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Abstract The molecular force of blood-stage infection (molFOB) is a quantitative surrogate

metric for malaria transmission at population level and for exposure at individual level.

Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a

treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children

by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum

(Pf) and Pv blood-stage infections/year (Pf-molFOB = 0–18, Pv-molFOB = 0–23) resulting in

comparable spatial and temporal patterns in incidence and prevalence of infections. Including

relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater

heterogeneity at individual (Pv-molFOB = 0–36) and village levels. Pf- and Pv-molFOB were strongly

associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for

Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and

parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden

by the high burden of Pv relapses.

Clinical trial registration: ClinicalTrials.gov NCT02143934

DOI: https://doi.org/10.7554/eLife.23708.001

Introduction
Renewed emphasis on malaria control has resulted in substantial reductions in overall malaria preva-

lence and incidence in many endemic countries (World Health Organization, 2015). However,

where transmission persists, it is highly heterogeneous even on small spatial scales (Bousema et al.,

2012). Individual exposure is further influenced by factors such as use of bednets, attractiveness to

mosquitoes, or behavioural differences. In Papua New Guinea (PNG), malaria prevalence has sharply

declined in the last decade, largely as a result of two nationwide distributions of long-lasting insecti-

cide treated bednets (LLIN) (Hetzel et al., 2015; Hetzel et al., 2014; Hetzel et al., 2012). P. vivax

and P. falciparum PCR-prevalence in the general population was reduced from 32% and 39% in

2006 to 13% and 18% in 2010 (Koepfli et al., 2015). Already before this decline in malaria preva-

lence, studies in PNG had reported significant heterogeneity in malaria transmission attributed to

local population structure and geographical diversity (Hetzel et al., 2015; Cattani et al., 1986;

Genton et al., 1995; Müller et al., 2003; Mueller et al., 2009a).
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Prior to the up-scaling of malaria control, P. vivax endemicity in PNG was among the highest

worldwide (Hetzel et al., 2015). Clinical immunity to P. vivax was acquired very rapidly in PNG chil-

dren, and the incidence of P. vivax clinical episodes peaked in children younger than two years with

only very few P. vivax clinical episodes reported in children older than 5 years or adults

(Genton et al., 2008; Michon et al., 2007; Lin et al., 2010; Betuela et al., 2012). In contrast, the

risk for uncomplicated P. falciparum clinical episodes increased during early childhood (Lin et al.,

2010) and significant reductions in incidence of clinical episodes or high-density infections were only

observed in children aged 5 years and older (Michon et al., 2007). Compared to the incidence of

clinical malaria, prevalence of P. falciparum and P. vivax peaked in older age groups, with asymp-

tomatic infections remaining common until adulthood in PNG (Koepfli et al., 2015; Mueller et al.,

2009a). Concordant with the species-specific pattern in the burden of clinical episodes, P. vivax

prevalence peaked in younger age groups than P. falciparum prevalence (Koepfli et al., 2015;

Mueller et al., 2009a).

As malaria transmission declines, it is important to understand the resulting changes in malaria

prevalence and clinical incidence patterns, as well as the extent of heterogeneity in transmission

within malaria endemic regions so that high-risk areas can be identified and targeted (Mosha et al.,

2014). Most attempts to delineate high and low transmission areas made to-date, by both research-

ers and control programs, have used passive case surveillance or cross-sectional malaria indicator

surveys. These surveillance strategies result in clinical incidence and prevalence estimates,

both of which are surrogate markers for transmission. A more accurate understanding of the rela-

tionship between exposure to new infections and malaria prevalence or clinical incidence is needed

to determine how accurately these surrogate markers represent heterogeneity in transmission at

local scales. In addition, quantifying clinical incidence in relation to exposure to blood-stage

eLife digest Malaria is caused by five different species of parasites that are transmitted to

humans by bites from parasite-carrying mosquitos. Once in human blood, the parasites rapidly

multiply. People who live in countries where malaria is common may become infected and never

show any symptoms because their immune systems are able to keep parasite numbers low.

Repeated infections, or infection with more than one species of malaria parasite also are common.

Some species of malaria, including Plasmodium vivax, can hibernate in the liver for weeks or months

after the infection and only become active later.

Asymptomatic infections, multi-parasite infections, and reactivating parasites make it hard to

measure how often new malaria infections occur. One way scientists can determine if a new infection

has occurred is by genotyping the parasites in a person’s blood. Genotyping involves looking for

small differences in the parasite DNA. For example, a study in Papua New Guinea, where P. vivax is

very common, showed that reactivations of hibernating parasites were more common than new

infections.

Now, Hofmann et al. use the same study in Papua New Guinea to compare the frequency and

consequences of new infections with P. vivax and another malaria parasite, Plasmodium falciparum.

In the study, 466 children from 6 villages were followed for 8 months with tests every 2 to 4 weeks

to genotype the parasites in their blood. Some of the children were treated with antimalarial drugs

to help wipe out any existing parasites including hibernating ones. While P. vivax was about twice as

common in blood samples—likely due to reactivation—genotyping showed that new infections with

the two parasites occur at equal rates and often at the same times and locations.

Hofmann et al. also showed that some villages and some children had much higher rates of

infection than others. This difference could not fully be explained by use of bednets or other

preventive measures. Children were more likely to become ill from P. falciparum than P. vivax even

though P. vivax was more common. But children with more frequent infections with P. falciparum

seemed better able to manage the parasites and were less likely to develop symptoms that those

with infrequent infections. The experiments show that genotyping may help scientists better track

new malaria infections and develop better strategies to prevent or treat malaria.

DOI: https://doi.org/10.7554/eLife.23708.002
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infections can increase our insight into the development and maintenance of immunity to malaria in

a setting of sustained malaria control (Battle et al., 2015; Cameron et al., 2015).

The molecular force of blood-stage infection (molFOB) describes the number of new genotypes

observed in consecutive blood samples from cohort participants over time (Mueller et al., 2012;

Koepfli et al., 2013). Genotyping of highly polymorphic markers detects superinfecting parasite

clones in asymptomatic (but parasitaemic) or symptomatic individuals. molFOB thus provides a longi-

tudinal, individual and quantitative measure for exposure to new blood-stage malaria infections

(Mueller et al., 2012; Koepfli et al., 2013). For P. falciparum, molFOB is closely linked to the number

of infective mosquito bites and therefore is a direct proxy for the actual force of infection (FOI) and

thus for transmission in endemic settings (Smith et al., 2010). For P. vivax, clones appearing in the

blood-stream can either originate directly from an infective mosquito bite or from a relapsing liver

hypnozoite (Koepfli et al., 2013). For P. vivax, molFOB is thus a compound measure of exposure to

newly acquired infections from mosquito bites and relapsing blood-stage infections.

The usefulness of molFOB as a surrogate marker of individual exposure was validated originally in

a cohort of young PNG children 1–4 years of age, in which species-specific molFOB was the most

important predictor of clinical incidence for both species (Mueller et al., 2012; Koepfli et al.,

2013). Although some spatial heterogeneity of transmission was observed in that study for both spe-

cies, due to the high level of transmission the species-specific difference in rate of immune acquisi-

tion was the predominant feature in that study. While P. vivax molFOB (Pv-molFOB) did not change

with age, the incidence of P. vivax clinical episodes decreased significantly with age, with a faster

rate of decrease in children with high Pv-molFOB [12]. P. falciparum molFOB (Pf-molFOB) in that cohort

was lower compared to Pv-molFOB and the incidence of P. falciparum clinical episodes increased in

parallel with an increasing Pf-molFOB in children 1–3 years, reaching a plateau thereafter (Lin et al.,

2010; Mueller et al., 2012). These earlier results indicated that (i) immunity to P. vivax is acquired

more rapidly in children with higher cumulative exposure, that (ii) this developing immunity led to

proportionally fewer clinical P. vivax episodes in older children despite similar exposure to new P.

vivax blood-stage infections, and that (iii) higher exposure to P. vivax blood-stage infections, com-

pared to P. falciparum, resulted in a more advanced immunity to P. vivax in this age group com-

pared to P. falciparum (Doolan et al., 2009; Longley et al., 2016). The major challenge to these

cross-species comparisons lies within the intrinsic differences of Pf- and Pv-molFOB: whereas

Table 1. Characteristics of study participants by village.

Village N
%
female

Mean age
(±SD)

Mean weight
(±SD)

% LLIN use at
enrolment*

Mean LLIN use during
follow-up†

(%, range)

Mean
Hb
(±SD)

Amahup 119 53 7.6 (±1.5) 19.8 (±3.3) 99 99 (50–100) 11.1
(±1.0)

Albinama 99 43 7.7 (±1.5) 20.0 (±3.3) 95 97 (78–100) 11.7
(±1.8)

Balanga 54 59 7.8 (±1.6) 19.8 (±4.3) 96 99 (83–100) 11.3
(±1.1)

Balif 93 51 7.8 (±1.5) 20.3 (±3.3) 91 99 (69–100) 11.7
(±1.2)

Bolumita 70 50 7.4 (±1.7) 19.3 (±2.9) 77 92 (56–100) 10.7
(±1.0)

Numangu 31 55 7.4 (±1.6) 19.2 (±4.6) 100 100 (92–100) 12.1
(±1.4)

Total 466 51 7.6 (±1.5) 19.8 (±3.5) 93 100 (50–100) 11.4
(±1.4)

* LLIN use in the night preceding enrolment.

† Information on LLIN use in the previous night was collected at each follow-up visit and averaged across follow-up

per participant. Mean LLIN use by village was calculated from the averaged individual LLIN use.

Hb: Haemoglobin.

DOI: https://doi.org/10.7554/eLife.23708.003
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Figure 1. P. falciparum and P. vivax molFOB (A), prevalence by qPCR (B) and LM (C) by week of follow-up. Blue

lines, P. falciparum; red lines, P. vivax; solid lines, placebo arm; dashed lines, PQ arm. Open circles in (B) mark

enrolment qPCR prevalence for each species.

DOI: https://doi.org/10.7554/eLife.23708.005

Figure 1 continued on next page
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Pf-molFOB is a direct marker of mosquito-borne transmission, Pv-molFOB is a composite measure

reflecting both newly acquired infections and those caused by relapses of previously acquired

infections.

In this study, we extend the analysis of molFOB’s relationship with incidence of clinical malaria epi-

sodes to older PNG children and a lower transmission scenario. In addition, given the unique study

design that randomized blood-stage only or blood- plus liver-stage treatment at enrolment

(Robinson et al., 2015), we are now, for the first time, able to compare the incidence of newly

acquired P. falciparum infections with both the incidence of newly acquired P. vivax infections and

relapsing P. vivax infections. Advancing on previous studies that investigated each species individu-

ally (Mueller et al., 2012; Koepfli et al., 2013), we now provide a comparative analysis of P. falcipa-

rum and P. vivax, directly exploring the role of exposure to multiple Plasmodium species in the

development of clinical immunity to P. falciparum and P. vivax malaria. We quantify in detail the

extent of heterogeneity in molFOB on a small geographical scale and relate this to heterogeneity in

clinical episode incidence to investigate effects of small-scale variation in malaria transmission on

local malaria epidemiology. By combining in-depth molecular parasitological data with demographic

and clinical data, this study thus provides detailed insights into the changing epidemiology of

malaria in PNG in response to intense malaria control efforts.

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. Definition of new infections for calculating molFOB.

DOI: https://doi.org/10.7554/eLife.23708.006

Figure supplement 2. P. ovale and P. malariae prevalence by qPCR during follow-up.

DOI: https://doi.org/10.7554/eLife.23708.007

Table 3. Multivariable predictors for time to recurrent blood-stage infection with Plasmodium species by qPCR

Variable

P. vivax P. falciparum P. malariae P. ovale

AHR* CI95 p-value AHR* CI95 p-value AHR* CI95 p-value AHR* CI95 p-value

PQ treatment 0.18 0.13–0.25 <0.001 0.73 0.52–1.02 0.064 0.51 0.22–1.19 0.121 0.31 0.12–0.75 0.010

Age 0.95 0.87–1.04 0.247 1.05 0.94–1.17 0.361 0.98 0.75–1.29 0.905 0.96 0.74–1.26 0.793

LLIN use at enrolment 0.62 0.39–0.98 0.043 0.84 0.49–1.44 0.531 1.33 0.33–6.09 0.715 0.95 0.26–3.43 0.936

Hb at enrolment (g/dl) 0.88 0.80–0.98 0.019 0.90 0.80–1.02 0.099 0.83 0.61–1.12 0.224 0.92 0.66–1.28 0.634

Village

Albinama (ref) 1 1 1 1

Amahup 0.45 0.29–0.71 0.001 0.58 0.31–1.11 0.101 0.34 0.07–1.79 0.205 2.83 0.29–27.48 0.370

Balanga 2.15 1.40–3.31 <0.001 1.81 0.99–3.30 0.054 0.92 0.24–3.60 0.910 7.74 0.85–70.45 0.070

Balif 1.00 0.66–1.54 0.983 0.60 0.30–1.19 0.145 0.24 0.03–2.07 0.193 4.60 0.51–41.41 0.173

Bolumita 3.34 2.09–5.33 <0.001 4.73 2.69–8.30 <0.001 1.21 0.34–4.31 0.770 19.43 2.19–172.37 0.008

Numangu 0.83 0.44–1.59 0.583 2.29 1.17–4.50 0.015 0.82 0.15–4.53 0.823 3.17 0.19–52.41 0.420

Infection status at enrolment (by qPCR)

Uninfected (ref) 1 1 1 1

P. vivax 1.27 0.91–1.78 0.165 1.37 0.86–2.20 0.186 0.92 0.20–4.18 0.913 2.17 0.68–6.97 0.192

P. falciparum 1.36 0.84–2.19 0.205 1.56 0.86–2.82 0.145 3.54 0.85–14.72 0.083 1.25 0.26–5.90 0.779

P. malariae 0.83 0.38–1.85 0.655 0.99 0.38–2.56 0.977 6.35 1.31–30.81 0.022 1.58 0.17–14.30 0.676

Mixed P.f. or P.v.† 1.74 1.14–2.65 0.010 2.08 1.25–3.48 0.005 3.37 0.88–12.90 0.076 2.03 0.55–7.53 0.287

* AHRs were modeled using Cox proportional hazard regression.

† Mixed infection including P. falciparum or P. vivax infection in conjunction with one or more other Plasmodium spp.

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.

DOI: https://doi.org/10.7554/eLife.23708.008
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Results

Demographic and parasitological parameters at enrolment
This study was conducted in six villages in Maprik district, East Sepik Province, PNG between August

2009 and May 2010 (Robinson et al., 2015). 524 children aged 5–10 years were enrolled and ran-

domized to receive either chloroquine (CQ), artemeter-lumefantrine (AL) and primaquine (PQ); or

CQ, AL and placebo. Demographic parameters of the 466 children that completed the full course of

randomized treatment with PQ/CQ/AL (n = 233) or placebo/CQ/AL (n = 233), and were thereafter

closely followed for 8 months, were comparable between the six villages (Table 1).

P. vivax was the most common infection at enrolment with 48% of children positive by quantita-

tive PCR (qPCR), followed by P. falciparum (24%), P. malariae (15%) and P. ovale (3%; Table 2). 39%

of children were not infected with any Plasmodium species at enrolment. The vast majority of P.

malariae (75%) and almost all P. ovale infections (93%) occurred in children co-infected with either P.

vivax and/or P. falciparum (Table 2). Prevalence of each Plasmodium species varied between villages

(P. falciparum, 9–71%; P. vivax, 38–67%; P. malariae, 8–40%; P. ovale, 0–11%; Table 2) and was high-

est in Bolumita for all species. Accordingly, mixed-species infections were also most prevalent in

Bolumita (Table 2). The multiplicity of infection (MOI), that is, the number of parasite genotypes per

infection, also varied between villages for both species (mean P. falciparum MOI, 1.1–2.2 clones/

infection; mean P. vivax MOI, 1.6–2.9 clones/infection) and children from Bolumita carried more

multi-clone infections with P. vivax and P. falciparum than children in other villages (Table 2). Mean

P. falciparum parasite density was almost two- to six-fold higher in Bolumita (331 18S rRNA gene

copies/ml) than in other villages (56–192 18S rRNA gene copies/ml, Table 2).

molFOB and parasite prevalence after randomized radical cure
treatment
Children who had received PQ for clearance of P. vivax hypnozoites experienced similar numbers of

new blood-stage infections with P. falciparum and P. vivax during follow-up (mean Pf-molFOB = 1.5

Figure 2. Distribution of P.falciparum molFOB (A) and P. vivax molFOB by treatment arm (B). Relative frequencies

among the 466 children are shown.

DOI: https://doi.org/10.7554/eLife.23708.009

Hofmann et al. eLife 2017;6:e23708. DOI: https://doi.org/10.7554/eLife.23708 7 of 23

Research article Epidemiology and Global Health Immunology

https://doi.org/10.7554/eLife.23708.009
https://doi.org/10.7554/eLife.23708


CI95 [1.3–1.7] new blood-stage clones/year, Pv-molFOB = 1.6 [1.4–1.9] new blood-stage clones/year,

Figure 1A, Figure 1—figure supplement 1). Pf-molFOB in the placebo arm was comparable to the

PQ arm (mean Pf-molFOB = 1.4 [1.2–1.6] new blood-stage clones/year), whereas due to the hypno-

zoite reservoir Pv-molFOB was more than three times higher in the placebo arm compared to the PQ

arm (mean Pv-molFOB = 5.4 [4.9–5.8] new blood-stage clones/year). Pv-molFOB in the placebo arm

showed a pronounced peak at months 2–3 of follow-up, which likely represents a wave of fast-relaps-

ing hypnozoites in children who did not receive PQ (Figure 1A).

P. vivax prevalence in the PQ arm was comparable to P. falciparum prevalence throughout the

study and increased steadily, irrespective of the diagnostic method used (Figure 1B and C). P. vivax

prevalence increased more rapidly in the placebo arm until month 3 of follow-up and dropped there-

after, similar to patterns in Pv-molFOB in the same arm. Prevalence as measured by qPCR did not

reach pre-treatment levels until the end of the study for any of the four Plasmodium species

(Figure 1B, Figure 1—figure supplement 2).

At the end of follow-up, P. vivax prevalence by qPCR in the placebo arm was 25% [19–31%], and

therefore more than two-fold higher than in the PQ arm (9% [6–14%]; Figure 1B). Also, throughout

follow-up, P. vivax prevalence in the placebo arm was 2–3 fold higher compared to the PQ arm, sug-

gesting that at least 50% of the overall P. vivax prevalence in this cohort can be attributed to the

contribution of relapses.

Similarly, throughout and at the end of follow-up P. vivax prevalence in the placebo arm was 2–3

fold higher compared to P. falciparum (irrespective of treatment arm; P. falciparum prevalence at

Table 4. Multivariable predictors of Pv- and Pf-molFOB per follow-up interval.

Model predictions from this model were used for mapping molFOB in Figure 3A.

Variable

P. vivax P. falciparum

PQ arm Placebo arm Combined arms

IRR* CI95 p-value IRR* CI95 p-value IRR* CI95 p-value

PQ treatment n.a.† n.a. n.a. n.a. n.a. n.a. 0.89 0.65–1.22 0.474

New P. falc. infections in interval‡ 1.32 0.92–1.89 0.134 1.10 0.85–1.42 0.466 n.a. n.a. n.a.

New P. vivax infections in interval‡ n.a. n.a. n.a. n.a. n.a. n.a. 1.15 0.97–1.36 0.100

Age 0.86 0.74–1.01 0.059 0.95 0.87–1.04 0.305 1.03 0.92–1.14 0.640

LLIN use at enrolment 0.96 0.51–1.79 0.897 0.62 0.43–0.91 0.013 1.07 0.7–1.62 0.755

Hb at enrolment (g/dl) 0.85 0.72–1.01 0.063 0.91 0.85–0.99 0.025 0.85 0.75–0.97 0.013

Village

Albinama (ref) 1 1 1

Amahup 0.02 0–0.11 <0.001 0.56 0.34–0.91 0.020 0.52 0.25–1.07 0.074

Balif 0.85 0.4–1.8 0.664 1.74 1.16–2.61 0.007 1.81 0.98–3.35 0.059

Balanga 0.28 0.1–0.82 0.020 1.13 0.73–1.73 0.590 0.75 0.37–1.52 0.423

Bolumita 1.52 0.73–3.17 0.268 2.67 1.83–3.9 <0.001 6.05 3.32–11.05 <0.001

Numangu 0.5 0.15–1.68 0.264 0.76 0.4–1.43 0.394 2.8 1.39–5.64 0.004

Study Day

Day 0–35 (ref) 1 1 1

Day 36–80 1.37 0.54–3.48 0.509 1.99 1.39–2.84 <0.001 2.42 1.44–4.07 0.001

Day 81–175 1.34 0.57–3.12 0.503 0.89 0.61–1.3 0.538 1.13 0.7–1.84 0.616

Day > 175 0.65 0.25–1.69 0.374 0.56 0.38–0.83 0.004 0.87 0.48–1.56 0.643

*IRRs were modeled per sampling interval using negative binomial generalized estimating equations allowing for repeated visits with log-link and an

exchangeable correlation structure.

† n.a., not applicable.

‡molFOB in the follow-up interval (time-varying covariate).

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.
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Figure 3. Heterogeneity in molFOB (A, B) and clinical episode risk (C, D) of P.falciparum (A, C) and P. vivax (B, D). Upper panels show the kriging fit of

model predictions of molFOB and clinical episode risk of children in both treatment arms. Lower panels show the standard error relative to the kriging

estimate. Dots represent study participants’ houses and are color-coded according to village. Black lines: vehicle-accessible road; dark grey lines:

Figure 3 continued on next page
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end of follow-up, 10% [8–14%]), which is in agreement with the prevalence pattern at enrolment.

Assuming equal transmission from mosquitoes for both species, which was corroborated by a com-

parable Pf-molFOB and Pv-molFOB in the PQ arm, P. vivax relapses have contributed to a P. vivax

prevalence twice as high as that of P. falciparum.

Risk of recurrent blood-stage infections and molFOB during follow-up
In the present study design, recurrent blood-stage infection can either originate from a new trans-

mission event (both arms and all species) or for P. vivax and P. ovale also from a relapse of any previ-

ous infection (placebo arm only). After adjusting for the effect of PQ treatment (Robinson et al.,

2015), village of residence and infection status by qPCR at enrolment were the main predictors for

the risk of recurrent Plasmodium spp. during follow-up (Table 3). Interestingly, in addition to a pro-

tective effect against recurrent P. vivax and P. ovale, the risk of recurrent P. falciparum was also

reduced by 27% [0–48%] after PQ treatment (p=0.064).

The risk of a recurrent infection (measured by qPCR) with P. falciparum, P. vivax and P. ovale var-

ied more than 7-fold between villages, with a higher risk observed in Bolumita (78%, 77%, and 15%

with recurrent P. vivax, P. falciparum and P. ovale, respectively) compared to the other villages

(recurrent P. vivax, range 25–73%; recurrent P. falciparum, range 12–44%; recurrent P. ovale, range

0–7%). For P. falciparum and P. vivax, a mixed infection at enrolment as measured by qPCR was fur-

ther associated with up to a two-fold increased risk of recurrent infection (P. falciparum: AHR = 2.08

[1.25–3.48], p=0.005; P. vivax: AHR = 1.74 [1.14–2.65], p=0.010; Table 3), supporting the idea that

focal transmission within villages leads to the presence of high-risk and low-risk individuals. For P.

malariae, the infection status at enrolment was a stronger predictor of risk of recurrent infection

than village of residence. An infection with P. falciparum, P. malariae or a mixed infection at enrol-

ment as measured by qPCR was associated with up to a 6-fold increase in risk of recurrent P. malar-

iae (AHRPf-enrol = 3.54 [0.85–14.72], p=0.083; AHRPm-enrol = 6.35 [1.31–30.81], p=0.022;

AHRmixed = 3.37 [0.88–12.90], p=0.076; Table 3).

Reported use of a LLIN during the night previous to enrolment was associated with a reduced

risk of recurrent P. vivax and P. falciparum in univariate analyses (Supplementary file 1 - Table 1)

but to a lesser extent in multivariable analyses (P. vivax: AHR = 0.62 [0.39–0.98], p=0.043, P. falcipa-

rum: AHR = 0.84 [0.49–144], p=0.531). Haemoglobin (Hb) level at enrolment was negatively associ-

ated with the risk of recurrent infection with P. vivax (AHR = 0.88 [0.80–0.98], p=0.019) and P.

falciparum (AHR = 0.90 [0.80–1.02], p=0.099). Patterns in the risk of recurrent infections with P. falci-

parum and P. vivax as measured by light microscopy (LM, Supplementary file 2) were similar to

those observed for re-infection as measured by qPCR. When based on LM observation (but not as

measured by qPCR), increasing age was associated with a reduced risk of recurrent P. vivax

(AHR = 0.85 [0.77–0.95], p=0.004; Supplementary file 2) but an increased risk of recurrent P. falci-

parum (AHR = 1.16 [1.01–1.33], p=0.037; Supplementary file 2).

The incidence of new P. falciparum and P. vivax blood-stage clones detected during follow-up,

that is molFOB, was highly variable between individual children and ranged from 0 to 18 new clones/

year for P. falciparum (Figure 2A) and 0 to 36 or 23 new blood-stage clones/year for P. vivax in the

placebo or PQ arm, respectively (Figure 2B). Mean Pf- and Pv-molFOB varied significantly between

villages and were higher in Bolumita (Pf-molFOB = 4.9 new blood-stage clones/year, Pv-molFOBPQ

arm=4.4 new blood-stage clones/year, Pv-molFOBplacebo arm=12.1 new blood-stage clones/year;

Table 4; Figure 3) than in the other villages (Pf-molFOB, range 0.7–1.8 new blood-stage clones/year;

Pv-molFOBPQ arm, range 0.03–2.2 new blood-stage clones/year; Pv-molFOBplacebo arm, range 2.3–7.4

new blood-stage clones/year). In univariate analyses, new P. vivax infections were strongly associated

with new P. falciparum infections per sampling interval and vice versa, suggesting concurrent expo-

sure to the two species (Supplementary file 1 – Table 2). However, these effects were reduced

when other variables of varying exposure such as village of residence or infection at enrolment were

Figure 3 continued

vehicle-inaccessible road; light grey lines: river; red/white cross: health center or aid post; grey square: school or enrolment location. Maps were

prepared using ArcGIS 10.2 (Esri, USA).
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included in the multivariable model (P. vivax: IRRPQ arm=1.32 [0.92–1.89], p=0.134; IRRPlacebo

arm=1.10 [0.85–1.42], p=0.466; P. falciparum: IRR = 1.15 [0.97–1.36], p=0.100, Table 4). LLIN use,

Table 5. Multivariable predictors for time to P. vivax and P. falciparum clinical episodes.

Model predictions from this model were used for mapping the relative risk of clinical malaria episodes in Figure 3C and D.

Variable

P. vivax P. falciparum

AHR* CI95 p-value AHR* CI95 p-value

PQ treatment 0.76 0.34–1.68 0.497 1.79 1.05–3.03 0.031

P. vivax molFOB‡ 1.07 1.04–1.09 <0.001 n.a. n.a. n.a.

P. falciparum molFOB‡ n.a. n.a. n.a. 1.15 1.11–1.21 <0.001

Age 0.62 0.46–0.84 0.002 0.98 0.85–1.13 0. 799

LLIN use at enrolment 0.84 0.24–2.88 0.778 0.44 0.22–0.87 0.018

Hb at enrolment (g/dl) 0.95 0.74–0.67 0.668 0.85 0.71–1.01 0.070

Village

Albinama (ref) 1 1

Amahup 0.89 0.23–3.46 0.871 0.65 0.20–2.08 0.465

Balif 1.48 0.45–4.86 0.518 1.26 0.50–3.14 0.626

Balanga 0.85 0.21–3.53 0.827 1.39 0.59–3.30 0.455

Bolumita 0.99 0.24–4.03 0.987 1.32 0.58–3.03 0.508

Numangu 1.00 0.23–4.31 0.997 4.29 2.06–8.97 <0.001

Infection status at enrolment (by qPCR)

Uninfected (ref) 1 1

P. vivax 0.77 0.29–2.07 0.608 1.64 0.91–2.95 0.101

P. falciparum 1.74 0.59–5.11 0.316 0.97 0.34–2.77 0.954

Mixed P.f. or P.v. 1.59 0.56–4.50 0.381 1.24 0.57–2.68 0.582

* AHRs were modeled using multiple failure Cox proportional hazard regression.

† n.a., not applicable

‡ Average molFOB until the time of failure (time-varying covariate).

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.

DOI: https://doi.org/10.7554/eLife.23708.013

Figure 4. The incidence of P.falciparum (A) and P. vivax (B) clinical episodes relative to molFOB. Mean clinical

episode incidence is shown as bars (left axis) and proportion of clinical episode incidence divided by molFOB as

connected dots (right axis). Error bars represent 95% CIs. p-values refer to the differences between groups in the

proportion of clinical episodes and new infections, assessed by Chi2 or Fisher’s exact test.
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although strongly associated with lower Pf- and Pv-molFOB in univariate analyses

(Supplementary file 1 – Table 2), remained significantly associated in multivariable models only for

P. vivax in the placebo arm, where sleeping under a LLIN in the night previous to enrolment was

associated with a 38% [9–57%] reduction in Pv-molFOB (p=0.013, Table 4). Each additional year of

age was associated with a 14% [0–26%] reduction Pv-molFOB per sampling interval in the PQ arm

(p=0.059), while no age effect was observed in the placebo arm or for P. falciparum (Table 4). Hb

level at enrolment was negatively associated with Pf- and Pv-molFOB (P. vivax: IRRPQ arm=0.85 [0.72–

1.01], p=0.063; IRRPlacebo arm=0.91 [0.85–0.99], p=0.025; P. falciparum: IRR = 0.85 [0.75–0.97],

p=0.013), suggesting anaemia in individuals continuously exposed to blood-stage infections.

Patterns in the risk of P. vivax and P. falciparum clinical episodes
A total of 98 clinical malaria episodes, here defined as fever plus presence of LM-detectable para-

sites, were observed during the study period. Of these, 64 (65%) exceeded the previously estab-

lished pyrogenic thresholds of 2500 and 500 parasites/ml per LM for P. falciparum and P. vivax,

respectively (Mueller et al., 2009b). P. falciparum was the most common cause of clinical malaria

episodes (P. falciparum, 64 clinical episodes; P. vivax, 31 clinical episodes; mixed P. falciparum/P.

vivax by LM, 3 clinical episodes), despite lower incidence of new P. falciparum blood-stage clones

compared with P. vivax (P. falciparum, 342 new P. falciparum blood-stage clones; P. vivax, 849 new

blood-stage clones). Including clinical episodes with mixed infection as determined by LM in the esti-

mates for both species, clinical incidence rate (IR) was 0.28 [0.21–0.35] P. falciparum episodes/year

and 0.12 [0.08–0.17] P. vivax episodes/year. At least one new blood-stage clone was detected in

70% (47/67) of samples from P. falciparum and 71% (24/34) of samples from P. vivax clinical epi-

sodes. Of these clinical episodes with new blood-stage clones, 96% (45/47) and 83% (20/24) carried

only the new but no persistent P. falciparum and P. vivax clones, respectively.

Table 6. Multivariable predictors for odds of P. falciparum clinical episodes

P. falciparum episode

Variable OR* CI95 p-value

PQ treatment 1.42 0.80–2.52 0.226

P. vivax qPCR positive† 0.35 0.15–0.78 0.011

P. falciparum molFOB‡ 1.21 1.10–1.34 <0.001

Age 0.93 0.80–1.09 0.370

LLIN at enrolment 0.37 0.16–0.83 0.016

Hb (g/dl) at enrolment 0.88 0.70–1.11 0.292

Village

Albinama (ref) 1

Amahup 0.41 0.12–1.39 0.154

Balif 0.9 0.26–3.08 0.870

Balanga 1.19 0.42–3.39 0.747

Bolumita 1.48 0.42–5.17 0.540

Numangu 4.17 1.64–10.58 0.003

Study Day

Day 0–80 1

Day 81–175 0.99 0.51–1.91 0.972

Day > 175 0.83 0.39–1.75 0.629

* ORs were modeled using a binomial generalized estimating equation with logit link function using an exchange-

able correlation structure.

† Determined as P. vivax positive at the same or previous sampling visit.

‡molFOB in the follow-up interval (time-varying covariate).

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.
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P. vivax clinical episodes occurred mainly in the placebo arm shortly after directly observed treat-

ment (DOT) (Robinson et al., 2015), the time of peak Pv-molFOB due to relapsing hypnozoites

(Figure 1A). On an individual level, Pv-molFOB was positively associated with the risk of clinical epi-

sodes and each additional blood-stage P. vivax clone increased the risk of experiencing a P. vivax

clinical episode slightly (AHR = 1.07 [1.04–1.09], p<0.001; Table 5). No significant differences in P.

vivax clinical episode risk were observed between villages after adjusting for individual molFOB. The

risk for a P. vivax clinical episode decreased significantly with age (AHR = 0.62 [0.46–0.84], p=0.002;

Table 5). This was paralleled by a decrease in P. vivax densities with age (by qPCR, exp(b)=0.90

[0.83–0.98], p=0.016; Supplementary file 3) indicative of more advanced immunity against P. vivax

and thus better control of P. vivax densities in older children.

Patterns in the occurrence of P. falciparum clinical episodes during follow-up were more complex.

Between-village variation in P. falciparum clinical episode risk remained significant even after adjust-

ing for individual exposure. This effect was mainly apparent in Numangu, where children were at

three- to six-fold higher risk for clinical episodes than children in other villages (Numangu

AHR = 4.29 [2.06–8.97], other villages range AHR = 0.65 [0.20–2.08] to 1.39 [0.59–3.30]; Table 5).

Overall, Pv-molFOB was positively associated with the risk of clinical episodes and each additional P.

falciparum blood-stage clone slightly increased the risk for P. falciparum clinical episodes

(AHR = 1.15 [1.11–1.21], p<0.001; Table 5); however, relative to the number of new blood-stage

clones, P. falciparum clinical episodes were less frequent in highly exposed children compared to

low-exposed children (Figure 4). One clinical episode per three new blood-stage clones was

detected in the least exposed children (Pf-molFOB <4 new blood-stage clones/year), but only one

clinical episode per 15 blood-stage clones in the highest exposed children (Pf-molFOB >9 new

blood-stage clones/year, Fisher’s exact test p<0.001). Age was not associated with the risk of P. fal-

ciparum clinical episodes. LLIN use at enrolment was associated with a 56% [13–78%] reduced risk of

P. falciparum clinical episodes (p=0.018; Table 5).

A higher risk for P. falciparum clinical episodes in children that had received PQ treatment for

clearance of P. vivax liver stages was observed (AHR = 1.79 [1.05–3.03], p=0.031; Table 5), suggest-

ing a potential protective effect of P. vivax infections against P. falciparum clinical episodes. Analysis

to further explore this revealed that a concurrent or recent infection (i.e., at the same or preceding

follow-up visit) with P. vivax reduced the odds of a P. falciparum clinical episode by 65% [22-85%]

(p=0.011; Table 6). Further indications for a potential interaction between the two species was also

observed when analyzing P. falciparum parasite densities, which were reduced by 55% [19–75%]

(p=0.008; Supplementary file 3) in mixed P. falciparum/P. vivax infections compared to P. falcipa-

rum single infections, indicative of suppression of one of the species in mixed infections.

Discussion
In the present study, we describe striking heterogeneity in malaria transmission not only between

closely neighboring communities in Maprik district, PNG, but also substantial differences in exposure

between individual children from the same village. On village level this heterogeneity is apparent

both when using traditional markers such as prevalence of infection, as well as when using the novel

‘reference standard‘ marker of individual exposure molFOB. The increased resolution provided by mol-

FOB further allows quantifying heterogeneity in exposure to new blood-stage infections between

individual children. Extending an earlier study in a neighboring area in which younger children had

been enrolled, and that had identified molFOB as the most important predictor of malaria clinical epi-

sodes (Mueller et al., 2012; Koepfli et al., 2013), we confirmed that molFOB remains significantly

associated with the risk for clinical episodes, but other factors such as age (P. vivax), or a mixed Pf/

Pv infection and village factors not captured by any of the other parameters assessed (P. falciparum)

have a stronger effect on the risk for clinical malaria (Table 5 and 6).

Malaria transmission is often estimated by investigating the more accessible human host rather

than the mosquito vector (Tusting et al., 2014). Because P. falciparum blood-stage infections are a

direct outcome of mosquito-to-human transmission, infection parameters assessed in the human

blood closely reflect P. falciparum transmission. In contrast, relapses arising from dormant hypno-

zoites contribute substantially to P. vivax blood-stage infections (Robinson et al., 2015), thus com-

plicating the assessment of mosquito-to-human P. vivax transmission via infection parameters

measured in the human blood. The unique design of this study, that combined clearance of
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hypnozoites in half of the study participants with subsequent measurement of Pv-molFOB, allowed us

to identify the burden of P. vivax infections due to mosquito-to-human transmission (in hypnozoite-

cleared individuals) and compare it to the total burden of P. vivax infections. We found a highly simi-

lar incidence and comparable temporal and spatial heterogeneity of P. falciparum and P. vivax infec-

tion acquired through renewed exposure to infected mosquito bites. In children that experienced

the full burden of relapses we found two-fold higher P. vivax infection prevalence and 4-times higher

incidence (molFOB) compared to P. falciparum. This first quantitative comparative assessment of P.

falciparum and P. vivax transmission using non-entomological molecular parameters thus indicates

that the observed differences in epidemiology between the two species are largely due to the high

burden of relapsing P. vivax blood-stage infections (Robinson et al., 2015). Our molecular results

thus support recent entomological data from Dreikikir district, 50 km from Maprik in East Sepik Prov-

ince (Reimer et al., 2016) as well as earlier studies in East Sepik (Hii et al., 2001) that found similar

sporozoite rates for P. falciparum and P. vivax.

Our previous analysis of this cohort had investigated the contribution of the hypnozoite reservoir

to P. vivax infection and disease in order to inform strategies for achieving a sustained reduction of

the P. vivax burden in PNG (Robinson et al., 2015). Here, we now describe the post-treatment re-

infection dynamics in higher temporal detail. Through a detailed comparison of these patterns for P.

vivax and P. falciparum in PQ and placebo-treated children we further elucidate the contribution of

relapses to P. vivax prevalence and clinical incidence, which are the most commonly used parameters

for planning and monitoring of malaria control strategies. P. vivax relapses accounted for more than

half of the observed P. vivax prevalence in this cohort, which is lower than what was previously esti-

mated as the contribution of relapses towards Pv-molFOB by comparison of treatment arms (77%,

Robinson et al., 2015). This difference can be accounted for by the higher number of P. vivax multi-

ple clone infections that will accumulate more rapidly in the placebo-arm, where additional parasite

clones from relapses and/or new infections may overlap with without a corresponding change in

overall prevalence.

While we previously described a sustained effect of PQ treatment with significant reductions in

Pv-molFOB observed up to eight months post treatment (Robinson et al., 2015), here, we describe

temporal variation in relapse rate with a rapid and wave-like recurrence of P. vivax in children from

the placebo arm, who had retained their hypnozoites (Figure 1A). The concurrent, modest peaks in

Pf-molFOB and Pv-molFOB in the PQ arm represent seasonal variation in transmission, which is high-

est in December and January in the study area (Mueller et al., 2012); corresponding to weeks 8–14

of follow-up). A much higher peak and subsequent drop in appearance of new clones within three

months after blood-stage only treatment, which was mirrored by a corresponding peak and drop in

P. vivax prevalence (Figure 1B andC), suggests that the incidence of relapse infections in the blood

was not constant during follow-up. P. vivax infections are often observed following treatment of P.

falciparum malaria (Douglas et al., 2011), and it can thus been hypothesized that the frequency of

relapses may be temporarily increased after blood-stage antimalarial treatment (White and Imwong,

2012). It is thus conceivable that the blood-stage antimalarial at baseline either triggered P. vivax

relapses directly, or indirectly by allowing more hypnozoites to establish blood-stage infections in

parasite-free hosts. Alternatively, blood-stage P. vivax infections from hypnozoites relapsing shortly

after baseline treatment (during a period when antimalarial drugs were present at sub-curative lev-

els) may be suppressed to sub-detectable densities until complete waning of drug levels, resulting in

simultaneous proliferation and detection of many new blood-stage clones within the first weeks after

treatment (Douglas et al., 2011; Tarning et al., 2014). More detailed modeling of the dynamics of

individual P. vivax blood-stage infections and their association with potential triggers such as treat-

ment or febrile illness will be required to determine the existence and importance of proposed

relapse-triggers.

Malaria transmission showed high micro-spatial heterogeneity with more than 10-fold differences

in Pf- and Pv-molFOB (in the PQ arm) between villages despite an overall high LLIN use by the study

participants (during follow-up; village average use,>90%; individual use,>50%). Individual LLIN use

at enrolment was nevertheless associated with a reduced risk of recurrent P. falciparum and P. vivax

in univariate analyses. However, after adjustment for other related variables (i.e., village of residence

or infection status) this association became non-significant. Children living in Bolumita, where both

P. falciparum and P. vivax molFOB and prevalence were highest, had a modestly lower LLIN use

(mean during follow-up, 92%; at enrolment, 77%) compared to children from other villages (mean
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during follow-up, 97–100%; at enrolment, 91–100%). It is conceivable that LLIN use in the Bolumita

community may be less effective in reducing malaria transmission (Killeen et al., 2007; Smith et al.,

2009). Potential differences between villages in mosquito density, behavior, sporozoite rate, proxim-

ity of house or play areas to mosquito breeding sites, or human behavioral factors (related to LLIN

use or other risk factors) are however likely to be more important determinants for exposure to

infective bites. Small-scale variations in vector species and distribution between and within villages

in PNG have been described previously (Cattani et al., 1986; Reimer et al., 2016;

Charlwood et al., 1986; Hii et al., 1997; Burkot et al., 1988) and likely account in a large part for

the micro-geographic heterogeneity in malariological parameters observed in this and other studies.

Assessing the incidence of new infections from consecutive blood samples using molecular meth-

ods (as is necessary to determine molFOB), is complicated by fluctuating densities of clonal parasite-

mia that may temporarily fall below the limit of detection of the genotyping PCR, leading to

imperfect detectability of clones (Bretscher et al., 2010; Felger et al., 2012; Koepfli et al., 2011).

For P. falciparum, periodical sequestration of clones and absence from the peripheral blood at time

of sampling may further contribute to imperfect detectability. For P. vivax, generally low parasite

densities aggravate the problem of imperfect detectability, and dis- and re-appearance of clones

may be a result of imperfect detectability or relapsing hypnozoites. The overall estimates of molFOB

presented here may thus be biased. Accurately assessing the effects of this imperfect detectability

on parameters estimated from longitudinal genotyping data, such as molFOB, requires complex

mathematical modeling (Bretscher et al., 2010; Felger et al., 2012; Sama et al., 2005; Sama et al.,

2006). However, although clonal detectability has been shown to decrease with age (Felger et al.,

2012; Sama et al., 2006) and MOI (Koepfli et al., 2011), it is unlikely to vary substantially within our

cohort’s age range and transmission setting. Hence the observed differences in molFOB are likely to

accurately reflect the relative differences in individual exposure as well as in population transmission

levels within the study area.

Evaluating the impact of malaria control efforts requires monitoring changes in malariological

metrics over extended periods of time. Drawing comparisons between studies performed at differ-

ent times in different age groups is particularly challenging because of the interplay of past and cur-

rent exposure to infective bites and the resulting anti-malarial immunity in the study population of a

certain age. In our cohort, fewer P. vivax clinical episodes than P. falciparum clinical episodes were

detected despite a higher incidence of P. vivax blood-stage infections, which is consistent with ear-

lier studies in children of similar age (Michon et al., 2007). The very low incidence of clinical P. vivax

episodes in our cohort, at 0.16 clinical episodes/year (placebo arm [Robinson et al., 2015]), con-

trasts drastically with that of 2.46 P. vivax clinical episodes/year observed in an earlier observational

cohort of younger children aged 1–4 years from the same area (Lin et al., 2010). The 3-fold differ-

ence in Pv-molFOB between the two cohorts seems modest when compared to the 15-fold difference

in the incidence of clinical Pv episodes (Koepfli et al., 2013). This suggests that the much lower inci-

dence of P. vivax clinical illness in 5–10 years old children of this study is more likely explained by an

advanced state of immunity to P. vivax compared to the younger children of the earlier cohort than

the drop in P. vivax transmission. Consistently, age emerged as the strongest factor associated with

protection against P. vivax clinical episodes, Pv-molFOB and P. vivax parasite density. Like in the pre-

vious cohort of younger children from neighboring villages (Lin et al., 2010) the incidence clinical P.

vivax clinical episodes dropped significantly with age. Unlike in the previous cohort of younger chil-

dren (Koepfli et al., 2013), in this cohort we additionally observed a drop in Pv-molFOB as well as P.

vivax densities with age (Table 4 and Supplementary file 3). This is a further indication of the sub-

stantial clinical immunity to P. vivax acquired during years of past exposure in the children of this

study, which is still ongoing after the age of five.

In sharp contrast to the age-dependent decline of P. vivax clinical episode incidence, no age-

dependent decrease in the incidence of clinical episodes was observed for P. falciparum. In a previ-

ous cohort study conducted in 2004 in 5–14 year old children in an area from PNG with substantially

higher transmission levels (mean incidence risk 5.0 versus 0.8 infections/year, Michon et al., 2007;

Robinson et al., 2015), the risk of moderate- to high-density P. falciparum infections decreased sig-

nificantly with age (Michon et al., 2007). Clinical immunity to P. falciparum in children of this earlier

cohort was not only significantly further advanced compared to children of this cohort, but in addi-

tion, transmission was more homogeneous in the area of that study. As a consequence age was a

much better marker of life-time exposure and thus immune status compared to the present cohort.
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In this cohort, exposure to P. falciparum infections was highly heterogeneous between study par-

ticipants. Mathematical modeling suggests that at heterogeneous transmission, changes of parasite

prevalence and clinical episode incidence with age are less pronounced compared to settings with

homogeneous transmission (Ross and Smith, 2010). Although no age trends were observed for P.

falciparum in this cohort, when children were stratified into groups ranging from low to high expo-

sure we found that the proportion of P. falciparum clinical episodes relative to new infections

decreased with increasing exposure. This could either reflect the development of clinical immunity in

highly exposed children, or premunition, a proposed mechanism by which established infections

help to control superinfections by immunological cross-protection (Sergent and Parrot, 1935;

Smith et al., 1999). In settings of decreasing and heterogeneous transmission, age alone may there-

fore not be a suitable marker of immunity to P. falciparum. Instead, combining age and molFOB to

estimate cumulative life-time exposure may provide a more accurate surrogate measure of the

extent of acquired clinical immunity. With P. falciparum transmission declining in PNG due to suc-

cessful malaria control strategies (Koepfli et al., 2015), it is conceivable that immunity against P. fal-

ciparum will develop more slowly, shifting the burden of disease towards older age groups or

towards more complex, non-linear age patterns. This delay in immune acquisition is however more

than compensated by the overall much lower incidence of clinical malaria clinical episodes: in cohort

studies in children younger than 4 years from Maprik district, clinical P. falciparum incidence had

dropped from 2.56 clinical episodes/year before (observational cohort, [Lin et al., 2010;

Mueller et al., 2012]) to 0.67 clinical episodes/year immediately after the free LLIN distribution cam-

paign (placebo arm, [Betuela et al., 2012]).

Finally, given that four Plasmodium species co-exist in PNG, there has long been considerable

interest in potential mechanisms of cross-species immunity and mixed species interactions

(Mueller et al., 2009a; Bruce et al., 2000; Smith et al., 2001; Mehlotra et al., 2000). However,

there is so far no consistent evidence for the presence or absence of cross-protection among Plas-

modium species. P. vivax and P. falciparum infections in our study were concentrated in the same

children and villages (Figure 3), likely due to overlapping focal transmission for P. falciparum and P.

vivax and thus potentially high co-infection rates in mosquitoes. Contrary to an earlier cohort in

younger PNG children that found a decreased risk of P. falciparum clinical episodes after PQ radical

cure (Betuela et al., 2012), we found indications for an increased risk of P. falciparum illness after

clearance of P. vivax hypnozoites using PQ. Our data suggests that in individuals with substantial

clinical immunity against P. vivax, a concurrent P. vivax infection may provide protection against P.

falciparum clinical episodes by limiting P. falciparum densities (Table 6, Supplementary file 3). How-

ever, the comparably small number of clinical episodes in this and the earlier contrasting study does

not allow an in-depth analysis of causal relationships and therefore does not allow firm conclusions

on the potential effects and mechanisms of cross-species interactions in mixed infections.

In conclusion, this study provides detailed insight into the changing epidemiology of malaria in

PNG children under sustained malaria control, by using molFOB as a powerful measure to quantita-

tively investigate patterns of new mosquito-derived P. falciparum and P. vivax infections versus those

for P. vivax relapsing infections, as well as spatial and age trends in exposure to these infections.

Striking heterogeneity in malaria transmission between villages as well as in individual exposure to

new P. falciparum and P. vivax infections persisted in our study area despite very high use of LLINs.

This presents a significant challenge for on-going malaria control efforts. The comparable patterns

of new mosquito-derived P. falciparum and P. vivax infections indicate that sustained use of LLINs

does result in a comparable reduction in transmission of both species. The higher incidence and

prevalence of P. vivax infections observed in our data is thus directly linked to its ability to cause

relapsing infections, highlighting the crucial role of hypnozoites for P. vivax epidemiology and the

need to effectively intervene against these hidden stages. Together, these insights provide a crucial

link to evaluate the level of P. vivax mosquito-based transmission against that of P. falciparum and

serve to calibrate other standard malaria indicators such as parasite prevalence or incidence of clini-

cal episodes and to ultimately inform new approaches to surveillance and response systems.

Hofmann et al. eLife 2017;6:e23708. DOI: https://doi.org/10.7554/eLife.23708 16 of 23

Research article Epidemiology and Global Health Immunology

https://doi.org/10.7554/eLife.23708


Materials and methods

Study design and participants
This study was conducted in six villages in the Albinama and Balif areas, Maprik district, East Sepik

Province, PNG between August 2009 and May 2010. The area is serviced by the Albinama health

sub-center, Balif aid post and a network of health workers in all study villages. The study design has

been described in detail elsewhere (Robinson et al., 2015). Briefly, 524 children aged 5–10 years

whose parents provided written informed consent for their participation were enrolled and random-

ized to receive either chloroquine (CQ, days 1–3, total dose 25 mg/kg), artemeter-lumefantrine

(Coartem, AL, days 11–13, 2 mg/kg A, 12 mg/kg L) and primaquine (PQ, days 1–20, 0.5 mg/kg/day);

or CQ (days 1–3), AL (days 11–13), and placebo (days 1–20) over 20 days of directly observed treat-

ment (DOT1-20) in a double-blinded manner. Children were actively visited and examined for signs

and symptoms of malaria fortnightly at their schools for 8 months. In addition, passive surveillance

was provided by the local health centre, aid post and village health workers throughout the study

period. Finger-prick blood samples (250 ml) were collected at fortnightly active-follow-up visits in the

first 12 weeks and monthly thereafter, as well as from symptomatic children detected during active

or passive morbidity surveillance. Symptomatic children were tested for malaria infection with rapid

diagnostic test (RDT, CareStartMalaria pLDH/HRP2 Combo, AccessBio, USA), and only RDT and or

LM-confirmed Plasmodium infections of any density were treated with a 3 day course of AL.

Household, village and health facility location data was collected using a handheld GPS receiver

(Garmin GPSmap62sc) and maps were prepared using ArcGIS 10.2 (Esri, USA).

The study received ethical clearance from the PNG IMR Institutional Review Board (0908), the

PNG Medical Advisory Committee (09.11), the Ethics Committee of Basel 237/11 and was con-

ducted in full concordance with the Declaration of Helsinki. The study was registered on Clinical-

Trials.gov (NCT02143934).

Laboratory methods
All blood samples were examined by LM and qPCR for detection and speciation of Plasmodium

infections as described earlier (Robinson et al., 2015). Each blood slide was read independently by

two skilled microscopists and re-read by an expert microscopist in case of discrepancies in positivity,

speciation or density (�2 x log10 difference). Thick blood films were examined by LM for 200 fields

(1000x magnification) before being declared parasite-negative. Parasite density was converted from

the number of parasites per 200–500 white blood cells (WBC) to parasites/ml assuming 8000 WBC/ml

(WHO malaria microscopy training guide) and calculated as the geometric mean of all positive

reads.

DNA was extracted from the red blood cell pellet using the FavorPrep 96-well genomic DNA

extraction kit (Favorgen). Samples carrying any Plasmodium spp. infection were identified using a

generic qPCR (Wampfler et al., 2013) and positives were subsequently tested in species-specific

qPCRs (Rosanas-Urgell et al., 2010; Wampfler et al., 2013). All qPCRs targeted the small subunit

(18S) ribosomal RNA gene and were performed as simplex (P. vivax and P. falciparum) or duplex

qPCR (P. malariae, P. ovale). The concentration of target copies per ml of DNA was determined rela-

tive to a dilution row of standard plasmid as previously described (Rosanas-Urgell et al., 2010). The

qPCR limit of detection (LOD) was determined using a standard plasmid dilution row and defined as

the last point with more than 50% of replicates positive. The LOD was 2 target copies/ml DNA,

equaling 4 target copies/reaction, for all qPCRs. All samples that crossed the fluorescence threshold

were scored as positive for species-specific qPCRs. In all samples positive in P. falciparum and/or P.

vivax qPCRs, individual parasite clones were distinguished by genotyping the length-polymorphic Pf-

msp2 or Pv-msp1F3 marker genes using capillary electrophoresis for highly precise fragment sizing

(Koepfli et al., 2013; Koepfli et al., 2011; Falk et al., 2006; Schoepflin et al., 2009). MOI was

determined by counting the number of detected Pf-msp2 or Pv-msp1F3 alleles per sample. molFOB

was calculated from the number of new parasite clones detected per child or per sampling interval

in the peripheral blood, divided by the individual time at risk or length of the interval. A new infec-

tion was defined as a Pf-msp2 or Pv-msp1F3 allele not present in the two preceding genotyping-

positive samples collected during active or passive surveillance (Figure 1—figure supplement 1).

Imperfect diagnostic detectability was not further adjusted for.
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Statistical analysis
Children were considered at risk for clinical malaria clinical episodes until the end of the study or

until they were censored (on the last visit before two consecutively missed scheduled follow-up visits

[Robinson et al., 2015]). For clinical endpoints, time-at-risk (TAR) was not further adjusted for

interim missed follow-up visits because the intense active and passive case detection presumably led

to detection of all malaria clinical episodes. In contrast, TAR for analysis of molecular data (e.g., mol-

FOB) was reduced by the duration of the missed interval if a child was not seen by the study team

for six weeks or more (�42 days). Children with a TAR of less than 3 months (<84 days) were

excluded. This resulted in an analyzed population of 466 children (characterized in Table 1) of which

430 (92.3%) completed the whole follow-up period, with a median of 15 (IQR: 13–17) study contacts

and mean TAR of 186 days (IQR 168–223 days).

Time to first Plasmodium infection by qPCR and LM and its association with covariates were mod-

eled using Cox regression, and the proportional hazards assumption was checked using the test

based on the Schoenfeld residuals. Multiple failure Cox regression was used to model the time to P.

vivax and P. falciparum clinical episodes.

For statistical analysis, a malaria clinical episode was defined as fever (>37.5˚C axillary) plus the

presence of LM-detectable parasites, irrespective of RDT result or antimalarial treatment during the

field visit. Negative binomial generalized estimating equations (GEE) with log link function using an

exchangeable correlation structure were used to model incidence of new infections with P. falcipa-

rum and P. vivax per sampling interval. For these analyses, the time at risk was restricted to the inter-

vals where molFOB could be estimated (i.e., starting in the third follow-up interval). A binomial GEE

with logit link function using an exchangeable correlation structure was used to model the odds of a

P. falciparum clinical episode per interval. Gaussian GEEs with log link function using an exchange-

able correlation matrix were used to model log-transformed qPCR parasite densities in qPCR-posi-

tive samples, measured as 18S rRNA copy numbers/ml blood. In the GEE and Cox models where

molFOB was a covariate, it was included as a time-varying covariate. When modelling molFOB

(Table 4) and the odds of clinical episodes (Table 6) using GEEs, molFOB was calculated for each fol-

low-up interval and used as predictor. In Cox models investigating the risk of clinical episodes

(Table 5), molFOB was calculated based on the new infections up to the time of failure and used as

predictor. In exploratory preliminary analyses we tested for a wide variety of interactions between

covariates including interactions between all combinations of molFOB, enrolment infection status,

age, village and bednet-usage. All analyses were done using STATA v14 and R.

Maps were drawn using Arcgis 10.1 (Esri Inc.). Ordinary kriging was used to generate the contour

maps. Semivariograms were used as the mathematical forms used to express autocorrelation. Input

variables for the spatial models were (i)molFOB (prediction of independent variable, molFOB) using

the model presented in Table 4 (negative binomial GEE) for Pf and Supplementary file 4 for Pv

(same as that shown in Table 4 but with primaquine and placebo arms combined), resulting in Fig-

ure 3 Panels A and B; (ii) relative risk of clinical episodes as predicted by the model shown in Table 5,

resulting in Panels C and D of Figure 3. Relative standard error maps were generated by dividing

the absolute standard error map by the model prediction map.
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