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Abstract: In this work we place ourselves in the framework of an holographic approach to QCD.
We study the mass spectra of a family of dilaton backgrounds more general than the usual solvable
one in a Soft-Wall model. Taking a particular limit of this family we recover the mass spectra of

the Hard-Wall model.

I. INTRODUCTION

The theory we have for describing the strong in-
teraction is Quantum Chromodynamics (QCD). This
interaction is the responsible for quarks to stick together
to form physical particles. As well, nucleons stay to-
gether in atomic nuclei thanks to the strong interaction.
From this interaction arises what we call nuclear physics.
The perfect understanding of this interaction may lead
to a big number of advances. Unfortunately, QCD is
still not perfectly understood.

Attempts to deal with this theory have been made
following the path of holography. In holographic models,
one tries to reproduce the quantum aspects of the
theory by enlarging the number of dimensions. One of
this models is based on what is called the Anti de Sit-
ter /conformal field theory (AdS/CFT) correspondence,
which states that the boundary of an AdS space can be
regarded as the spacetime for a CFT [1].

The possibility of describing light mesons by means
of a five-dimensional holographic model of QCD has
attracted attention in recent years. Although these
models still fail to give a general picture of the strong
interaction, they reproduce interesting aspects of meson
phenomenology. The Hard-Wall (HW) model has been
proved to fit well some experimental data [2]. However,
it does not yield a Regge-like trajectory of the mass
spectrum (i.e., a linearly increasing mass spectrum).
This has been accomplished (e.g., in Ref. [3]) by means
of the Soft-Wall (SW) model. Whilst in the HW model
one cuts off the fifth dimension, in the SW model one
does so more smoothly by means of a dilaton background.

Inspired by those papers, in this work we explore
the SW model by finding the spectra of a particular
family of dilaton backgrounds. Even though changing
the dilaton background from that used on Ref. [3] yields
in a non-Regge-like trajectory, it is interesting to study
its effect to the mass spectra.

This TFG paper is organized as follows. In Section
II the holographic setup of the SW model is briefly

*Electronic address: dadameca7@alumnes.ub.edu

reviewed, since its deep understanding is not the main
purpose of this work. In Section III a family of dilaton
background is proposed and its corresponding mass
spectra are found and commented. A short summary of
our results is contained in the concluding Section IV.

II. HOLOGRAPHIC SETUP

The purpose of this section is to comment on the holo-
graphic setup of the present work so that the experienced
reader be able to understand where all the equations arise
from. A more detailed explanation can be found in Ref.
[3]. We consider a SW model in a 5D AdS space with
the metric

2
d82 = %(d‘rﬂdl‘“ - d22)7 u=0,1,2,3, (1)

where R is the radius of the AdS5 space and z > 0 is the
holographic coordinate. In the so called bottom-up ap-
proach, the global flavour symmetry group is SU(2), X
SU(2)r. One postulates that the global symmetry be-
comes a gauge one. The simplest action (only the vector
part of it) to include this symmetry is

R2? e®(z)
where
VMNZOMVN_aNVM_i[VI\/favN]7 (3)

Vi = (Ly + Rym)/2, Ly and Ry are 5D Abelian
fields dual to the sources of the left and right 4D
vector currents, g2 is a constant fixed to match some
asymptotic conditions [3], and the dilaton background
e?(*) is not yet fixed for generality.

We can still fix the gauge. For convenience, we choose

to work in the axial gauge, i.e., V, = 0. The equation of
motion becomes

e’ e’
0, (zanu) - 783VH =0. (4)

By making the 4D Fourier transform of Eq. (4) and as-
suming a standard plane wave ansatz V,(p, z) = €,v(2)
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for the 4D Fourier transform of V,(z, z), we obtain the
equation

e? e¥
The physical spectrum of mass (p? = m?) is given by the
eigenvalues of this differential equation.

IIT. HADRONIC SPECTRA

The starting point of this work is Eq. (5). It can be
brought into a Schrdinger-like equation by performing
the substitution

v(z) = Vz/efV(2), (6)

which leads to
d2\1/ s0// ﬁP/
a2
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We shall impose the boundary condition ¥(z = 0) = 0
[3]. In a SW model, the boundary condition at z = oo is
requiring the action to be finite.

This way, we have transformed the problem of finding
the mass spectrum of a meson into finding the energy
spectrum of a non-relativistic particle moving in a
central potential with angular momentum (I + 1) = 3/4.
The central potential is a function of the first an second
derivatives of the background ¢(z).

With the aim of finding solvable model, the back-
ground is set to ¢ = —A\%2% in Ref. [3]. This background
yields an harmonic potential and, therefore, a Regge-like
trajectory,

m2

7 :4717 n:1,2,... (8)

Yet, it is worthwhile to explore some other behaviours

so as to acquire a wider picture of the theory. We let the
background be

o(z) =x(A2)* a>0.

9)

Even though only the (-) case leads to a meaningful
dilaton background, studying the (4) case is also of
interest.

Substituting Eq. (8) in Eq. (7), and introducing the
dimensionless variable y = Az, one finds for the discrete
mass spectrum me = p%,

>y,

ViE(y) +

where
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In Figures 1 to 4, V. is plotted for different ranges of
a and both =+ sign.
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Figure 1: V. for some values of & > 2. The shape of the
potential gets closer to an infinte well as « increases. For
a = 2 we recover the harmonic potential.
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Figure 2: V for some values of @ > 2. As « increases an infite
wall appears at y = 1. This potential features a valley that
gets close to y = 1, narrows and gets deeper as a increases.
For a = 2 we recover the harmonic potential.

One can solve equation Eq. (10) numerically to find
the mass spectra for different values of «, which are
shown in Figures 5 to 9. For o < 1 the potential does
not present bounded states.

Given that VI converges towards an infinite potential
well as & — oo (see Figure 1), one should expect the
eigenvalues m? /A? to converge towards those of that
potential for large values of a. This actually happens,
as shown in Figure 5.
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Figure 3: V, for some values of 1 < o < 2. The potential
diverges as y*(“~V for large y and —1/y*= for y — 0. For
a = 1 we recover an atom-like potential (V1 oc 1/y).
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Figure 4: V, for some values of 1 < a < 2. The potential
diverges as >~ for large y and 1/y>~ for y — 0. These
potentials do not present any further feature.

On the other hand, the shape of V" is less clear in the
limit o — 00, as a result of the valley that appears near
y = 1 (see Figure 2). One could expect the eigenvalues
m?2 /A% to converge towards those of a 3D infinite well, if
the negative area of the valley shrinked as « increased,
to the point that in the limit o — oo the area was null.
The value of this area is clearly

7(@)
Afa) = / Vo (y)dy, (12)

where the upper limit satisfies V7 () = 0. One can eas-
ily check lim, oo A(ar) — o0o0. Therefore, V. does not
converge towards an infinite well for large @ whatsoever.
However, in this situation, the dilaton background e?¥
converges to a step function #(Az — 1). Therefore, Eq.
(5) becomes that of a HW model. We expect in this
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Figure 5: Eigenvalue spectra of V" for some values of a > 2.
The spectra rise up from the Regge-like trajectory for a = 2.
As « increases, the spectrum converges towards that of an 3D
infinite well.

limit (¢ — o0) the spectra to converge to that of the
HW model, i.e.,

Jo (m_zmy) =0, (13)

according to Ref. [2]. z,, in Eq. (13) is the cutoff radius
of the holographic dimension. It is easy to check that our
background cuts the dimension at z = 1/, 8o z,, = 1/A.
The spectum actually converges as expected as shown in
Figure 6.
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Figure 6: Eigenvalue spectra of V,; for some values of @ > 2.
The spectra rise up from the Regge-like trajectory for a = 2.
As « increases, the spectrum converges towards that of the
HW model.

As for a < 2, the difference between the shape of V.
and V, leads to different spectra. Yet, they, the spec-
tra, are not significantly different; except for the fact
that for V;* one finds an atom-like spectrum (infinite
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and bounded) that can be found analytically,

2
mi 1 1

—=—|1-— =1,2,... 14
A2 4( 2n2) e (14)

but for V|~ there are not bounded solutions. These spec-
tra are shown in Figures 7 and 8.

25

T
a = 2 (Analytic)

(O  a=1 (Analytic)
[] a=2
20 - ° a =175
° a=15
[ a=125
° a=1
15 -
2
mi
A2 °
10 -
5 °
° °
° ° °
° °
0 L@ ) @ @ @
1 2 3 4 5
n

Figure 7: Eigenvalue spectra of V;” for some values of a < 2.
The spectra come down from the Regge-like trajectory for
a = 2. For a = 1 we recover the spectrum of an Hydrogen-
like atom shifted.
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Figure 8: Eigenvalue spectra of V; for some values of a < 2.
The spectra come down from the Regge-like trajectory for
a = 2. These spectra do not present any further features.

IV. CONCLUSIONS

We have considered the family of dilaton backgrounds
given by Eq. (9) in the Soft-Wall model. We have
simplified the problem into that of an Schrédinger-like
equation following Ref. [3]. Omnce the problem was
simpler, we have studied its features in all the possible
ranges. The most interesting ones are the following.

On the one hand, in the (+) situation, although the
resulting dilaton backgroun is not plausible, we have
seen the convergence of the spectrum towards that of a
particle in a spheric box as a — co. Likewise, for a =1,
we find an atom-like bounded spectrum that can be
found analyticaly.

On the other hand, and more remarkably, in the (—)
situation, we have seen the convergence of the Soft-Wall
spectrum towards that of the Hard-Wall as a — co. In
our model, A\ plays the role of 1/z,, in the Hard-Wall
model when it comes to the mass spectrum.
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