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1. SUMMARY 

Some cyclometallated palladium(II) compounds have been synthesized from the ortho- and 

para-chloro isomers of the imine [ClC6H4CHNCH2C6H5]. The C-H bond aryl activation was 

performed by the metallation agent Pd(AcO)2 and the expected acetate-bridged cyclometallated 

compounds [Pd{µ-AcO}{ClC6H3CHNCH2C6H5}]2 have been obtained.  

Some reactions of [Pd{µ-AcO}{ClC6H3CHNCH2C6H5}]2 were performed and three type of 

compounds have been obtained; the bridged dinuclear, the neutral mononuclear and the ionic 

mononuclear. The respective halogen-bridged analogues [Pd{µ-X}{ClC6H3CHNCH2C6H5}]2 were 

formed after reacting acetate-bridged compounds with LiBr or LiCl.  Splitting reaction took place, 

when acetate-bridged compounds react with phosphines, but depending of the nature of the 

phosphine different products could be formed. Neutral mononuclear cyclometallated compounds 

were obtained by reacting with PPh3, whereas ionic mononuclear cyclometallated compounds 

were obtained by reaction with diphosphine dppe (Ph2PCH2CH2Ph). 

The products were characterized by 1H and 31P NMR, IR and MS-ESI+. It has been found 

some tendencies through the products: i) the ortho-chloro atoms show an interaction with the 

imine proton in all the compounds obtained; ii) monodentated phosphines or pyridines adopt a 

trans arrangement with the imine nitrogen that tend to shield the nearest proton of the 

metallated aryl ring; iii) dinueclear compounds are more rigid than mononueclear compounds. 

Keywords: Palladium, Cyclometallation, C-H bond activation, Imine ligands, Phosphines. 
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2. RESUM 

En aquest treball s'han sintetitzat compostos de pal·ladi(II). A partir dels dos isòmers de la 

imina [ClC6H4CHNCH2C6H5] amb els àtoms de clor en posicions orto- i para-, s'han obtingut els 

compostos ciclometal·lats amb pont acetat de pal·ladi [Pd{µ-AcO}{ClC6H3CHNCH2C6H5}]2, per 

l'activació de l'enllaç aril C-H mitjançant l'agent metal·lant Pd(AcO)2.  

S'han obtingut tres tipus de compostos a partir de les reaccions amb [Pd{µ-

AcO}{ClC6H3CHNCH2C6H5}]2, els compostos dinuclears amb lligands pont, i els compostos 

mononuclears neutres i mononuclears iònics. De la reacció dels compostos amb pont acetat 

amb LiBr o LiCl s'obtenen els respectius derivats amb pont halogen [Pd{µ-

X}{ClC6H3CHNCH2C6H5}]2. Quan els compostos pont-acetat es fan reaccionar amb fosfines, es 

produeix una reacció de dissociació. Es poden formar diferents compostos en funció de la 

naturalesa de la fosfina, en reaccionar amb PPh3 s'obtenen compostos neutres mononuclears, 

en canvi en reaccionar amb la difosfina dppe (Ph2PCH2CH2Ph) s’obtenen compostos iònics. 

Els productes han estat caracteritzats per RMN de 1H i 31P, IR i MS-ESI+. S'han observat les 

següents tendències entre els productes: i) els àtoms de clor en posició orto- presenten una 

interacció amb el protó de la imina en tots els productes obtinguts; ii) les 

fosfines monodentades o les piridines en posició trans- respecte del nitrogen de la imina 

tendeixen apantallar el protó més proper de l'anell aromàtic metal·lat; iii) els 

compostos dinuclears son mes rígids que els compostos mononuclears. 

Paraules clau: Pal·ladi, Ciclometal·lació, Activació de l’enllaç C-H, Ligands Iminics, Fosfines. 
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3. INTRODUCTION 

In the last decades, organometallic chemistry has growth such as a scientific discipline and 

as an interesting area of research and applications. Over all kinds of transition-metal 

complexes, organopalladium compounds have a very rich chemistry due to their ease 

interchanging between the two stable Pd(II)/Pd(0) oxidation states. Moreover, their compatibility 

with most functional groups also differentiates them from many other transition-metal complexes 

[1]. One of the most popular classes of organopalladium derivatives is cyclopalladated 

compounds or palladacycles. These compounds have an organic moiety with at least one Pd-C 

bond intramoleculary stabilized with at least one donor atom (N, P, As, O, Se, or S). Since the 

first isolation and characterization in the 1960’s a plethora of research and application has been 

studied, such as their synthesis, structural aspects, and applications in organic synthesis and 

organometallic catalysis [2]. 

3.1. TYPES OF PALLADACYCLES 

There is a difference between those palladacycles with an organic moiety that can act as a 

C-anionic four-electron donor ligand or as a C-anionic six-electron donor ligand abbreviated as 

CY and YCY respectively (see Figure 1). CY-type palladacycles usually exist as halogen or 

acetate bridged dimers that lead two geometrical isomers, cisoid and transoid conformations 

(see Figure 2). These compounds can be neutral (bis-cyclopalladated or monomeric) or ionic 

(cationic or anionic), depending on the nature of the ligand X. The Pd-C bond is usually with an 

aromatic sp2 carbon and less common with a sp3 carbon or an sp2 vinylic carbon [3]. Ligands 

usually have nitrogen as donor atom, such as azobenzenes, amines, imines and pyridines, 

phosphor such as phosphines or oxygen such as amides and ethers. The most common 

palladacycles are derived from tertiary amines and imines whereas compounds derived from 

Figure 1. Anionic four-electron donor (CY) and 
aniònic six-electron donor (YCY) palladacycle. 
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primary amines are quite rare [3]. Five- or six-members rings usually stabilize the CY-type 

compounds even though the number of members can vary. YCY-type palladacycles are usually 

symmetrical with two rings, or unsymmetrical with mixed rings [1]. 

3.2. METHODS OF PREPARATION 

There are several methods for the synthesis of palladacycles, mostly for the formation of 

five- or six-membered chelate. In these processes a stable Pd-C bond is formed by the 

assistance of a two-electron donor ligand that previously coordinated the metal (see Scheme 1).  

3.2.1. C-H Bond Activation 

This is the more direct and simple method for the formation of palladacycles. It consists in 

the coordination of an assistant donor atom to facilitate an intramoleculary electrophilic attack of 

the metal at the carbon atom, preferentially for the formation of a five- or six-membered ring and 

the activation of aromatic C-H bonds versus other possible C-H [4]. The more commons 

methods are mixing Pd2+ salts with a base, or palladium acetate with acetic acid. The 

cyclopalladation of imines or oxazolines is highly regioselective because the endo product is 

mostly formed [5]. The endo- descriptor is used to refer to the structural isomers which contain 

the C=N inside the metallacycle and the exo- descriptor to refer to the structural isomers which 

contain the C=N outside the metallacycle (see Figure 3) [6]. This method can also be used for 

the synthesis of  macrocycles [7]. 

 

Scheme 1. Resume for the formation of a chelate where Y= NR2, SR, PR2, 
etc. and  CZ= CH, CX, CM, C=C, C≡C 

Figure 2. CY dimer geometrical isòmers (X=Cl, Br, I, OAc, etc.) 
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3.2.2. Oxidative Addition 

Another very useful method that complements the C-H bond activation is the oxidative 

addition. Some palladacycles cannot be obtained directly, and the oxidative addition of aryl 

halides or alkyl halides can be a useful strategy. The more common starting materials are  

[Pd2(dba)3] or [Pd(PPh3)4] which generate dimeric halogen-bridged palladacycles, neutral YCY-

type palladacycle or PPh3-Pd bonded monomers. This is a good procedure for the formation of 

three- and four-membered rings pallacycles that are not easily accesible by C-H activation. Also 

it is a important method for the generation of palladacycles with reactive funcionalities. A 

disadvantage of these method is the accesibility of halide starting materials, because a 

multistep syntesis is needed [1]. 

3.2.3. Transmetalation 

The transmetalation is a very common reaction and in most cases organolithium or 

organomercurial reagents are used for the generation of palladacycles. Organolithum 

compounds could be done by direct selective lithiation or by Li/halogen exchange [8]. 

Organomercurial compounds are good reagents for the generation of planar chiral 

cyclopalladed complexes with Cr(CO)3 moiety [9]. Both methods are useful for the preparation 

of bis-cyclopalladated compounds. From these bis-cyclopalladated compounds and using 

[PdCl2(SMe)2] it is possible obtaining halogen dimer palladacycles that are not accessible 

through others methods [1]. 

3.2.4. Alkoxy- and Carbopalladation of Alkenes and Halopalladation of Akynes 

These reaction goes through the coordination of both the donor group and the C=C bond to 

the electrophilic Pd2+ followed by nucleophilic addition to the unsatured carbon atom leading to 

Figure 3. Exemples of endo-  and exo-isomers 
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the more stable palladacyclic ring, five-membered over six-membered rings [10]. Terminal allyl 

or homoallyl alkenes are better than internal alkenes. Hard nucleophiles tend to attack the metal 

center forming metallic palladium. Otherwise, estabilized carbanions lead to palladacycles by 

addition to the C=C bond [1]. 

3.3. STRUCTURAL ASPECTS 

The Pd-C bond distance depends on various structural and electronic aspects such as the 

nature of the carbon bonded to the metal, the nature of the donor group, the size of the ring, etc. 

The distance may vary from 1.985 to 2.295 Å [11]. Dimeric pallacycles usually adopt two 

isomeric forms, cisoid and transoid, that are in equilibrium in solution [12]. For halogen dimer 

palladacycles, the transoid geometry is the more stable. The bond Pd-Halogen in trans is longer 

than the bond Pd-Halogen in cis because the trans influence of the carbon bonded to the metal 

is stronger than the trans inlfuence cause by the heteroatom bonded to the metal [13]. Acetate-

bridged palladacycles adopt an “open-book” structure that lead to three more structural isomers, 

besides the cisoid and the transoid conformations; in-in, out-in and out-out, that depend on the 

nature of the ligand [14]. The monomeric palladacycles that are formed through the bridge 

Figure 4. Possible isomers for aceto-bridged dinuclear complexes of Palladium.. 

R groups situated outside or inside the dihedral angle are representated by “in” 

or “out”. (figure extracted by Y. Fuchita et al. ref. 14) 
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splitting reaccion with L-type ligands such as pyridine or phosphines, most of them have the L 

ligand located in cis with the Pd-C bond, more stable isomer, because of the thermodinamic 

control of the reaction. 

3.4. APPLICATIONS 

There are many areas of research of cyclopalladated compounds that have promoted into 

some interesting applications including organic synthesis, homogeneous catalysis, the design of 

new metallomesogenses and antitumor drugs.  

Various applications of cyclopalladated compounds to organic synthesis are the reactions 

with alkenes, alkynes, carbon monoxide, isocyanides, halogens, organolithiums, Grignard 

reagents, etc, that provide routes to a variety of ortho-disubstituted aromatic molecules, 

heterocycles and other products [15]. Cyclopalladated compounds are usually used for these 

reactions because Pd2+ is by far the most efficient metal for intramoleculary C-H activation of a 

great variety of ligands. Also Pd is one of the most versatile metals for C-C and C-Y bond 

synthesis [16].  

The use of palladacycles as catalyst precursors started with the hydrogenation of C=C 

bonds and it was followed by the selective reduction of nitro-aromatic compounds, nitro-alkenes, 

nitriles, alkynes, alkenes and aromatic carbonyl compounds [17]. But the most interesting 

subject is the possibility of C-C coupling reactions such as Heck- and Suzuki-type, besides 

other cross-couplings reactions and oxidation chemistry. Although palladacycles are used, they 

just act as a precursor, being Pd(0) the real active specie. Most of catalytic reactions follow a 

cyclic model mechanism[1]. 

Mesogenic palladacycles interest has been arising over the last years due their promising 

properties [18]. The ease of being able to coordinate a great varity of ligands to palladium 

makes possible to improve desired properties. These palladium liquid crystals, in the majority of 

cases, are dimeric or monomeric five-membered orthopalladated complexes derivates from 

aromatic imines, phenylpyridine or phenylpyrimidine. These new compounds have high termal 

stability and a variety of geometries [1]. Halogen-bridged compounds present better mesogenic 

proprieties than acetate-bridged compounds because of their “open-book” structure, which is 

bad for anisotropy [19]. Even so, no practical applications have yet been reported, in particular 

due to the melting point being so distant from room temperature. 
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The discovery of biological propieties of cisplatin (cis-PtCl2(NH3)2) was one of the most 

important achievements for cancer chemotherapy. The cytotoxicity of cisplatin is originated by 

platinum-DNA monoaducts and intra- and interstrand adducts in the nucleus of cells. The 

success of platinum drugs has inspired the search for other cancer metallodrugs, specifically for 

metal complexes that do not behave like cisplatin [20]. In general most palladium complexes 

have little or no antitumor activity relative to platinum complexes. It has been attributed to the 

high lability of the palladium(II) species [21]. Whereas platinum compounds maintain their 

structure, palladated compounds undergo rapid hydrolysis, substitution and isomeration 

reactions. The anticancer activity of palladium complexes can be modulated by modifying their 

structure to get more stable coordination compounds [12]. Particularly cyclopalladated 

compounds display cytotoxic proprieties toward several tumor cells lines, and some of them are 

also effective against cells that are resistant to cisplatin. Although some cyclopalladated 

complexes have been reportd to interect with DNA to kill tumor cells, there are also other 

cellurar sites interactions like mithocondrial membrane or inhibition of some enzymes implicated 

in some diseases, than contribute in cytotoxic activity [20]. Even though platinum complexes are 

better anticancer treatment at the moment, is important to investigate on new palladium 

complexes due to the possibility to modulate their properties. 
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4. OBJECTIVES 

The aim of this work is the preparation and characterization of some metallacycles of 

palladium. The specific objectives are: 

 The synthesis of aromatic imines as ligands from aldehydes and primary amines 

by a condensation reaction. 

 The synthesis of the acetate-bridged cyclopalladated compounds by C-H aryl 

bond activation from palladium acetate as metalation agent and the imines 

prepared before. 

 The synthesis of halogen-bridged cyclopalladated compounds though 

substitutions reactions of acetate-bridged compounds. 

 The synthesis of neutral mononuclear cyclopalladated compounds by splitting 

reactions of acetate-bridged compounds with phosphines. 

 The synthesis of ionic mononuclear cyclopalladated compounds by splitting 

reaction of acetate-bridged compounds with chelating diphosphines. 

 To improve purity of products done by column chromatography or recrystallization.  

 To characterize products by IR spectra, 1H and 31P NMR spectra and MS-ESI+. 
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5. RESULTS AND DISCUSSION 

 Several cyclopalladated compounds derivated from imines have been synthetized and 

characterized. Starting from ortho- and para-chlorobenzaldehid and benzylamine, the respective 

imines were obtained. Then mixing the imines with Pd(AcO)2 the cyclometallation took place by 

the activation of the C-H aryl bond, and  the otro- and para-chloro isomers of acetate-bridged 

cyclopalladated complex [ClC6H4CHNCH2C6H5] were obtained. From here and on it was 

possible to obtain different derivates such as other bridged dinuclear complexes and neutral or 

ionic mononuclear complexes (see Scheme 2).  

Scheme 2. Resume for the synthesis. (i) NH2CH2Ph, in ethanol refluxing 1h; (ii) Pd(AcO)2, in 
acetic acid refluxing 45 min; (iii) LiBr, in acetone at room temperature; (iv) PPh3, LiCl, in acetone; 

(v) dppe, in acetone with LiBr for R6-R7 and KPF6 for R8-R9. 



Activation of CH bonds of N-donor ligands by palladium compounds. 15 

 

5.1. IMINE LIGANDS  

The para- and ortho-isomers of chlorobenzaldehid reacted with benzylamine in refluxing 

ethanol for 1 hour to give the corresponding [p-ClC6H4CHNCH2C6H5] (L1) and [o-

ClC6H4CHNCH2C6H5] (L2) over 90% yield. The compound L1 is a white solid at room 

temperature whereas L2 is an oily material. 

1H NMR was done to verify the structure of compounds L1 and L2. There are two 

interesting signals in the 1H NMR spectra, the signal from -CH=N- proton and the signal from -

CH2N- proton. The imine proton has a signal at δ 8.35 ppm (1H) for L1 and δ 8.85 ppm (1H) for 

L2, this difference in shifts can be explain by the position of the chlorine group in the 

coordinated aryl ring. A N=CH···Cl interaction between the imine proton and the chlorine atom 

takes place, that interaction reinforces the planarity of the compound and produces a downfield 

shift of the imine proton [22]. Only the ortho-compound (L2) has this interaction, because the 

imine proton and the chlorine are close enough in the space. In both isomers the -CH2N- 

protons appear as an A2 system that produces a single signal between 4.90-4.80 (2H). The 

other signals are just multiplets from aromatic protons. The NMR spectrums of both compounds 

are in accord with previous examples in the literature [23].  

5.2. BRIDGED DINUCLEAR COMPLEXES 

The imine ligands (L1 and L2) reacted with palladium(II) acetate in acetic acid refluxing 

during 1 hour to give the corresponding acetate-bridged dinuclear cyclopalladated complexes 

[Pd{µ-AcO}{p-ClC6H3CHNCH2C6H5}]2 (R1) and [Pd{µ-AcO}{o-ClC6H3CHNCH2C6H5}]2 (R4). 

These acetate-bridged complexes can afford the conversion into the halogen-bridged analogues 

[Pd{µ-X}{ClC6H3CHNCH2C6H5}]2, by substitution reaction with LiBr for R1 and LiCl for R4. Only 

a single characterizable compound [Pd{µ-Br}{p-ClC6H3CHNCH2C6H5}]2 (R2) was isolated, the 

chloride-bridged could not been charateritzated by its insolubility. Both acetate-bridged and 

bromo-bridged compounds are yellow solids and were isolated in a high-yield. The mechanism 

of cyclopalladation reaction of imines in acetic acid is a complex process but it has been 

reported that takes place by an initial coordination to the palladium through the N-donor atom of 

imine, followed by the C-H bond activation to form the acetato-bridged dimer specie.[4] The 

halogen-bridged compounds go through a substitution pathway. 
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Compounds R1, R2 and R4 afforded IR, MS-ESI+ and 1H NMR spectra which were 

consistent with the structures proposed. In IR spectrum the C=O symmetric and asymmetric 

stretching appear at 1581 and 1414 cm-1 for R1 and 1586 and 1405 cm-1 for R4 suggesting a 

bidentate bridging coordination of acetate [24]. The C=N stretching band of R1 may be overlap 

by the symmetric carboxilato stretching but for R4 and R2 appear at 1610 and 1612 cm-1 

respectively [6]. The products were characterized by MS-ESI+ and R1 and R4 afforded the same 

pattern of fragmentation but only the [M/2-AcO]+ peak was observed. That result is 

characteristic of acetate-bridged palladacycles because they are quite labile. R2 has a different 

pattern of fragmentation and none fragments can be assigned. 1H NMR spectres of R1, R2 and 

R4 presented a singlet signal at δ 7.09, 7.69 and 7.61 ppm, respectively, which was assigned to 

the imine proton -CH=N-. The difference between R1 and R4 shifts can be explain by the 

position of the chlorine group in the coordinated aryl ring such in free imines [22]. R1, R2 and 

R4 also present a set of signals at lower δ values characteristic of an AB spin system, 

corresponding to the -CH2N- protons. The results indicated that these cyclopalladeted bridged 

compounds adopted a rigid dinuclear structure.  

Few drops of pyridine-d5 were added to a CDCl3 solution of R1 and the 1H NMR spectrum 

was recorded. A splitting reaction takes place and pyr-d5 was coordinated as a ligand, so a 

mononuclear complex R1’ was formed. 1H NMR spectra of R1’ does not have same signals for  

Figure 5. Comparison of the 1H NMR spectrums of compounds R1 (up) and R1’ 

(down). 
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-HC=N- , -CH2N-, and aromatic aryl chelated protons that was assigned previously from R1. 

There are differences between those products shown in Figure 5. The imine proton shows a 

downfield shift. The system -CH2N- passed form an AB to an A2 spin system, it only has a 

singlet (2H) instead of two doublets (1H). Finally the more interesting fact is that proton “c” from 

the aryl was upfield shifted due the interaction caused by the π-system from the pyridine, 

justifying that pyr-d5 is in cis in relation to the coordinated aryl, and the metallation reaction has 

taken place [14].  

Product R1 was eluted by a column chromatography with silica gel and a solution of 100:1 

CH2Cl2/MeOH as eluent and followed by TLC, in order to purify it. The 1H NMR spectrum was 

not as the expected. The product was not the same as before the column, so it would have 

reacted within the column that was supposed to be inert. The spectrum seems to be like the 

halogen-bridged spectra so it may has been a substitution because the acetate group is too 

labile. To confirm this fact the product of the column was reacted with triphenylphosphine in 

acetone and the product of the reaction characterized by 1H NMR. The evidences were clear 

and the final product has the same spectrum that product R3 (see next headland), so R1 

reacted with the column and a substitution of the acetate-bridged ligand by chloride anion took 

place. 

5.3. NEUTRAL MONONUCLEAR COMPLEXES 

The acetate-bridged complexes (R1) and (R4) reacted with triphenilphosphine and lithium 

chloride in excess in acetone during 1 hour to give the mononuclear cyclopalladated complexes 

[PdCl{PPh3}{p-ClC6H3CHNCH2C6H5}] (R3) and [PdCl{PPh3}{o-ClC6H3CHNCH2C6H5}] (R5) 

respectively as white solids. This is a process that involves two reactions, a substitution of the 

acetate-bridged group for a halide-bridged group and the splitting reaction of the dinuclear 

complex with the coordination of the PPh3 to the palladium center, to form a neutral 

mononuclear cyclopalladated complex.  

IR, MS-ESI+ and 1H and 31P NMR spectra of compounds R3 and R5 were consistent with 

the structures proposed. In IR spectrum the PPh3 signals appears at 1434 and 1096 cm-1 for R3 

and 1435 and 1102 cm-1 for R5 [24]. The C=N stretching band appear at 1618 and 1615 cm-1 for 

R3 and R5 respectively. Both compounds present a signal of MS-ESI+ at 596.05 associated to 

the fragment [M-Cl]+. Moreover R5 present signals at 335.96 and 263 associated to [M-PPh3-

Cl]+ and [PPh3]+ fragments. Signals present the expected isotopic distribution. 1H NMR 



18 Álvarez Yebra, Rubén 

 

spectrum of R3 and R5 present imine proton at δ 7.85 and 8.46 ppm, the different between 

shifts can be explain because the N=CH···Cl interaction of the ortho-chloro derivate. Both 

compounds have a set of signals at low δ values associated to -CH2N- protons such previous 

products, but now that the dimer has been broken there is free rotation, the AB spin system has 

passed to an A2 spin system. Moreover, there is a displacement to lower δ values for proton “c” 

in both compounds R3 and R5 compared with their acetate-bridged analogues respectively, 

same fact has been observed in 1H NMR of pyr-d5 derivate (see before).  This fact can be 

explain by the anisotropic magnetic interaction produced by the phenyls of the PPh3, and 

indicates a trans arrangement between the phosphine and the nitrogen atom [25].  In 31P NMR 

spectra R3 have a single signal at δ 41.13 ppm, within the range of coordinated phosphorous 

for PPh3 that also confirm the trans arrangement between the PPh3 and the imine nitrogen [25]. 

R5 31P NMR spectrum presents a broad signal at δ 42.15 ppm, also in 1H NMR there is a broad 

signal at δ 7.68 ppm. This may suggest that there is a dynamic equilibrium with the PPh3. When 

the 1H NMR was recorded in the presence of an excess of PPh3 the signal at δ 7.6-7.8 ppm 

appears as a well-defined multiplet (see Figure 6). It seems that in solution there is a process of 

descoordination/coordination of PPh3.  

Figure 6. Comparison of the 1H NMR spectrums of R5 with excess of PPh3 (up) 

and R5 (down). 



Activation of CH bonds of N-donor ligands by palladium compounds. 19 

 

5.4. IONIC MONONUCLEAR COMPLEXES 

The acetate-bridged complexes (R1) and (R4) reacted with dppe and lithium bromide in 

acetone during 1 hour to give the respectively cyclopalladated ionic complexes [Pd{dppe}{p-

ClC6H3CHNCH2C6H5}]Br (R6) and [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]Br (R7). When the same 

reaction was performed with potassium hexafluorophosphate ionic complexes [Pd{dppe}{p-

ClC6H3CHNCH2C6H5}]PF6 (R8) and [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]PF6  (R9) were obtained.  

All four compounds were yellow crystalline solids. This process involves a substitution of the 

acetate by diphosphine and the corresponding splitting reaction to form a cationic mononuclear 

complex with the respective contra ion.  

IR, MS-ESI+ and 1H and 31P NMR spectra were recorded for compounds R6 and R7 

whereas only 1H and 31P NMR were recorded for compounds R8 and R9. In IR spectrum it is 

possible to assigned the bands for the coordinated PPh3 at 1435 and 1102 cm-1 for R6 and 

1434 and 1102 cm-1 for R7, and the band for C=N streching at 1618 and 1617 cm-1  

respectively. MS-ESI+ of both compounds present a signal at 732 associated to the fragment 

[M-Br]+. The attempt of purify these compounds by recrystallization was unsuccesfull. In 1H 

NMR it is possible to assigned -CH2N- as a singlet, A2 spin system, at δ value 4.45 for 

compounds R6 and R7  and 4.41 for compounds R8 and R9. Moreover between δ values 2.4-

3.0 there are multiplets in all compounds corresponding to the -CH2CH2- system of dppe. In 

some spectrum it is possible to recognize the aryl chelated protons as well as the imine proton, 

but it there are clearly several set of signals in each spectrum so the products are not pure. 31P 

NMR present more evidences of impurities in all compounds. The four compounds present 

doublets at δ values 43 and 59 ppm meaning that the diphosphine is coordinated somehow, but 

also there are others nearby signals that implies that other products has been formed. The 

difference between coordinated phosphorous δ values of same diphosphine could be caused by 

the trans influence of the atom bonded to the metal. At higher δ values there are the signals of 

phosphorous in trans with C, and in lower δ values there are the siganls in trans with the N [26]. 

In 31P NMR of R8 and R9 there is also a multiplet at δ -142.09 and -142.07 ppm respectively, 

that shown the coupling with the fluoro atoms.  
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 As it was seen the reactions did not occur as expected and even though the main products 

seem to be formed some other subproducts of the reactions are observed. It has been proposed 

reasonable structures for those subproducts according to the information of the characterization 

(see Figure 8). Diphosphine can be coordinated either at the same complex or being a bridge 

between two complexes. In the first case it is possible that when the second phosphorous of the 

Figure 7. 1H NMR (up) and 31P NMR (down) of R8 as example. 31P NMR has been cut from 30 

to -125 ppm. Indicated signals in 1H NMR are aryl protons (black), -CH2N- protons (red) and -

CH2CH2- protons of dppe (blue). In both NMR spectrum could be seen that there are impurities. 
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diphosphine attacks the metal center, one way or the other the anion or the nitrogen leave and 

two possible species could be form. Specie (a) is a cationic mononuclear complex whereas 

specie (b) is a neutral mononuclear complex with the imine ligand unchelated. If the anion is big 

enough the first specie it is more stable and should be formed. On the other case, after the 

coordination of the first phosphorous, the second phosphorous could have attack the bridging 

metalled center and form two possible dinuclear complexes, cisoid (c) and transoid (d) at is 

shown in Scheme 3 [27]. 

Figure 8. Possible products of reaction (v); (a) ionic mononuclear compound, (b) neutral mononuclear 

compound, (c) cisoid dinuclear compound, (d) transoid dinuclear compound. 

Scheme 3. Proposed mechanism for dppe attak on a cyclopalladated complex, as 

a subproduct of reaction (v). Example for cisoid comformation. 
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6. EXPERIMENTAL SECTION 

6.1. MATERIALS AND METHODS 

IR, NMR and mass spectroscopy were used for characterisation of the compounds. NMR 

spectra were recorded in CDCl3 (at 298 K). Chemical shifts are given in δ values (ppm) relative 

so TMS, and coupling constants are given in Hz. Multiplicity is expressed as: s (singlet), d 

(doublet), t (triplet), and m (multiplet). IR spectra were recorded in KBr dispersion. Band values 

are given in (cm-1). MS-ESI+ spectra were recorded in acetonitrile. Signal values are given in 

(m/z). 

6.2. PREPARATION OF THE COMPOUNDS 

6.2.1. Preparation of [p-ClC6H4CHNCH2C6H5] - L1 

Compound [p-ClC6H4CHNCH2C6H5] was obtained after refluxing for 1 hour a solution 

containing 294 mg (2.75 mmol) of [NH2CH2Ph] and 406 mg (2.89 mmol) of [p-ClC6H4CHO] in 20 

ml of ethanol. The solvent was evaporated and a yellow liquid was obtained. Yield: 611 mg 

(97%) 

 

 

1H NMR (CDCl3, 400 MHz): δ= 8.35 (s, 1H, HC=N), 7.72 

(d, 3JH-H=8.5, 2H, Hb), 7.39 (d, 3JH-H=8.6, 2H, Ha), 7.36-7.24 

(m, 5H, Har), 4.82 (s, 2H, CH2N) 

 

 

6.2.2. Synthesis of [Pd{µ-AcO}{p-ClC6H3CHNCH2C6H5}]2 - R1 

Compound [Pd{µ-AcO}{p-ClC6H3CHNCH2C6H5}]2 was obtained after stirring at 100ºC for 45 

minutes a solution containing 202 mg (0.879 mmol) of [o-ClC6H4CHNCH2C6H5] and 201 mg 

(0.895 mmol) of Pd(AcO)2 in 20 ml of acetic acid. The residue was filtered and the solvent was 

evaporated. Then it was treated with ethanol and the precipitation of a brown solid was 

observed. The solid was filtered and dried under vacuum. Yield: 228 mg (66%) 
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1H NMR (CDCl3, 400 MHz): δ= 7.32 (d, 4JH-H=1.6, 1H, Har), 7.30 (d, 3JH-

H=2.2, 2H, Har), 7.11 (d, 4JH-H=2, 1H, Hc), 7.09 (t, 4JH-H=1.6, 1H, HC=N), 

7.05 (dd, 3JH-H=8, 4JH-H= 2 1H, Hb), 7.00-6.98 (m, 2H, Har) , 6.93 (d, 3JH-

H=8, 1H, Ha), 4.61 (d, 3JH-H=15.9, 1H, CH2N), 4.06 (d, 3JH-H=15.8, 1H, 

CH2N), 2.18 (s, 2H, HAcO) 

IR: ʋ=  1581 (acetate), 1414 (acetate) 

MS-ESI+: [M/2-Aco]+= 335 

A little part of product was also treated with Pyr-d5 in NMR tube and then characterised by 

NMR. 

 

 

1H NMR (CDCl3, 400 MHz): δ=8.62 (s, Hpyr-d5), 7.63 (t, 4JH-H=1.5, 1H, 

HC=N), 7,39 (m, 5H, Har), 7.07 (d, 3JH-H=8, 1H, Ha), 6.98 (dd, 3JH-H=8, 
4JH-H=2, 1H, Hb), 6.15 (d, 4JH-H=1.5, 1H, Hc), 4.85 (s, 2H, CH2N), 2.23 (s, 

2H, HAcO) 

 

6.2.3. Synthesis of [Pd{µ-Br}{p-ClC6H3CHNCH2C6H5}]2 - R2 

Compound [Pd{µ-Br}{C6H4CHNCH2C6H5}]2 was obtained after stirring at room temperature 

for 1 hour a solution containing 101 mg (0.128 mmol) of [Pd{µ-AcO}{p-ClC6H3CHNCH2C6H5}]2 

and excess of LiBr, 60 mg (0.677 mmol), in 20 ml of acetone. The residue was filtered and the 

solvent was evaporated. A yellow solid was obtained then it was treated with ethanol and 

filtrated under vacuum. Yield 62 mg (58%) 

 



24 Álvarez Yebra, Rubén 

 

 

1H NMR (CDCl3, 400 MHz): δ= 7.69 (s, 1H, HC=N), 7.51 (s. br., 1H, Hc), 

7.39 (m, 5H, Har), 7.08 (d, 3JH-H=7.9, 1H, Ha), 7.04 (dd, 3JH-H=8.1, 4JH-

H=1.8, Hb), 3.73 (d, 3JH-H=8, 1H, CH2N), 3.72 (d, 3JH-H=8, 1H, CH2N)  

IR: ʋ= 1612 (C=N) 

6.2.4. Synthesis of [PdCl{PPh3}{p-ClC6H3CHNCH2C6H5}] - R3 

Compound [PdCl{PPh3}{p-ClC6H3CHNCH2C6H5}] was obtained after stirring at room 

temperature for an hour a solution containing 102 mg (0.129 mmol) of [Pd{µ-AcO}{p-

ClC6H3CHNCH2C6H5}]2, 68 mg (0.259 mmol) of PPh3 and excess of LiCl, 35 mg (0.642 mmol), 

in 20 ml of acetone. The white suspension was filtered under vacuum and the mother liquor was 

evaporated. Then a white solid was obtained after the addition of ether, and it was filtered under 

vacuum. Yield: 62 mg (38%) 

 

 

1H NMR (CDCl3, 400 MHz): δ= 7.85 (s, 1H, HC=N), 7.73 (t, 3JH-H=9.8, 

6H, Har), 7.46 (dd, 3JH-H=7.5, 4JH-H=1.9, 2H, Har), 7.42-7.35 (m,10H, Har), 

7.06 (d, 3JH-H=8, 1H, Ha), 6.84 (dd, 3JH-H=8, 4JH-H=1.9, 1H, Hb), 6.24 (s, 

1H, Hc), 5.25 (s, 2H, CH2)  
31P NMR (CDCl3, 161.98 MHz): δ= 41.13 (s, 1P, PPh3)  

IR: ʋ= 1618 (C=N), 1434 (PPh3), 1096 (PPh3) 

MS-ESI+: [M-Cl]+= 596 

6.2.5. Preparation of [o-ClC6H4CHNCH2C6H5] - L2 

Compound [o-ClC6H4CHNCH2C6H5] was obtained after refluxing for 1 hour a solution 

containing 310 mg (2,89 mmol) of [NH2CH2Ph] and 404 mg (2,87 mmol) of [o-ClC6H4CHO] in 20 

ml of ethanol. The solvent was evaporated and a yellow liquid was obtained. Yield: 619 mg 

(94%)  

 

 

1H NMR (CDCl3, 400 MHz): δ= 8.85 (d, JH-H=1.6, 1H, HC=N), 8.09 

(dd, 3JH-H=7.9, 4JH-H=1.9, 1H, Har), 7.33 (m, 8H, Har), 4.87 (d, 4JH-

H=1.5, 2H, CH2N) 
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6.2.6. Synthesis of [Pd{µ-AcO}{o-ClC6H3CHNCH2C6H5}]2 - R4 

Compound [Pd{µ-AcO}{o-ClC6H3CHNCH2C6H5}]2 was obtained after stirring at 100ºC for 45 

minutes a solution containing 207 mg (0.901 mmol) of [o-ClC6H4CHNCH2C6H5] and 202 mg 

(0.900 mmol) of Pd(AcO)2 in 20 ml of acetic acid. A suspension was observed. The solid was 

filtered under vacuum and the solvent was evaporated. Then it was treated with ethanol and it 

was filtered and dried under vacuum. Yield: 237 mg (67%) 

 

 

1H NMR (CDCl3, 400 MHz): δ= 7.61 (t, 3JH-H=1.5, 1H, HC=N) 

7.31 (m, 3H, Ha+b+c), 7.03 (m, 5H, Har), 4.52 (d, 3JH-H=15.1, 

1H, CH2), 3.92 (d, 3JH-H=16.3, 1H, CH2).  

IR: ʋ= 1610 (C=N), 1586 (acetate), 1405 (acetate) 

MS-ESI+: [M/2-AcO]+= 335 

 
 

6.2.7. Synthesis of [PdCl{PPh3}{o-ClC6H3CHNCH2C6H5}] - R5 

Compound [PdCl{PPh3}{o-ClC6H3CHNCH2C6H5}] was obtained in two steps. After stirring at 

room temperature for 45 min a solution containing 116 mg (0.147 mmol) of [Pd{µ-AcO}{{o-

ClC6H3CHNCH2C6H5}]2 and 31mg (0.736 mmol) of LiCl in 20 ml of acetone, to obtain [Pd{µ-

Cl}{o-ClC6H3CHNCH2C6H5}]2. The solid was filtered dried under vacuum and the solvent was 

evaporated obtaining 75mg (0.101 mmol). The yellow solid was added into a solution with 53 

mg (0.202 mmol) of PPh3 and 20 ml of acetone. After stirring 45 min at room temperature, the 

solution was filtered and the solvent was evaporated. The solid obtained was treated with ether 

and then filtered under vacuum and the solvent was evaporated. Yield: 77 mg (42 %) 

 

 

1H NMR (CDCl3, 400 MHz): δ= 8.46 (s, 1H, HC=N), 7.71 (s 

br., 6H, Har), 7.28 (m, 16H, Har), 6.79 (d, 3JH-H=8.2, 1H, Ha), 

6.44 (t, 3JH-H=7.9, 1H, Hb), 6.27 (d, 3JH-H=7.8, 1H, Hc), 5.28 (s, 

2H, CH2N) 
31P NMR (CDCl3, 161.98 MHz): δ= 42.17 (s, 1P, PPh3) 

IR: ʋ= 1615 (C=N), 1435 (PPh3), 1102 (PPh3) 

MS-ESI+: [M-Cl]+= 596, [M-PPh3-Cl]+=336, [PPh3]+=263 
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6.2.8. Synthesis of [Pd{dppe}{p-ClC6H3CHNCH2C6H5}]Br – R6 

Compund [Pd{dppe}{p-ClC6H3CHNCH2C6H5}]Br was obtained after stirring at room 

temperature for 1 hour a solution containing 102 mg (0.129 mmol) of [Pd{µ-AcO}{{p-

ClC6H3CHNCH2C6H5}]2 in 20 ml of acetone and adding 106 mg (0.266 mmol) of dppe and 67 

mg (0.779 mmol) of LiBr. The solution was filtered and the solvent was evaporated. A yellow 

solid was obtained and treated with ether, then filtered under vacuum and the solvent was 

evaporated. Yield: 251 mg (119%) 

6.2.9. Synthesis of [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]Br – R7 

Compund [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]Br was obtained after stirring at room 

temperature for 1 hour a solution containing 102 mg (0.129 mmol) of [Pd{µ-AcO}{{o-

ClC6H3CHNCH2C6H5}]2 in 20 ml of acetone and adding 104 mg (0.261 mmol) of dppe and 68 

mg (0.783 mmol) of LiBr. The solution was filtered and the solvent was evaporated. The solid 

obtained was treated with ether and then filtered under vacuum and the solvent was 

evaporated. Yield: 250 mg (119%) 

 

1H NMR (CDCl3, 400 MHz): 8.17 (d, nJH-H=6.4, 1H, HC=N), 

7.80 (m, 4H, H) 7.68 (m, 3H, H), 7.53 (m, 10H, H), 7.36 (d, 
3JH-H=8.2, 1H, Ha), 7.24 (m, 3H, H), 7.01 (dd, 3JH-H=8, 4JH-

H=2, 1H, Hb), 6.83 (m, 2H, H), 6.58 (t, 3JH-H=6.5, 1H, Hc), 

4.45 (d, 2H, CH2), 2.60 (m, CH2
dppe) 

31P NMR (CDCl3, 161.98 MHz): 60.75 (d, 1P, P2), 43.51 (d, 

1P, P1) 

IR: ʋ= 1617 (C=N), 1435 (PPh3). 1102 (PPh3) 

MS-ESI+: [M-Br]+= 732 

 

 

 

 



Activation of CH bonds of N-donor ligands by palladium compounds. 27 

 

6.2.10. Synthesis of [Pd{dppe}{p-ClC6H3CHNCH2C6H5}]PF6 – R8 

Compund [Pd{dppe}{p-ClC6H3CHNCH2C6H5}]PF6 was obtained after stirring at room 

temperature for 1 hour a solution containing 100 mg (0.127 mmol) of [Pd{µ-AcO}{{p-

ClC6H3CHNCH2C6H5}]2 in 20 ml of acetone and adding 112 mg (0.281 mmol) of dppe and 48 

mg (0.261 mmol) of KPF6. The solution was filtered and the solvent was evaporated. The resin 

obtained was treated with ether and then filtered under vacuum and the solvent was 

evaporated. Yield: 200 mg (90%) 

 

 

 

 

1H NMR (CDCl3, 400 MHz): 8.49 (d, nJH-H=6.6, 1H, 

HC=N), 7.89 (dd, 3JH-H=12.4, 4JH-H=7.5, 8H, Har), 7.67 (dd, 
3JH-H=11.4, 4JH-H=7.6, 6H, Har), 7.52 (m, 15H, Har), 7.32 

(m, 1H, Har), 7.26 (m, 7H, Har), 6.96 (d, 3JH-H= 7.9, 2H, 

Har), 6.84 (dd, 3JH-H=7.3, 4JH-H=2.1, 5H, Har), 6.75 (m, 1H, 

Har), 6.60 (q, 3JH-H=7, 2H, Har), 4.44 (s, 2H, CH2N), 3-2.5 

(m, 4H, CH2
dppe) 

31P NMR (CDCl3, 161.98 MHz): 61.75 (d, 1P, P2), 43.99 

(d, 1P, P1) 

IR: ʋ= 1616 (C=N), 1434 (PPh3), 1102 (PPh3)  

MS-ESI+: [M-Br]+= 732 

 

 

 
 

1H NMR (CDCl3, 400 MHz): 7.99 (d, nJH-H=7.5, 1H, HC=N), 

7.89 (dd, 3JH-H=11.9, 4JH-H=7.3, 2H, Har), 7.78 (t, 3JH-H=10, 

2H, Har), 7.70 (m, 7H, Har), 7.61 (m, 6H, Har), 7.52 (m, 12H, 

Har), 7.45 (m, 3H, Har), 7.16 (m, 5H, Har), 7.02 (dd, 3JH-H=8, 
4JH-H=2, 1H, Har), 6.97 (m, 3H, Har), 6.82 (dd, 3JH-H=7.4, 4JH-

H=2, 2H, Har), 6.69 (m, 1H, Har), 6.54 (m, 1H, Har), 4.41 (s, 

2H, CH2N), 3-2.5 (m, 4H, CH2
dppe) 

31P NMR (CDCl3, 161.98 MHz): 59.24 (d, 1P, P2), 43.64 (d, 

1P, P1) 
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6.2.11. Synthesis of [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]PF6 – R9 

Compund [Pd{dppe}{o-ClC6H3CHNCH2C6H5}]PF6 was obtained after stirring at room 

temperature for 1 hour a solution containing 100 mg (0.127 mmol) of [Pd{µ-AcO}{{o-

ClC6H3CHNCH2C6H5}]2 in 20 ml of acetone and adding 111 mg (0.279 mmol) of dppe and 47 

mg (0.255 mmol) of KPF6. The solution was filtered and the solvent was evaporated. The solid 

obtained was treated with ether and then filtered under vacuum and the solvent was 

evaporated. Yield: 190 mg (85%) 

 

 

 

1H NMR (CDCl3, 400 MHz): 7.97 (m,2H, Har), 7.86 (m, 1H, 

Har), 7.64 (m, 11H, Har), 7.48 (m, 18H, Har), 7.31 (m, 5H, 

Har), 7.23 (m, 11H, Har),  6.99 (m, 2H, Har), 6.93 (m, 2H, 

Har), 6.80 (m, 3H, Har), 6.68 (m, 4H, Har), 4.41 (s, 2H, 

CH2N), 3-2.5 (m, 4H, CH2
dppe) 

31P NMR (CDCl3, 161.98 MHz): 59.35 (d, 1P, P2), 43.48 (d, 

1P, P1) 
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7. CONCLUSIONS 

Two aromatic imines have been synthesized. The metallation of the ligans were done and 

the acetate-bridged cyclopalladatd compounds, [p-ClC6H4CHNCH2C6H5] (R1) and [o-

ClC6H4CHNCH2C6H5] (R4) has been synthesized (over 60% yield) and characterized by 

spectroscopic techniques. Moreover bromo-bridged compound [Pd{µ-Br}{C6H4CHNCH2C6H5}]2 

(R2) and mononuclear neutral compounds [PdCl{PPh3}{ClC6H3CHNCH2C6H5}] (R3) and (R5) 

have been synthesized and fully characterized by 1H and 31P NMR and MS-ESI+. On the other 

hand ionic compounds [Pd{dppe}{ClC6H3CHNCH2C6H5}]A (A=Br, 2-Cl, R6; A=Br, 4-Cl, R7; A= 

PF6, 2-Cl, R8; A= PF6, 4-Cl, R9) could not be pure isolated and characterization shown that 

other by-products of the reaction have been formed. Ortho-chloro products have a N=CH···Cl 

interaction between the imine proton and the chlorine atom. This interaction reinforces the 

planarity of the compound producing a downfiled shift of iminic proton HC=N. Dimeric 

compounds have a rigid structure making the -CH2N- group a AB spin system, whereas 

monomeric compounds have free rotation and the -CH2N- group appears a A2 spin system. 

Monodentated phosphines or pyridines in trans arrangement with imine nitrogen, produce an 

upshift of the ortho proton in relation to C-Pd bond, due the magnetic field induced. Acetate-

bridged compounds could not have purified by a chromatographic column because they are 

very labile and have reacted with the column. 
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9. ACRONYMS 

AcO - Acetate Gruop 

ar - aromatic 

br - broad signal 

d - doublet 

dba - Dibenzylideneacetone 

dd - doublet of doublets 

DNA - Desoxyribonucleic Acid 

dppe – 1,2-Bis(diphenylphosphino)ethane 

MS-ESI+ - Electrospray ionization time-of-flight mass spectrometry 

IR - Infrared spectroscopy 

JA-B - Coupling constant between atom A and B 

L - Neutral Ligand 

m - multiplet 

NMR - Nuclear Magnetic Ressonace 

pyr-d5 – pyridine pentadeuterated 

q - quadruplet 

s - singulet 

t - triplet 

TLC – Thin-layer chromatography 

TMS – Tetramethylsilane 

X - Halogen Group 

δ – chemical shift 

µ - Bridged ligand 
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APPENDIX 1: SPECTRA DATA OF R1 
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APPENDIX 2: SPECTRA DATA OF R2 
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APPENDIX 3: SPECTRA DATA OF R3 
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APPENDIX 4: SPECTRA DATA OF R4 

  



Activation of CH bonds of N-donor ligands by palladium compounds. 41 

 

  
  



42 Álvarez Yebra, Rubén 

 

APPENDIX 5: SPECTRA DATA OF R5 
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APPENDIX 6: SPECTRA DATA OF R6 
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APPENDIX 7: SPECTRA DATA OF R7 
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APPENDIX 8: SPECTRA DATA OF R8
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APPENDIX 9: SPECTRA DATA OF R9 
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APPENDIX 10: SPECTRA DATA OF L1AND L2 
 



 

 


