral
numerically in order to have an insight on the behaviour of the error according to the number of
terms used in the integral approximation.

In Figure 12 the surfaces of the errors (left) and CPU time (right) are shown, where n is chosen
such that Q = 2n(b− a) (recall that Q is the number of points in the midpoint quadrature for the
double integral), and m is the level of resolution. The parameter values are the same as in Figure
11, and we present the absolute errors in Table 5.
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Figure 12: Error and CPU time in seconds (both measured in log-scale) of a two-dimensional
geometric basket put option under the GBM dynamics.

From Figure 12 and Table 5 we observe the convergence of the method with respect to the
scale of approximation m.

25



m
0 1 2 3 4 5 6

1 5.53e−01 2.09e+00 7.12e−01 3.68e−01 3.68e−01 3.68e−01 3.68e−01
2 8.71e−01 1.05e+00 1.09e−01 5.34e−02 5.34e−02 5.34e−02 5.34e−02
3 7.92e−01 1.04e+00 1.68e−02 1.84e−02 1.84e−02 1.84e−02 1.84e−02
4 7.95e−01 1.01e+00 2.79e−02 6.14e−03 6.14e−03 6.14e−03 6.14e−03

n 5 7.98e−01 9.97e−01 3.26e−02 6.95e−04 6.96e−04 6.96e−04 6.96e−04
6 7.98e−01 9.96e−01 3.27e−02 4.77e−04 4.79e−04 4.79e−04 4.79e−04
7 7.98e−01 9.95e−01 3.33e−02 1.41e−04 1.40e−04 1.40e−04 1.40e−04
8 7.98e−01 9.95e−01 3.31e−02 1.46e−05 1.33e−05 1.33e−05 1.33e−05
9 7.98e−01 9.95e−01 3.31e−02 2.58e−06 4.12e−06 4.12e−06 4.12e−06

Table 5: Absolut errors for a two-dimensional geometric basket put option under GBM dynamics.
The reference price is 6.696961159991261.

Exchange of assets

Exchange of assets is the name given to spread options whenK = 0. If we assume that the processes
follow GBM dynamics, we can use the Margrabe formula [6] as the reference price to compare the
error and the CPU time between 2D-COS and 2D-SWIFT methods. We use the parameters from
problem number 6 of the BENCHOP project [13]. The results are shown in Figure 13, where we
observe again exponential convergence and competitive CPU time for 2D-SWIFT method.
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Figure 13: Error (left) and CPU time in seconds (right) corresponding to the pricing of a
two-dimensional European call spread under the GBM dynamics. The parameters are S0 =
(100, 90), r = 0.03, σ1 = σ2 = 0.15, ρ = 0.5,K = 0, L = 10 and T = 1.
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