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The discovery of the Higgs boson in 2012 was a huge moment of achievement: the particle postu-
lated more than 50 years ago was at last discovered. Even so, the particle acted as it was expected
and, paradoxically, gave no new clues about to where to look next. In this report we briefly discuss
what we call the Higgs mechanism, which gives mass to the W and Z when they interact with an
invisible field, the Higgs field, that pervades the universe. Moreover, the Electroweak Chiral La-
grangian is presented, which allows us to consider an alternative way to perform an analysis of the
model. A brief outline and some final reflections are exposed in the conclusion section.

I. INTRODUCTION

One of the greatest achievements in the history of
physics is the development of a theory such as the Stan-
dard Model of fundamental interactions (SM). Three of
the four known fundamental forces in the universe (the
electromagnetic, weak and strong interactions) and how
the basic building blocks of matter interact are very ac-
curately explained by this well-tested physics theory.

Since the 20th century, principles of symmetry have
been playing a critical role in fundamental physics, es-
pecially in quantum field theory. Moreover, an appeal-
ing connection is set between the gauge symmetries and
the fundamental interactions. In a more formal manner,
it is well established that the theoretical framework of
the SM is based on the gauge symmetry group SU(3)C×
SU(2)L× U(Y)Y . While the SU(3)C gauge group de-
scribes the strong interaction, the SU(2)L× U(Y)Y is
connected to the electroweak interaction.

Even though the SM seemed at first sight to be a com-
plete description of the subatomic world, it was found
experimentally that the mediators of the electroweak in-
teraction, the W+, the W− and the Z, had masses differ-
ent from zero. At that time, it was well understood that
this fact was strictly forbidden by the gauge symmetry in
the SM. Because of this, and because of others aspects,
the so-called electroweak symmetry SU(2)L× U(Y)Y had
to be necessarily broken.

On 4 July 2012, the ATLAS and CMS experiments at
CERN’s Large Hadron Collider (LHC) revealed one of
the models proposed to explain the aforementioned sym-
metry breaking to be the correct one: the Higgs model.
In fact, what the experiments at CERN’s discovered was
a new particle in the mass region around 126 GeV consis-
tent with the Higgs Boson, the transparent manifestation
of the Higgs mechanism. Consequently, this led to the
award of the Nobel prize in physics to François Englert
and Peter Higgs on 8 October 2013 [1].

The aim of the present work, therefore, is to analyse
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some general effective theory that enables us to com-
prehend the Higgs mechanism with a different approach.
The report is organized as follows. Section II introduce
the idea of Effective Field Theories and Effective Lagra-
gians, a general tool to describe Field Theories only con-
structed by symmetry considerations.

Goldstone’s Theorem is briefly mentioned in Section
III to bring forward the Goldstone bosons, bosons that
arise when a continuous symmetry is broken. Their intro-
duction is determined by the critical role they will play
in further development.

In Section IV we find a major section that explores the
so-called Higgs mechanism in two different manners, the
latter being of extreme relevance to reveal an important
symmetry hidden in the relevant Lagrangian.

And finally, the paper ends in Section V by showing the
construction of a general Lagrangian with all important
symmetries that allows us to see beyond the Standard
Model Lagrangian terms.

II. EFFECTIVE FIELD THEORIES

The theoretical framework known as the Standard
Model (SM) is a quantum field theory that describes the
electroweak and strong interactions of quark and leptons.
Schematically, it consists of:

• A matter sector which is made of fermionic fields.
• Vector boson gauge fields.
• A symmetry breaking sector (SBS).

The last one is needed to provide masses for the fermions
and EW bosons and it is not as well established as the
other two.

In the aforementioned symmetry breaking sector we
find the issue under discussion: the electroweak symme-
try breaking (EWSB). A very appealing option to de-
scribe this symmetry breaking is to use effective theories.
An Effective Field Theory is a quantum field theory that
enables us to study the relevant physics of our system
without the need of specifying a particular model at high
energies. It can be constructed from the relevant sym-
metries of the light modes at low energies. Nonetheless,



Effective description of the EW symmetry breaking Oscar Arandes Tejerina

both light and heavy degrees of freedom are included, the
latter having been integrated out.

One of the simplest theory that allows us to describe
the EWSB is the Electroweak Chiral Lagrangian (ECL).
The choice of the name for the ECL is due to the similar-
ity between the EWSB pattern and the one of the chiral
symmetry in Quantum Chromodyamics.

III. THE GOLDSTONE THEOREM

Models exhibiting spontaneous breakdown of continu-
ous symmetries lead to the appearance of massless parti-
cles. This is a general result known as Goldstone theorem.
For each generator of the broken symmetry we have these
massless particles known as Goldstone bosons (GB). In
the case of Quantum Chromodynamics (QCD) we have
an approximate symmetry in LQCD known as the chiral
symmetry. When it is spontaneously broken, the Gold-
stone bosons associated to his breaking are identified (at
least approximately) with the three pions, π± and π0.
This example is one of the many light bosons seen in
physics that may be interpreted as Goldstone bosons.

In the Electroweak Chiral Lagrangian the EWSB gives
three Goldstone bosons, w+, w−, and w0, corresponding
to the longitudinal degrees of freedom of the electroweak
mediators, W+, W− and Z, respectively. Moreover, the
Higgs boson could also be interpreted as en extra Gold-
stone boson in some models such as the Minimal Com-
posite Higgs Model [2], but this is not necessarily so.

A very transparent but general proof of Goldstone’s
theorem for classical scalar field theories is presented in
[3].

IV. THE HIGGS MECHANISM

A. A first approach

The simplest way to give masses to the W’s and Z is
via the complex doublet of spin-zero Higgs field:

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 − iφ2
φ3 + iφ4

)
(1)

where the superscripts are the Q electric charge assig-
ments according to Q = Y + T3. The conventional

√
2

ensures that the fields are normalized in the same way.
The lagrangian density that describes this scalar sector

reads as:

L = (DµΦ)†(DµΦ)− V (Φ†Φ) (2)

where the covariant derivate is defined as:

DµΦ = (∂µ + ig ~Wµ
~T + ig′BµY )Φ

= (∂µ + ig ~Wµ
~τ

2
+ i

g′

2
BµI)Φ

(3)

The idea is to apply the concept of spontaneous sym-
metry breaking to the SU(2) × U(1) model of the elec-
troweak interactions. The most general SU(2)L×U(1)Y
invariant potential depends only on the combination
Φ†Φ ≡ Φ2. Here we follow the particular form of the
potential presented in [4]:

V (Φ) = λ(Φ2 +
µ2

2λ
)2 (4)

with λ and µ2 arbitrary parameters. Furthermore,
the literature commonly adopts an equivalent potential

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)
2
, where the constant factors

are removed and the λ and µ2 parameters are properly
redefined [5][3].

Minimizing the potential V we find two solutions, the
trivial solution 〈Φ〉0 = 0 and the nontrivial solution:

〈Φ†Φ〉0 = −µ
2

2λ
≡ v2

2
(5)

Therefore, we have a minimum away from the origin
provided that the quantity µ2 in the potential is negative.

FIG. 1: Potential V(Φ) as a function of Φ for the
positive sign of the µ2 term. Trivial solution for the

vacuum implies that the value of all the fields φi in the
minimum energy state is zero.

FIG. 2: Potential V(Φ) as a function of Φ for the
negative sign of the µ2 term. Nontrivial solution for the
vacuum implies that at least one of the four fields (φi)

must be non-zero. Hence, in general, we cannot treat all
four components of Φ in a symmetric manner.
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A nontrivial vaccum Higgs configuration which obeys
the constraint Eq.5 and preserve the quantum properties
and quantum numbers of the vacuum is:

〈Φ〉0 =
1√
2

(
0
v

)
(6)

for real v.
Of course, this is purely conventional: one can make

an SU(2) × U(1) transformation to make any vaccum
expectation value (VEV) of Φ† and Φ0 have the afore-
mentioned form. See a demonstration in [4].

B. Spontaneous symmetry breaking

It is convenient now to introduce the following conju-
gate doublet:

Φ̃ ≡ iτ2Φ∗ (7)

And introduce the matrix [6]

M(x) =
√

2
(

Φ̃Φ
)

=
√

2

(
φ0
†

φ+

−φ− φ0

)
(8)

which allows us to recast the Standard Model Lagrangian
involving the Higgs doublet in a completely equivalent
form as:

LSBS =
1

4
Tr[(DµM)†(DµM)]

−1

4
λ[

1

2
Tr(M†M) +

µ2

λ
]2

(9)

with

DµM = ∂µM + LµM −MRµ (10)

and

LµM = ig
~τ

2
~Wµ Rµ = ig′

τ3
2
Bµ (11)

It is easy to show now that the Lagrangian LSBS is in-
variant under the so-called electroweak chiral symmetry
SU(2)L × SU(2)R. One can check it by performing two
global and independent chiral transformations on M

M → LMR† L,R ∈ SU(2)L,R (12)

and check that the LSBS remains the same. That symme-
try was not so obvious before introducing the equivalent
formalism with matrix M. However, this hidden symme-
try now appears as evident.

The interesting issue is that this symmetry is sponta-
neously broken into the custodial symmetry group

SU(2)L × SU(2)R → SU(2)C = SU(2)L+R (13)

To see that, it is useful for our purpose to notice that
the matrix M can be written as M(x) = σ(x)U(x),
where σ(x) is a real scalar field and U(x) is an SU(2)
field. Computing M†M one can get convinced that

σ2 = 2(| φ0 |2 + φ+φ−) ≥ 0. Thus, defining the quan-

tity µ2

λ to be positive the Lagrangian reads:

L =
1

2
∂µσ∂

µσ +
σ2

4
Tr[(DµU)†(DµU)]

−λ
4

(σ2 − µ2

λ
)2

(14)

If we minimize the potential as we did before, we get,
apart from the trivial solution σ = 0 (which corresponds
to unestable maximum), the nontrivial vaccum expecta-
tion value (VEV):

σ = ±
√
µ2

λ
≡ ±v (15)

which implies:

M0 =

(
v 0
0 v

)
= vI (16)

Therefore, the unitary matrix U in the vacuum turns
out to be U0 = I and now the vacuum is left invari-
ant only if L= R. Hence, the global symmetry group
SU(2)L×SU(2)R has been broken to SU(2)L+R and the
three Goldstone bosons associated to symmetry breaking
are contained in the matrix U.

Ignoring the fluctuations around the vacuum v, we re-
place M → vU to get

L =
v2

4
Tr(DµUD

µU†) (17)

To interpret this theory, suppose that the system is
near one of the minima (say the positive one). Then it is
convenient to define the shift field

σ̄ = σ − v (18)

and rewrite L in terms of σ̄. Dropping the constant term,
equation 14 becomes:

L =
1

2
∂µσ̄∂

µσ̄ +
(σ̄ + v)

2

4
Tr[(DµU)†(DµU)]

−λ
4

((σ̄ + v)
2 − µ2

λ
)2

=
1

2
∂µσ̄∂

µσ̄ +
(σ̄ + v)

2

4
Tr[(DµU)†(DµU)]

−1

2
(
√

2µ)
2
σ̄2 − λvσ̄3 − λ

4
σ̄4

(19)

This Lagrangian describes a simple scalar field of mass
MH =

√
2µ = v

√
2λ with σ̄3 and σ̄4 interactions. This

is the so-called Higgs field, whose mass is usually rep-
resented by MH . Predicted more than 50 years ago, the
Higgs boson was at last discovered with a mass nowadays
of MH = 125.09 ± 0.21 GeV [7].
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V. ELECTROWEAK CHIRAL LAGRANGIAN

In the Electroweak Chiral Lagrangian (ECL), the Elec-
troweak Goldstone bosons (EW GB) are introduced in a
non-linear exponential representation

U = exp

(
i
σaωa

v

)
, (20)

where ωa are the EW GB fields, σa are the Pauli matri-
ces, both for a=1,2,3 and v = 246GeV is the VEV of the
SM scalar doublet.

Our aim is to construct the most general ECL of QED,
with interactions terms invariant under chiral SU(2)
transformations. The simplest chiral and Lorentz invari-
ant term involving the U field is the derivative-free term
[5]:

Tr(UU†) = 2 (21)

Since this is a constant it can always be removed from
the Lagrangian. Thus, the general Lagrangian will con-
tain terms with arbitrary number of derivatives classifiy-
ing the operators according to their energy dimension:

L = L2 + L4 + L6 + ... (22)

where Ln denotes generally the term with n derivatives.
Therefore, we are able to construct the operators of

the ECL order by order compatible with the relevant
symmetries. In a general sense, we consider an analytic
function of σ that is locally given by:

f(σ) = f(0) + f ′(0)σ +
1

2
f ′′(0)σ2 + ... (23)

This way, at the lowest order of the Higgless EW Chiral
Lagrangian we will have:

L2 =
1

4
[f2(σ)]2Tr(DµUD

µU†)

= 1
4 [v2 + 2avσ + (vb+ a2)σ2 + ...]Tr(DµUD

µU†)
(24)

where we have defined v ≡ f2(0), a ≡ f ′2(0), b ≡ f ′′2 (0)
and so on. For the next-to-leading order Lagrangian

L4 = (a4 + ...)[Tr((DµU)U†(DνU)U†)]2

+(a5 + ...)[Tr((DµU)U†(DµU)U†)]2
(25)

with a4, a5 ≡ f4(0) and always understanding the covari-
ant derivative of the matrix U as:

DµU = ∂µU + i
g

2
W a
µσ

aU − ig
′

2
UBµσ

3 (26)

with the Pauli matrices σa and ωa the EW GB fields
(a=1,2,3).

Hence, we have constructed a more general Lagrangian
than the one given by the Standard Model. Indeed, re-
placing a = b = 0 and a4 = a5 = 0 we recover the
Lagrangian given by equation 17.

The Lagrangian involving terms with four derivatives
depends on v but also on other effective coefficients usu-
ally known as chiral parameters or chiral coefficents.
They are of great importance since they encode the in-
formation on the heavy modes that have been integrated
out. As they parametrize the interaction between EW
gauge bosons and the Higgs, the determination of their
numerical value will provide us critical information about
the mechanism under the EWSB. But, moreover, an ap-
peling issue is that different sets of values for chiral pa-
rameters correspond to different theories, including the
SM. That is, potential desviations from the SM predic-
tions, that could be detected experimentally, depend on
the value of theses couplings or parameters.

A. Tree Level

We are able now to extract the Tree Level interactions
of these two contributions to the Lagrangian, L2 and L4.
This can be done by expanding the exponential as

U = 1+
iσaωa

v
− σ

aσbωaωb

2v2
− iσ

aσbσcωaωbωc

6v3
+ ... (27)

For the sake of simplicity, we will omit the Bµ field
in the calculation due to no conceptual change is made
in this. For our purpose, we will only keep those terms
involving up to four ω fields or two ω fields with one W a

µ .

ω
ω

ω ω

ω ω

W

FIG. 3: Diagrams contributing at tree level

The terms that appear in the Higgless EW Chiral La-
grangian are presented below:

L2 =
1

2
∂µω

a∂µωa +
1

6v2
[(ωa∂µω

a)(ωb∂µωb)

−(ωb∂µω
a)(ωb∂µωa)]− gεabc

2
∂µω

aW bµωc
(28)

L4 = 4
a4
v4
∂µω

a∂νω
a∂µωb∂νωb

+4
a5
v4
∂µω

a∂µωa∂νω
b∂νωb

(29)

where we have used the well-known trace properties of
Pauli matrices

tr(σaσb) = 2δab

tr(σaσbσc) = 2iεabc

tr(σaσbσcσd) = 2(δabδcd − δacδbd + δadδbc)

(30)

Notice there is no mass term for the above Lagrangians
since they describe Goldstone bosons.
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B. Feynman Rules

In pursuit of a more detailed analysis, we are able to
compute the Feynman rules from the interaction terms
of L2 and L4 Lagrangians.

For the first interaction term in L2 Lagrangian we find:

i

3v2
[(δabδcd + δadδbc − 2δacδbd)t

+(δabδcd + δacδbd − 2δadδbc)u

−(δadδbc + δacδbd + 2δabδcd)s]

(31)

where we have introduced the Mandelstam variables:

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2
(32)

Likewise, the second term gives the following contribu-
tion

gεabc

2
(δadδcep1µ + δaeδcdp2µ)W bµ (33)

For the L4 contribution we put Feynman rules for the
first term

ia4
v4

[(3δabδcd + 4δadδbc)t2

+(4δabδcd + 4δacδbd)u2

+(δabδcd + 4δacδbd + 4δadδbc)s2]

(34)

as an example.

VI. OUTLOOK AND CONCLUSIONS

Throughout this work we have dealt with electroweak
chiral symmetry SU(2)L×SU(2)R, a global symmetry in-

cluded in the electroweak Standard Model and with the
required global symmetry breaking pattern SU(2)L ×
SU(2)R → SU(2)L+R. After presenting a first approach
of the Higgs mechanism, an equivalent formalism assisted
by the abovementioned matrix M is developed. It is
worth highlighting that the Higgs field is introduced ad
hoc in the theory. That is, relevant quantities of the
Higgs such as the Higgs self coupling cannot be predicted.
Therefore, there are some issue left that SM cannot ex-
plain yet.

The fact that matrix M could always be written as
M = σU was of great help for a better understanding.
One can appreciate that the potential in equation 14 is
only a function of σ, V=V(σ). Thus, the components
of M that are not σ (i.e. U) lead us to a different but
equivalent vacua. Indeed, moving along these directions
cost no energy at all.

In the final section we focus in a very appeling way
of approaching to the matter under discussion. Effec-
tive Lagrangians brings us the opportunity to consider
a more general view of this kind of theoretical descrip-
tions. Based on the relevant symmetries, we are able to
treat with more interactions terms beyond those ones pre-
dicted by the SM. These terms could change the strengh
of the interactions or bring some new effects that could,
eventually, be detected experimentally.
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