
 

 

LINGUISTIC AND GRAMMATICAL MUSIC 
 

 

From a musical protolanguage 

to rhythm and tonality 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alexandre Celma Miralles 

Dir. Joana Rosselló Ximenes 

MA Thesis in Ciència Cognitiva i Llenguatge 

Presented to Universitat de Barcelona 

August, 2014 

 

  



Alexandre Celma Miralles – CCiL MA Thesis 
From a musical protolanguage to rhythm and tonality 

1 

 

 

 

 

  

Aquesta tesina no hauria estat possible 

sense el suport incessant i pacient de la meva tutora, 

sense les atentes reflexions i llargues discussions dels membres 

del grup de recerca Grammar, Mind and Reference, 

ni sense la constant pressió, la incondicional escolta 

i el reconfortant somriure d’amistats i familiars. 

 

 

 

 

 

 

 

 

 

 

 

 

Castellvell del Camp,  25th August 2014 

  



2 

 

ABSTRACT 

Music and language are two faculties that have only evolved in humans, and by mutual interaction. 

As Darwin (1871) suggested, before speaking, our ancestors were able to sing in a way structurally 

and functionally similar to what birds do. At that stage, a musical protolanguage with beat yielded a 

common basis for music and language. Hierarchical recursion along with grammar and lexical 

meaning joined this musical protolanguage and gave rise to language. Linguistic recursion, in turn, 

made meter possible. Rhythm therefore would have preceded tonality. Subsequently, in parallel to 

the emergence of grammar, harmony and tonality were added to the meter. That beat is more 

primitive than meter is suggested by the fact that some animals perceive but do not externalize it. 

Crucially, they are all vocal learners. Externalization, either in musical rhythm or language, requires a 

complex social behaviour, which for rhythm is already present in the drumming behaviour of certain 

primates. The role of vocalizations, in turn, goes even further: their harmonic spectrum underpinned 

the tones of our musical scales. Thus, driven to a large extent by language, music has turned out to be 

as we know it nowadays. 

 

RESUM 

La música i el llenguatge són dues facultats exclusivament humanes que han evolucionat alimentant-

se mútuament. Com Darwin (1871) ja va suggerir, abans de parlar, els nostres ancestres tenien cants 

similars funcionalment i estructuralment al cant dels ocells. En aquest estadi, un protollenguatge 

musical amb pulsació es consolidà com a base comuna de la música i el llenguatge. La recursió 

jeràrquica, juntament amb la gramàtica i el significat lèxic, es van afegir a aquest protollenguatge 

musical i van donar lloc al llenguatge. Aquesta recursió lingüística féu possible el metre. El ritme, 

doncs, va precedir la tonalitat. Ulteriorment, en paral·lel al sorgiment de la gramàtica, l’harmonia i la 

tonalitat s’afegeixen al metre (compàs). Que la pulsació és més primitiva ho indica el fet que certs 

animals la perceben però no l’externalitzen espontàniament. Crucialment, tots són vocal learners. 

L’externalització, tant del ritme com del llenguatge, requereix una conducta social complexa, que ja 

s’observa en el conducta percutiva (drumming) de certs primats. El paper de les vocalitzacions, per la 

seva banda, va encara més enllà: l’espectre harmònic que presenten és el fonament de les notes a les 

escales musical. Així doncs, a remolc del llenguatge, és com s’arriba a la música tal i com l’entenem 

avui en dia. 

 

RESUMEN 

La música y el lenguaje son dos capacidades exclusivamente humanas que han evolucionado 

alimentándose mutuamente. Como Darwin (1871) ya sugirió, antes de hablar, nuestros ancestros, 

tenían cantos similares funcionalmente y estructuralmente al canto de los pájaros. En este estadio, un 

protolenguaje musical con pulsación se consolidó como la base común de la música y el lenguaje. La 

recursión jerárquica, junto con la gramática y el significado léxico, se añadieron a este protolenguaje 

musical y dieron lugar al lenguaje. Esta recursión lingüística hace posible el metro. El ritmo, pues, 

precedió la tonalidad. Ulteriormente, en paralelo al surgimiento de la gramática, la armonía y la 

tonalidad se añaden al metro (compás). Que la pulsación es más primitiva lo indica el hecho de que 

ciertos animales la perciben pero no la externalizan espontáneamente. Crucialmente, todos son vocal 

learners. La externalización, tanto del ritmo como del lenguaje, requiere una conducta social 

compleja, que ya se observa en la conducta percutiva (drumming) de ciertos primates. El papel de las 

vocalizaciones, por su parte, va aún más allá: el espectro armónico que presentan es la base de las 

notas en las escaleras musicales. Así, a remolque del lenguaje, es como se llega a la música tal y como 

la entendemos hoy en día. 
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INTRODUCTION 

How has music evolved? What is its relation to language? Was there a musical 

protolanguage giving rise to both language and music? What would a musical 

protolanguage provide and supply to speech?  Has language, in turn, influenced 

music? How is music implemented in the brain? Can music shed light on mental 

diseases and, in turn, be therapeutic? 

In order to give an explanative answer to these questions, we appeal to the 

existence of a musical protolanguage that worked as a rudimentary communication 

system of the first Homo sapiens (and perhaps other extinct ancestors) and that 

evolved into protomusic, before language emergence. This early system, along with 

others (such as body-gestural communication), might have enabled the expression of 

emotions, needs and motivations between conspecifics, as well as sexual-affective 

behaviour. 

Assuming that our current music faculty derives from this musical protolanguage 

yet was altered and evolved by language (our human mode of thinking), we have to 

look for fundamental, musical underpinnings in properties of this musical 

protolanguage. To do that, we must take comparative evidence from the animal 

kingdom, where “music” appears to be involved in different functions through 

different formalizations, as well as from current neuroscientific research, studying 

music neural correlates in comprehension and production. Thus, pulling apart the 

linguistic elements found in music, we will be able to distinguish the bare 

components and elements of this faculty from its properties. 

Afterwards, this exercise of teasing apart the musical faculty traits will allow us 

to understand (1) the boundary between language and music, (2) the different 

functions and meanings they convey, (3) the brain correlates of each, (4) the 

similarities to other animal beings and, perhaps, (5) the possible (contrasting) 

differences and correlations between them in brain injuries and mental disorders. 

The aim of this thesis is to separate the structural components of music, rhythm 

and pitch, in order to analyse their origins, which may be done by contrasting them 

to language phylogenetically and neurally. The first part of this thesis will report 

music and language interrelations, their evolution from a musical protolanguage and 
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their neural correlates. The second part will focus on rhythm and tonality origins, 

attending to animal comparisons and brain studies. 

First, we will compare these human-unique faculties, music and language, and 

their implementation in the brain. After reviewing the biological (rather than 

cultural) origins of music, we will argue that music is an exaptation. That is to say 

that the ancestor of music was selected as a communicational system but later, 

recently in evolutionary time, its function has been overtaken by language. Looking 

for music in nature implies a search for musicality: structurally and functionally 

separated elements of our current music, such as rhythm and pitch —which permit 

melody and harmony—, and which may have been selected for other purposes. 

Since tonal structure has been widely studied in music, we propose to take a look 

at recent studies on rhythmic cognition, shifting the structural component of music 

from “tonality” to “rhythm”. This latter component involves distinct (1) 

constitutive elements: beat, meter, grouping and tempo, and (2) separated cognitive 

processes: meter induction, beat perception and synchronization (BPS, in Patel, 

2010) [also called pulse extraction and entrainment (PEE, in Fitch, 2012)]. While 

BPS appears in some animals, more concretely in some vocal learners such as 

songbirds and mammals, meter induction —a hierarchical way of categorizing the beat 

in music production and perception— seems to be unique to humans. Although we 

defend that music meter depends on recursion, whose hierarchy may organize the 

beat, an alternative view such as that proposed by the so called Demanding 

Attentional Theories.1 

Notice that, neurally, what is involved in BPS requires the connection between 

auditory-motor regions in the brain. This sensory-motor integration could be then as 

essential for music as it is for language acquisition and speech production. Apart 

from vocal learning, other theories claim that primate rhythmic behaviour 

(drumming) and primate rhythmic perception (grouping capacities) must be the 

precedents of our music. We argue that both, in fact, constitute a rhythmic 

protomusic, an intermediate stage between musical protolanguage and music. 

                                                           

1  These theories explain the neural correlates of musical meter as beta-band oscillations synchronized 
to stimulus by generating cyclical, attentional expectancies. 
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Apart from rhythm, we also briefly look at pitch and tonality origins, so as to 

conclude that the harmonic spectra of human vocalizations have underpinned the 

discrete tones of worldwide musical scales. Scale notes stem from a selected auditory 

specialization for our conspecific vocalizations; which, again, points to a 

communicative musical protolanguage. In contrast, tonality will be argued to be a 

by-product of our referential system.  Thus, the relation between pitches and chords 

according to their harmonic spectra and their hierarchical position within the scale 

would yield a musical grammar. 

In short, meter and tonality, because of their hierarchical organization, are 

argued to be deeply related to the emergence of merge and grammar, respectively.  

As such, rhythm is the structural component of music while pitch and tonal-

harmony are their grammatical counterpart. Both structural components of music 

are tightly related to language evolution, that is, the emergence of hierarchical 

merge and referential grammar. At the same time, some properties of language are 

strongly tied to ancestral musical properties, such as prosody or syllabic rhythm. 

 Figure 1 
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PART I: MUSIC AND LANGUAGE 

This first part briefly compares music and language: their common properties, their 

specific structural components and their social nature which gives rise to different 

meanings and the ability to evoke emotions, in the case of music, or express 

concepts, in the case of language. 

1. FORMAL AND FUNCTIONAL COMMONALITIES 

Music and language are universal human faculties, neurobiologically constrained and 

culturally transmitted during sensitive periods of acquisition, which permit a 

human-specific way of thinking and communicating. Music is an organized 

arrangement of sounds and silences that evoke emotions and involves people in a 

social interactive performance, made of gestures, sounds and shared intentions and 

moods. Fundamentally, music is “governed by structural principles that specify the 

relationships among notes that make up melodies and chords[,] and beats that make 

up rhythms” (Fedorenko, McDermott, Norman-Haignere, and Kanwisher, 2012). 

As it occurs with language, the music faculty is located in the mind and is 

internally and externally constrained by genetic, developmental and structurally 

physical factors. This faculty must be distinguished from musical idioms,2 which are 

found in every culture and in every era (classified by genre, style or ethnographical 

locations), which consist of culturally-driven, learned systems of a musical grammar. 

Music is acquired through a Music Acquiring Device (Liu, Jiang & Li, 2014) —a 

homologue of Language Acquisition Device—, which is found to interact with 

language acquisition by facilitating pronunciation skills, accelerating the mastery of 

language rhythm and promoting syntax acquisition. Following a general capacity to 

make sense of the world through grammar, the human brain (even in babies) is able 

to sort out distinct musical sounds so as to yield systems of rules. 

Paralleling the multicomponent Faculty of Language (Hauser, Chomsky and 

Fitch, 2002, Fitch, Hauser and Chomsky, 2005), the music faculty is also made of 

different components, each with their own evolutionary history. Both faculties could 

be seen as mosaics of traits, some of them shared. In this line, Hockett (1960) 

                                                           

2 Musical idioms are with respect to music what languages are with respect to language. 
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proposed a set of language design features —from spoken language—, and already 

pointed out which of them were shared with music, either vocal or instrumental. 

 

The preceding table shows Fitch’s application of Hockett’s language design 

features on vocal and instrumental music, as well as innate human calls. Those non-

shared traits include: semanticity, arbitrariness, displacement and duality of 

pattern, which directly derive from referentiality —or, in Hockett’s terms, 

semanticity. The following table consists of Fitch’s (2005) list of music design 

features that are applied to spoken language and innate calls. 

 

From the table, it seems that music-specific features —except for the trait 9— 

include pitch discreteness3 (a discrete set of pitches yielding a scale) and isochrony (a 

regular periodic pulse or beat), as well as performative context (cultural rituals 

depending on distinct societal behaviours), repeatability (multiple performance of 

                                                           

3 Comparing music to language, Anirudh Patel (2008) denies that any language (even tonal 
languages) organize pitches in terms of musical scales, which are cultural frameworks for musical 
performance and perception. Then, as every language has its own set of phonemes, distinguished by 
timbre, all music has its own set of notes, distinguished by pitch, separated by different intervals.  

Table 1 

Table 2 
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identifiable pieces from a repertoire) and a-referentially expression (a gestural form 

including flexible mappings to movement and mood). 

Looking across cultures, some general properties of music (broadly called musical 

universals) are found: discrete pitch levels, octave equivalence, a moderate number 

of pitches (5 to 7) repeated in every octave, a tonal hierarchy of pitches functioning 

as either stable or unstable referential points, the notion of a deep-structural idea, 

reference pulses, the induction of rhythmic patterns by asymmetrical subdivision of 

time pulses, relational pitch and time features (i.e. contour), small integer frequency 

ratios (relative proportions as 1:3, 2:1, 3:2), unequal scale steps of pitches, and the 

musical genre for infants called lullabies (Isabelle Peretz, 2006). 

Since music interactive performance is broadly found cross-culturally, music may 

be considered as “a communicative medium complementary to language that is 

deeply embedded in [...] the species-specific human capacity to manage complex 

social relationships” (Cross, 2009). As a mode of human interaction, music is optimal 

to “manage situations of uncertainty by virtue of its semantic indeterminacy” or 

“floating intentionality” (Cross, 2009). Although music is not ‘about’ events in the 

world, the emotional physiological reactions that it provokes are otherwise similar to 

those elicited by them, perhaps coming from an earlier emotional mechanism which 

is still preserved in pitch and timbre across species. 

Following Cross (2009), musical meaning is driven by three simultaneous 

dimensions evolved in different moments: the culturally-enactive meaning4 (based 

on cultural-contextual links), the socio-intentional (based on cross-cultural 

interpersonal, communicational cues, or prosody) and the motivational-structural 

(based on the acoustical signal and it involuntary affective variation). This three 

dimensional meaning of music operates in musical performances enabling collective 

musical behaviour and, consequently, promoting group affiliation. 

However, music is normally built on patterns of tension and release, creating a 

musical ebb-and-flow. These tension-resolution patterns refer to structural music 

                                                           

4 Stephan Koelsch (2011) claims that musical meaning emerges from embracing extra-musical sign 
qualities, intra-musical structural relations, musicogenic effects, the establishment of a unified 
coherent sense out of ‘lower-level’ units, and a musical discourse; all of them competing at the same 
time in brain processes. 
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properties, which arise from the relationship of musical elements and are based on a 

hierarchy of stability —quiescence points established with either fulfilled or violated 

expectations. These patterns yield an absolute musical meaning that solely relies on 

the interplay of formal musical structures, which point to musical-unique 

consequences. Hence, this musical meaning is driven by implicitly learned and rule-

constrained expectations and is similar to the linguistic structural meaning arising 

from hierarchical relations. This indeed constitutes the internal meaning of music. 

2. MUSIC EVOLUTION 

After having compared music and language faculties, and their design features, we 

will now argue that music may have evolved by selecting independent components 

bearing musicality separately. Within this gradual evolutionary view, both faculties’ 

similarities in certain components suggest an ancestral communicative system 

common for language and music: a musical protolanguage. Although currently 

rediscovered, this musical protolanguage was first proposed by Darwin at 1971. This 

musical protolanguage may have split into music and language respectively in 

culturally-modern Homo sapiens, after the emergence of our symbolic thinking, 

which was boosted by language and grammar (providing hierarchy and reference). 

2.1 A mosaic of independent traits  

Laurel Trainor (2008) defends that music has deep evolutionary roots in the 

underpinnings of universal features of human sound processing,5 which both (i) 

constrains rhythmic, melodic and harmonic structures, and (ii) permits variation of 

these features across cultures. While temporal and spectral organization of music 

derives from our biology, scales and harmonic structures, for instance, depend on 

learning, and therefore on environmental exposure. Thus, while every culture seems 

to show music and dance (suggesting music to be a genetically-coded universal),6  the 

emotional response to learned scales and chords is culturally-dependent. 

                                                           

5 The structure of our sensory organs, our basic encoding of organization and our visceral response to 
emotional sound features constitutes an evolutionary inheritance that may not have changed recently 

6 However, clear evidence for a genetic underpinning for musical traits is lacking. Consequently, it 
does not favour the adaptationist argument that musical behaviours were specially selected. 
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Even though cross-cultural universals7 suggest that music was naturally selected, a 

null hypothesis for its evolution (McDermott, 2008) should rather be hold, defending 

that “music’s perceptual basis could derive from general-purpose auditory 

mechanisms, its syntactic components could be co-opted from language, and its 

effect on our emotions could be driven by the acoustic similarity of music to other 

sounds of greater biological relevance, such as speech or animal vocalizations”. In 

addition, since animals lack music, it is logical that any music-related trait found in 

them may represent a general-purpose mechanism. This therefore indicates that 

common traits among humans and animals have not evolved for music in particular. 

In this line, the evolutionary psychology view of Honing and Ploeger (2012) 

moves the premise “music as biology” to “music as cognition”. This view emphasizes 

the cognitive traits that have evolved in the human mind to solve specific ancestral 

problems. Since heritable cognitive variation does not fossilize, in order to prove how 

musical cognition has arisen, spread and changed, it should (i) be separated the 

notion of musicality from music,8 and (ii) be collected evidence showing that 

cognitive traits are adaptations. However, although musicality could have been 

selected for biological functions in the past, current functions may differ from them. 

The cognitive components making up musicality might be those involved in the 

perception, production and appreciation of music, which are then affected by socio-

cultural and psychobiological factors. Despite emerging early in life, these cognitive 

mechanisms do not need to be specific for music —in fact, it should not be. Current 

literature proposes some candidates to have been evolved and selected from non-

species-specific general domains to species-specific modular domains, which are 

pitch, tonal encoding of pitch, beat induction and metrical encoding of rhythm.  

Assuming that evolution has specifically shaped human mind to support musical 

behaviour, or rather certain traits bearing musicality, three main approaches arise: 

                                                           

7 Universals such as similar slow and repetitive lullabies directed towards infants, the inclination to 
move and dance to music, the musical meter organizing beats and the hierarchical organization of 
pitch, giving structural prominence to particular notes. Furthermore, musical diseases [see Annex, 
12] affecting specific components of processing music also support the existence of these universals. 

8 While traits bearing musicality can be present in animal skills, music, understood as “a social and 
cultural construct based on that musicality”, is unique to humans (Honing&Ploeger, 2012). 
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The first position considers music as a (naturally, sexually, kin...) selected trait 

during evolution, playing a fundamental role in survival. Some biological and 

cognitive functions have been proposed for an ancestral musical system, such as a 

sexual attractor mechanism for mating (Darwin, 1871; Miller, 2000), a monogamist 

pair-bonding mechanism through vocalizations in duets (Fitch, 2009), a social 

mechanism for group cohesion (Cross, 2007; Merker, 200, Mithen, 2005), an 

emotional bond for parents-offspring relations through motherese or infant-directed 

speech (Dissanayake, 2008), and so on. The second view is an intermediate position, 

in which music emerges from some existing selected traits being put to new uses. 

Here, Honing (2011) maintains that music, as a beneficial play, challenges our 

cognitive functions, promoting diversity and thus creating a cognitive advantage. 

Finally, the last *position (2.a) considers music to be a side effect of other functions, 

coming from non-selected traits, either as a by-product of a motivational system 

dealing with a technological system (position maintained by Pinker (1997, 2007) 

with his metaphor of music as an “auditory cheesecake”), or as a transformative 

invention impacting our biology and culture (Patel, 2010). 

The debate on music origins between adaptationists and non-adaptationists is 

still opened [see Annex, 14], but we will adopt an intermediate position, in which 

traits bearing musicality were independently selected for purposes other than music. 

In this line, we will defend that current music is therefore an exaptation —with a 

wide range of current functions that we will not discuss here— that puts traits also 

evolved in animals together, which were further modified by language and, in 

particular, grammar. 

1. Music as an adaptation (a selected function for better survival) 

a) By sexual selection (courtship, pair bonding through duetting, group choruses) 

b) By kin selection (parental care, motherese ) 

c) By group selection (social cohesion, coordinated behaviours) 

2. Music as an exaptation (a selected by-product coming from other adaptations) 

a. *Music as a spandrel (just a by-product, without any selective pressure) 
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2.2 Language evolution 

The evolution of humans is inseparable from the emergence of language and 

grammar. Human linguistic and grammatical way of thinking is our fundamental 

distinctive trait as a species. The transition to symbolic reasoning,9 from a non-

symbolic and non-linguistic ancestor, occurred very late in the hominids coming into 

place in a genetically and anatomically modern Homo sapiens (Tattersall, 2013). 

Language emergence requires the development of (i) a “conceptual system with 

abstract and symbolic meanings referring to general concepts away from the 

immediate sensory experience”, using discrete units to label them (phonology), and 

(ii) the cognitive computation merge, “with the outcome to generate hierarchical 

structures for the purpose to cluster complex computations” (Hillert, 2014). In this 

line, Boeckx (2012) calls for the emergence of (i) merge and (ii) a lexical-envelope 

mechanism that permits to homogenize concepts to make them cognitively mixable. 

Assuming Tattersall (2013), our symbolic reasoning should be logically paired 

with archaeological findings of figurative production. The earliest Homo sapiens, 

who appeared in Ethiopia between 200 and 160 KYA,10 behaved alike their hominid 

contemporaries and have not left any trace of modern cognitive behaviour in the 

archaeological record. It was later, over 100KYA, that unprecedented behavioural 

proclivities and symbolic production appeared in Africa,11 due to a developmental 

reorganization which led to a brain that was capable of complex symbolic 

manipulation, and therefore Universal Grammar. With figurative minds, these 

humans left Africa 60KYA and took over the world displacing other hominids. 

Since the reorganized neural structure was in place 200KYA, what allowed the 

onset of symbolic thinking among the second wave of migrating Homo sapiens might 

have been a cultural stimulus: the “invention of language in an African isolate Homo 

sapiens” at (approx.) 100KYA (Tattersall, 2013). In turn, language may have acted 

as a cognitive trigger which suddenly produced a new cognitive phenotype.  

                                                           

9  Symbolic reasoning is the ability to process and rearrange symbolic information following certain 
rules so as to envision multiple realities, through forming and manipulating symbols in the mind. 

10 KYA= thousand years ago. 

11 These modern cognitive behaviours consists of pierced marine shell beads, ochre deposits for paint 
and engraved geometric designs (Blombos Cave, 77KYA, southern African coast). 
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Regarding music, since this capacity constitutes figurative art that implies cultural 

behaviours and is structured by a culturally learned, grammatically-ruled system, it 

is highly plausible that it has appeared hand in hand with language and grammar. 

As a consequence, music may have also appeared recently12 in an evolutionary time-

scale, thus exapting anatomical traits and organs already present in humans for 

other uses, in the same way that language and symbolic thought13 proceeded. 

2.3 A musical protolanguage 

The term protolanguage, according to Hewes (1973) and Bickerton (1990, 1995), 

refers to a communicative system of our lineage that has preceded our current 

language capacity,14 proportioning basic formal and structural properties, as well as 

physiological traits and neural-computational mechanisms. Many protolanguages 

have been proposed, such as (i) musical protolanguage giving rise to the linguistic 

phonology and prosody, (ii) gestural protolanguage giving rise to the intentionality 

and signs, (iii) lexical protolanguage giving rise to the lexical referential words 

(previous to syntax), or (iv) syntactical protolanguage15 —which may consist of 

recursive merge as an internal computational capacity without externalization. 

Excluding (iii), these protolanguages could have interacted with each other. 

In The descent of man and selection in relation to sex (1871), Darwin observed that 

music, despite being a human universal carrying a physiological cost and playing an 

important role in society, does not show any obvious function. For that reason, 

music would be better seen as a fossil remaining from a former adaptation, that is, a 

communicational system used by earlier hominids whose core original function was 

later overtaken by language. This original common stage was termed musical 

protolanguage, which subsequent investigators have reviewed (Jespersen, 1922; 

                                                           

12 Instrumental music is at least 40.000 years old (Fitch, 2005), taking as a reference a flute which has 
been found in a Slovenian Neanderthal cave. 

13 For instance, the wide range of formant frequencies exapted for our contemporary speech requires a 
descended larynx into the throat, the right position of the hyoid bone, the barrel-like structure of 
human rib cage and an innocuous breathing control, which were elected for a musical protolanguage. 

14 If we understand language as a complex multicomponent system, every gradually evolved property 
added to the system may configure a slightly different protolanguage, until arriving to our language. 

15 This syntactic protolanguage has been recently proposed by Boeckx et al. (2013), and is not yet in 
well known in the field. It consists of a computational mechanism emergence, an unrestricted Merge, 
contributing to the language-ready brain. 
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Livingstone, 1973; Richman, 1993; Brown, 2000; Mithen, 2005; Fitch, 2006). 

Although it may have been present in other hominids, for Homo sapiens, a musical 

protolanguage16 may imply (at least) a vocal producing system, pitch contours 

dealing with emotional content, and a social structure protecting the members from 

predators attracted by the sounds (i.e. social bonding). 

Darwin’s theory of language evolution could be divided into three stages: (i) an 

“increase in intelligence and complex mental abilities”, (ii) a “sexually selected 

attainment of the specific capacity for vocal control: singing”, and (iii) an “addition 

of meaning to the songs”, driven by a further intelligence increase (Fitch, 2013a) [see 

Annex, 15]. While the first step refers to the progress of cognitive power from an ape-

like ancestor to modern humans (fuelled by social and technological factors), the 

second requires the evolution of vocal imitation abilities, which were used in 

courtship and territoriality, and in expressing emotions. Conversely, the third step, 

the transition of non-propositional songs to propositional speech, was dubiously 

resolved by Darwin appealing to signs and gestures combinations,17 onomatopoeias 

and controlled imitation of modified instinctive cries and emotional vocalizations. 

Language clearly does not come from an evolved vocal communicative system, 

but from an intelligence increase in humans. Considering language as “an instinctive 

tendency to acquire an art” (Darwin, 1871), biological and environmental (cultural) 

factors are unified. Since articulate speech does not suffice for explaining language, 

we should better look at the role of language in developing mental faculties, which 

permitted to connect sounds to ideas. Once meaning was in place, “words” impacted 

our mind enabling to carry long chains of complex thoughts. Then, the rise of 

language seems to be due to a cognitive development of social intelligence. 

Ahead of his time, Darwin recognized the importance of learned vocalizations. 

Although complex vocal learning is unusually found in mammals and virtually 

absent in primates, which runs against a continuity view between non-human 

                                                           

16 A musical protolanguage may have been triggered by (i) sexual selection, based on courtship or 
pair-bonding preferences, by (ii) parent care through infant directed speech or motherese to comfort 
the offspring, or by (iii) group bonding which promoted social cohesion. 

17As other authors point out (e.g. Tomasello, Call, Arbib...), besides being primary triggered by 
communicative vocalizations, gestural signals and strategic planning in tool use probably contributed 
to language as well. Thus, a complex thinking may have been reinforced by a gestural protolanguage. 
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primate calls and language, it is shared with many birds. Then, beyond our closest 

phylogenetic relatives, Darwin took learned birdsongs as analogues to these putative 

vocalizations because they show parallelisms such as an innate babbling or subsong 

stage during critical periods of cultural transmission, as well as the final production 

of dialects and idiolects. These vocalizations may have expressed fitness, high-status 

position, territory maintenance, male-female pair-bonding, child care, and so on. 

While musical protolanguage seems to require a vocal learning capacity,18 a 

mirror system hypothesis for language origin is otherwise based on gestural 

behaviour and social life.19 The interaction of both protolanguages may have 

contributed to language as well. In line with Arbib and Iriki (2013), we consider that 

music might have evolved inseparably from dance. Moreover, we claim that both are 

possible externalizations of the same faculty, which evokes emotions within social 

contexts. Their non-propositional, free-floating meaningfulness allows music and 

dance to be attached to several group activities and cohesive events. 

Darwin (1871) expressed that “the progenitors of man [...], before acquiring the 

power of expressing their mutual love in articulate language, endeavoured to charm 

each other with musical notes and rhythms”, thus favouring the idea of a musical 

protolanguage preceding the emergence of language. Although Darwin involved 

musical rhythms and notes into his pre-semantic model of musical protolanguage, 

both music and language currently show different properties due to the fact that 

they have changed in the course of evolution. What both speech and song share is 

prosodic and phonological aspects (Fitch, 2013a): “the use of a set of primitives 

(syllables) to produce larger, hierarchically structured units (phrases) that are 

discretely distinctive; but not the musical key aspects of discrete-pitched notes and 

temporal isochrony”.20 For that reason, Fitch (2013a) suggests to rename the 

                                                           

18 Notice that it may have lacked in human and chimpanzee last common ancestor (five to seven 
million years ago) and it has not given propositional meaning to any other vocal learning species. 

19 It “builds upon skills for imitation, tool use and the development of novel communicative manual 
gestures by chimpanzees” (Arbib & Iriki, 2013), as well as upon the rich social structures, which are 
found in monkeys, apes and humans, but not in songbirds. From a mirror neuron hypothesis, a 
complex imitation system may have been developed and later converted to pantomime, protosign 
and protospeech (Arbib, Liebal and Pika (Arbib, 2013)). We do not agree with this view. 

20 A protolanguage made of isochronous rhythms and discrete pitches (and a tone-based meaning), is 
proposed by Brown (2000). His musilanguage hypothesis gathers together all these aspects, but only 
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Darwinian musical protolanguage as prosodic protolanguage, consisting of sung 

syllables not arranged in a scale nor produced with steady rhythm (Fitch, 2006). 

Assuming that, notes and rhythms should be considered as a more recent 

development in music, likely appearing within a protomusic21 stage [see Part II].  

Human learned vocalizations, given their syllabic structure and their melodic 

and rhythmic nature expressing emotionally prosodic features, seem to be a perfect 

initial substrate for phonology (specially, its phonetics and prosody). Probably, 

human protosyllabic vocalizations were similar to geladas vocalizations produced 

during grooming, which acoustically can be analysed as sequences of consonant and 

vowel-like elements. Furthermore, as it is defended in this thesis, vocalizations not 

only offer a protophonology, but also the underpinnings for rhythmic and harmonic 

structures. These random syllabic and rhythmic protophrases —associated to 

emotional states through prosody and intonation— were present in human 

communication before the creation of symbolic concepts, (Hillert, 2014), and could 

have promoted a functional hemispheric asymmetry.22 In fact, this asymmetry is 

found in chimpanzees and Old World Monkeys processing species-specific 

vocalizations (Tagliatela et al., 2009), which reinforces the biological right-

hemisphere origin of prosody (and music). 

Human perception of voices, faces, gestures, smells and pheromones are allegedly 

lateralized to the right hemisphere, which is usually considered the place of social 

perception.23 For example, primate vocalizations (similarly to auditory faces) carry 

paralinguistic information in its structure which permits to identify conspecific 

individuals. The neural mechanisms involved in these social interactions are 

lateralized to the right superior temporal sulcus, which indeed combines information 

from vocalizations and face displays (Belin, 2014). In humans, brain responses to 

affectively-laden animal vocalizations and speech reveal similar unconscious 
                                                                                                                                                                          

relies on group-selection to explain their evolution. From him, music may have evolved by increasing 
the expression of emotion, while language may have enhanced the expression of lexical meaning. 

21 The term protomusic was coined to indicate a precedent stage of the music faculty. 

22 Human planum temporale, which is larger in the left hemisphere and involves the Wernicke’s area 
located in the temporo-parietal junction, has a homolog in chimpanzees and macaques called areas 
Tpt. They are also asymmetrically left-sided and process multisensory information. 

23 The functional lateralization of the social brain involves the orienting of attention to emotional 
cues and the establishment of the first person perspective versus others (Brancucci et al., 2014). 
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orbitofrontal activations, related to the limbic system. These similarities support 

continuity in affective responses to vocal productions across mammals. 

The natural melody of speech (i.e. prosody), which encompasses “overall pitch 

level and pitch range, pitch contour, loudness variation, rhythm and tempo” 

(Deutsch, 2010), reflects the speaker’s emotional state and intention, similar to what 

occurs to musical pitch and timing features. Given that, Christensen (2004) proposes 

a close connection between music, rhetoric speeches and prosody,24 defined as the 

emotional, non-semantic, and slowly varying pitch contours and rhythms of speech. 

Moreover, Christensen (2004) states that “music is not the language of emotions, but 

prosody is, and as far as music emulates prosody, it can also encode emotions”. 

Given that, it is highly plausible that prosody has been a selected trait of a musical 

protolanguage. In fact, a deficiency in detecting and understanding the emotional 

qualities of speech is found in alexithymia,25 which makes this feature discriminable. 

Hence, processing prosody could have been somehow selected. 26 

What allows us to detect prosody and acoustical patterns in speech is our fine 

processing of the spectral structure.27 In this connection, it is well established that 

the human brain has developed two parallel and complementary systems: one, in the 

right hemisphere, processes slowly varying contours fitted in with spectral structure 

and prosody and the other one, in the left hemisphere, processes rapidly-paced 

inputs (see Zatorre et al., 2002).28 

                                                           
24

 Prosody is seen as an effective way of manipulating listener emotions within a group. 

25 Alexithymia (literally, ‘no words for feelings’) is a personality trait characterized by impairments in 

the experience of emotion and its cognitive processing: difficulties in emotionalizing and fantasizing 

(its emotional dimension), as well as in identifying and verbalizing feelings (its affective dimension). 

For more information about Alexithymia, see Annex, 13. 

26 Human frequency discrimination in hearing may have been selected for (i) responding quickly to 

loud, sudden sounds (meaning danger), for (ii) locating sources and for (iii) detecting conspecifics 

(Christensen, 2004). 

27 A cortical specialization for spectral and temporal resolution in auditory cortices seems to be 

similarly found in other mammals, which suggests that speech and music might have co-opted these 

ancestral structures. 

28 According to Christensen (2004), these two components support “a prosodic-semantic distinction” 

even in physiology since prosodic and semantic meanings “are processed by different brain centres”. 
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A MUSICAL BRAIN 

The human brain processes music both as an input and as an output, perceiving29 

and producing it through different neural processes. Music engages a variety of non-

domain-specific skills, such as memorization or motor mechanisms, as well as general 

mental processes, such as executive function or abstract reasoning. 

3.1 Shared vs. specific areas 

On the one hand, the music faculty depends on specialized cerebral processes, which 

are neurobiologically determined, making it “an autonomous function, innately 

constrained and made up of multiple modules that overlap minimally with other 

functions” (Peretz, 2006). On the other hand, music and language also share certain 

components. For example, Brodmann Areas 44 and 45 (i.e. Broca’s area), within the 

inferior frontal gyrus (IFG), are involved in processing linguistic hierarchy30 as well 

as fine-grained musical pitch structures and rhythmic synchronization. Broca’s and 

Wernicke’s areas process harmony, rhythm and instrumental performance. 

Although both hemispheres are involved in music production, melody and timbre 

discrimination activate right-hemispheric temporal and frontal regions in passive 

listening, and pitch and rhythm processing activate left-hemispheric linguistic areas. 

Melody and pauses31 are processed in right-hemisphere temporal areas. Musical 

memory involves the right area of the hippocampus, bilateral temporal regions, IFG 

and the left precuneus. Finally, the neural representation of tones resides in the 

lateral margin of the primary auditory cortex and non-primary auditory cortex. 

Studies coming from brain-damaged patients reveal the implication of temporal 

lobes in music processing of pitch and rhythm that is distinct from lower-level 

perceptual abilities. In contrast, neuroimaging research can isolate structure 

processing in music from generic auditory processing and highlights the implication 

of frontal lobes in musical structure violations. In other words, while patient 
                                                           

29 According to Montinaro (2010), music perception follows three stages: (i) elementary auditory 
musical perception, (ii) musical structural analysis, at an elementary level (consisting of pitch, 
intensity, rhythm, duration, timbre) and an advanced level (consisting of phrasing, timing, themes), 
and (iii) played piece identification. 

30
 Hierarchical-structure resources (involving Broca’s area and its right homotope) are used to process 
musical syntax (Sammler et al. 2011). 

31 The perception of pauses could also occur in the left-hemisphere, together with rhythm and pitch. 
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Figure 2 

literature points to temporal cortices for musical processing, neurological studies 

implicate the inferior frontal gyrus (IFG), Broca’s area, and anterior, orbital parts of 

IFG in BA 47. This discrepancy should be studied in more depth in order to correctly 

discriminate different musical traits and locate their brain regions, so as to yield a 

clear theory of musical processing.  

Regarding music-specific areas, Fedorenko et al. (2012) analyses report that 

bilaterally temporal activations are sensitive to pitch and rhythm though they are 

insensitive to high-level linguistic structure.32 Seven cortical parcels are found to be 

sensitive to musical structure:33 the bilateral anterior superior temporal gyrus (STG), 

the bilateral posterior STG (spanning the right middle temporal gyrus), the bilateral 

premotor cortex and the supplementary motor area (SMA). Regions anterior and 

posterior to Heschl’s gyrus in the superior temporal plane, together with superior 

and middle temporal gyri, respond more to intact than scrambled musical stimuli, 

suggesting that they may play a role in musical structure analyses and 

representation, such as key, meter, harmony, melodic contour… 

 

As Fedorenko et al. (2012) point out, their function is not well established yet, 

but they could store musical knowledge (i.e., information of prototypical musical 

patterns of melodies, rhythms and sequences), or responses to generic structures 

(such as consonance-dissonance discrimination), rather than pitch processing 

(McDermott et al. 2010). However, in experiments of pitch and rhythm scrambling, 

the activation of temporal lobe regions and bilateral premotor and supplementary 

                                                           

32 Taking sentences as syntactically-complex, rather than simple lexical lists. 

33 These areas reveal a neural specialization for music-associated mental processes that is distinct from 
lower-level acoustic representations and high-level linguistic representations. 
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motor areas34 is affected, which indicates that pitch and rhythm are inextricably 

linked (Jones and Boltz, 1989), thus constituting interdependent structures in music. 

Nevertheless, these unique regions which are sensitive to music do not preclude 

overlapping regions to be engaged in linguistic and musical processing (Koelsch et 

al., 2002; Patel, 2003). Given that, these overlapping areas may be widely recruited 

in other cognitive tasks as well, either in general executive functions dealing with 

working memory and attention (Duncan, 2001, 2010), or in lower-level acoustic 

processes shared by speech and music, such as pitch processing and its encoding 

mechanisms in the auditory brainstem (Krizman et al., 2012).  

3.2 Emotions and the limbic system 

Music exploits brain mechanisms which have evolved to perceive and respond to 

vocal affects35 (Patel, 2008), although none of them seem to be unique to music. In 

fact the mechanism leading to the pleasure sensation of music is an evolutionarily 

ancient neural circuit involved in survival and in mediating rewarding stimuli as 

food or sex,36 involving the basal forebrain, the brainstem nuclei, the orbitofrontal 

and insular regions. Besides, medial temporal areas (integrating ventral and dorsal 

striatum) and the anterior cingulated are also activated during musical emotional 

processing (Montinaro, 2010). Thus, music elicits a response in the limbic system, a 

brain region which is evolutionary ancient and shared with most animals.  

Menon and Levintin (2005) relate the activation of a dopaminergic 

mesocorticolimbic system by music to positive arousal in mood and cognitive tasks’ 

performance.37 Healthy individuals listening to music after a stressful event reveal a 

cortisol level reduction (Khalfa et al. 2003). This reduction facilitates hippocampal 

function, which is involved in verbal memory (Zimmerman et al., 2008). Since 

                                                           

34 Brain regions which are also involved in beat perception and synchronization. 

35 In this line,  Koelsch (2010), Salimpoor et al. (2012), Peretz (2010) and Perani et al. (2010) also 
maintain that music has recycled emotional circuits which have evolved for processing biologically 
relevant stimuli, provided that “musical emotions engage core brain structures devoted to emotional 
processing, such as the amygdale and ventral striatum, even in new-borns” (Aubé et al., 2013).  

36 Perhaps there is a link here between the earlier function of human protomusic for courtship and 
pair-bonding and its implicit sexual and food stability reward. 

37 An increase in verbal memory and focused attention, as well as a decrease in depression, among 
patients who engaged in music while recovering (Särkämö et al. 2008). 
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Figure 3 

cortisol production is regulated by signals from the hypothalamus, and this is, in 

turn, influenced by projections from the limbic system regulating emotions (Koelsch, 

2010; Peretz, 2010), music voice-like acoustic cues may, in some way, affect the 

limbic system, unfolding the following chain of reactions. 

 

This scheme shows that the neuroendocrine system, via hormonal regulation, has 

an important role in neural morphology and activity. The hypothalamus regulation 

of cortisol and oxytocin levels in the blood, once manipulated by the limbic reactions 

to the music emotional significant cues emulating vocal sounds, can alter the 

hippocampus38 and the amygdale functions and morphology. Therefore, music can 

promote morphological and functional changes in our neural system. 

Other authors have posit that music only temporally coordinates emotion-

inducing mechanisms such as expectancy —and its fulfilment or violation—, 

brainstem activation, past-event associations, visual imagery and emotional voice-

like acoustic cues (Juslin and Västfjäll, 2008), as a complex emotional experience. 

3.3 Basal ganglia in beat 

Beat perception or regular pulse induction, which marks equally spaced points in 

time, could function as the ability to encode temporal intervals as multiples or 

subdivisions of the beat. This ability results in a better reproduction and 

discrimination of the rhythm, analogous to “chunking” mechanisms, which reduce 

complex patterns to simpler components.  

                                                           

38 This regulation of cortisol and oxytocin also alters the birth of new cells in adult hippocampus. 
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Activations in the premotor cortex (PMC) and supplementary motor areas (SMA), 

cerebellum and basal ganglia —creating a striato-thalamico-cortical loop network—, 

are also reported in neuroimaging studies on timing. Experiments involving internal 

subjective accents —e.g. listening to unaccented isochronous rhythms— show the 

response of the putamen, caudate and pallidum, as well as PMC and SMA, right and 

left STG, and right cerebellum. 

After contrasting healthy controls and patients with Parkinson’s disease, Jessica 

A. Grahn (2009) concluded that the basal ganglia are strongly linked to the internal 

generation of the beat (i.e. the pulse). In fact, the activity of basal ganglia is greater 

when the external cue marking the beat is weak, therefore motivating an internal 

generation. In Parkinson Disease, a “progressive cell death in the substantia nigra 

that decreases dopamine release by the striatum, affecting excitatory input to the 

putamen” (Grahn, 2009) leads to an impaired extraction of the beat structure of 

novel rhythms, which points out that the putamen may encode information about 

beat timing —facilitating precise movement control for motor areas. Giving more 

evidence to the role of putamen in beat, a higher activity connecting the putamen to 

the cortical premotor and supplementary motor areas during rhythmic beat 

perception has been found in trained musicians, together with an increased 

connectivity between cortical motor and auditory areas. 

 

 

SUMMARY 

In this part we exposed that music and language are two uniquely-human faculties that are 

cross-culturally linked to social contexts. While music deals with emotions, language 

expresses propositional and lexical meanings. Both faculties compile a mosaic of 

independent traits and components that have gradually evolved and been selected for other 

purposes. Our ancestors, before speaking, used protolanguages as communicative systems, 

such as the musical protolanguage proposed by Darwin (1871). It may have given rise to 

music and language (its phonology). However, both may have appeared recently about 

100KYA, together with a symbolic thinking in Homo sapiens. As neuroscientific research 

reveals, some neural mechanisms (hierarchical processing) and perceptual properties 

(emotional prosody) are shared by these faculties. But music and language also compute 

domain-specific elements (pitch or rhythm, in the case of music, or semantic meaning, in 

the case of language). Interestingly, music is found to impact our limbic system, as well as 

its beat activates basal ganglia. 
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Figure 4 

PART II: PROTOMUSIC: RHYTHM AND TONALITY ORIGINS 

In the previous part we reviewed past and present views on music evolution, as well 

as some speculations of how music may have gradually evolved in tandem with the 

emergence of language and grammar. It is undeniable that music, as we know it, has 

changed from whatever it was in the past, especially after that Homo sapiens 

developed its unique linguistic and symbolic thinking (assuming Tattersall (2013), 

see fig. 4). 

 

Moreover, music per se has not existed in the past, but only some traits showing 

musicality, which is something that can be selected and found in animals as well. 

Preceding both language and music, we assumed Darwin’s proposal of a musical 

protolanguage functioning as a communicational system expressing emotional needs 

and physiological states, which was sexually selected and developed by increased 

mental powers through different stages. As Fitch’s revision of the Darwinian musical 

protolanguage, we take in account sexual selection (mate choice or pair-bonding 

mechanism) and kin selection (parental care through motherese), although social 

group cohesion may have been involved as well. From other approaches, we 

concluded that processing the emotional cues of prosody may have been selected, 

because it is a trait remaining in both current speech and music, and it could be 

specifically affected —as it occurs with Alexithymia disease. 

Now we will try to unify these views so as to propose two gradual stages for a 

musical protolanguage, first evolving into a rhythmic protomusic and later into 

music. At the same time, this musical protolanguage may have given rise to the 

HIERARCHY   
(Merge)               

Syntactic protolanguage 

GRAMMAR   
(Reference)               
Language 
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phonology of language. We speculated that from a musical protolanguage made up 

of vocalizations —since we are complex vocal learners sensitive to the pulse—, we 

developed a rhythmic syllabic protomusic with an underlying beat, which in turn 

may have changed after the emergence of merge and its linguistic hierarchy: a 

protomusic with beat and its hierarchical organization (meter) may have appeared. 

Later, when our symbolic thinking was in place and grammar has arisen, music 

tonal-harmony appeared as a side-effect of our linguistic reference. 

3. FROM A MUSICAL PROTOLANGUAGE TO PROTOMUSIC AND MUSIC 

The present thesis supports the position that our ancestors underwent a musical 

protolanguage stage and that a (musical) rhythmic component was central to it. 

Given that most complex vocal learners can detect beat (i.e. pulse), and can entrain 

to it, and given that certain primates (i.e. 

gorillas, chimpanzees) develop rhythmic 

behaviours in the wild, it seems highly plausible 

that song-like human vocalizations (similar to 

the duets found in singing gibbons) may have 

manifested an isochronous component as well. 

We will argue that this isochronous incorporation 

constitutes the precursor to our music, stemming 

from a musical protolanguage to protomusic. 

With regard to language phonology, early human vocalizations could have linked 

together the precursors of consonants and vowels in a musical protolanguage. It 

would not be the unique case, given that geladas are known to produce proto-

syllabic vocalizations during grooming. This syllabic linking may have resulted from 

different physiological and communicative mechanisms, with their separate neural 

correlates. These proto-syllabic cycles could be convincingly explained by the 

content/frame theory developed by Peter MacNeilage (2008). It exposes that our 

syllabic spoken language could have come from modified closed-open cycles, which, 

in turn, may have come from the cyclical motion of the jaw and the movements of 

other articulators, including: the lips, the vocal folds or the tongue. 

Rhythmic 

behaviours

Drumming

Complex 

Vocal 

Learning

Songs

Proto 
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Notwithstanding, in our thesis, we defend that the rhythmic movement of cyclical 

syllables, rather than coming from ingestive motor patterns, must have derived from 

intentional lip-smacking, which is found in other primates as well as in baboons and 

macaques. In fact, the rhythm of lip-smacking matches the rhythm of human 

syllables. Moreover, geladas’ vocalizations, by showing the simultaneous 

combination of lip-smacking and phonation, give further support to the non-

ingestive theory. 

The existence of a musical protolanguage made up of discrete elements seems to 

be supported by the kind of songs observed in gibbons: duets comprised of discrete 

elements. In fact, one can go further and consider that this discrete musical 

protolanguage was already syllabic in the sense of made up of consonant and vowel-

like elements. A syllabic musical protolanguage is supported by the innate babbling 

of human infants and by the existence, even in some monkeys like geladas, of 

vocalizations akin to vowels and consonants from an acoustic point of view. Hence, 

we support a musical protolanguage whose vocalizations were discrete syllables. 

A discrete, and perhaps syllabic, elementary musical protolanguage equipped 

with beat could have gained meter through co-opting the linguistic hierarchy and, in 

turn, provided the basis for the “signifier” part of words —from the saussurean 

dichotomy “signifier-signified”— when the externalization of language took place.39 

Then, with everything in place for language, a linguistically-mediated thought could 

have impacted music providing it with a system of reference to quiescent points. In 

sum, current music incorporates a musical grammar consisting of hierarchically-

ordered pitches and chords bearing different functions according to their structural 

position and their acoustic morphology (harmonic spectra). Equivalently, it was the 

grammatical organization of music that led to harmonic syntax. 

This picture [fig. 6] depicts the evolution from a prosodic protolanguage to our 

current music. To reach it, it may have crossed two intermediate steps: a musical 

protolanguage and rhythmic protomusic. 

                                                           

39 We deffend that the externalization of language cognitively changed our mind, because it 

involved grammar (i.e. reference) and lexicon (indexed concepts via phonology), which were added to 

an internal mechanism of combining elements from different domains. 
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Figure 6 
 

A musical protolanguage or protomusic needs not be built on scales of discrete 

notes from a small set of elements from the beginning. It was after the emergence of 

hierarchy that pitches became interrelated and constrained by rules of hierarchical 

relations, thus leading to a fully-fledged musical grammar. In fact, this step came 

after the rhythmic protomusic stage, which was only based on beat (i.e regular 

pulse) and metrical organization. 

Rhythmic pulse is very relevant to coordinate group behaviours, as well as meter 

is crucial for music and dance integration. Perhaps they all moulded our music-ready 

brain through beat induction and timed motor production. Although musical 

rhythm was present in the beginning, musical grammar may have come later, hand 

in hand with linguistic reference. Assuming that, we propose that our current music 

faculty arises from the interaction of metrical structure (emerging from the 

hierarchical organization of the beat) and tonal-harmonic structure (emerging from 

musical grammar). In order to analyse the origins of both structures, the following 

sections will focus on rhythmic cognition and tonal-harmonic cognition, looking at 

the animal kingdom and brain studies to support a rhythmic protomusic hypothesis. 
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4. RHYTHMIC COGNITION 

In this section we will review (1) how human cognition categorize rhythm, (2) which 

processes in our brain allow music beat and meter computation, (3) how they are 

related to animal musical abilities with respect to rhythm and (4) how they may 

have evolved to give rise to our unique ability to compute meter. Taking music as an 

acoustical, psychological and cognitive phenomenon, it is essential to know how its 

core components have arisen. After focusing on its rhythmic structure, by looking at 

the interaction between performance and perception, we will analyse the 

phylogenetic and neural roots of rhythm. 

The cognitive process of categorization allows humans to recognize, classify and 

distinguish objects and events in the world. Similarly, categorical perception is 

fundamental in rhythmic pattern and timing. As it does not simply map discrete 

variables from a continuum (which would lose information), categorization functions 

as “a reference relative to which timing deviations are perceived” (Honing, 2013). 

Categorical boundaries can be influenced by metrical context because they are not 

fixed, which allows for variation in rhythm perception and timing. Categorization 

processing is also affected by top-down cognitive influences, the preceding musical 

context and the expectations from musical knowledge or earlier exposure. 

5.1 Rhythm and time perception 

While rhythm or grouping refers to “phenomenal patterns of duration in the world”, 

marking sound onset to sound onset by changes in loudness, timbre, pitch or 

duration; meter refers to an «endogenous sense of rhythmic organization that arises 

in the perception of periodic stimuli», involving different levels of temporal 

structure. As London also points out, our musical rhythm40 perception is active, 

involving top-down and bottom-up processing in different time scales (from 100ms 

to 5-7second), as well as concomitant motor behaviour. 

Honing (2013) separates rhythm, “any series of sounds or events that has 

duration”, into four basic components: rhythmic pattern, meter, tempo and timing. 

                                                           
40

 Justin London (2012) distinguishes rhythm from time in music, that is, between groups of durations 
of acoustical events in the world and the sense of beat cycles in the mind. 
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1) Rhythmic pattern consists of representing a pattern of durations on a discrete 

symbolic scale, as well as it relates to the process of categorization: “deriving 

rhythmic categories from a continuous rhythmic signal”. 

2) Meter is a hierarchically organized interpretation of pulse, usually in two or 

more levels of beat or tactus (the induced regular pulse), which yields a metrical 

framework to assign to the rhythmical signal. In addition, rhythmic structure or 

grouping arises from taking figural aspects of the rhythmic signal as a sequential 

pattern of durational accent, grouped at the surface level. 

3) Tempo is impression of speed of the sounding pattern, related to the cognitive 

beat or pulse rate occurring over time. 

4) Timing relates to the expectancy of sounding events: to the sensation of notes 

occurring earlier or later. Expressive timing is the “deviation from the most 

frequently heard version of a rhythm” (which depends on memory), rather than its 

deviation from a canonical integer-related version, notated in scores. 

This figure (fig. 7) separates the external 

acoustic sound (a and b) from the 

rhythmically categorized perception of the 

acoustic beats over time. While c and d refers 

to “grouping” the acoustic sounds (minimally 

irregular in temporal duration) into 

isochronous patterns yielded from integer-

ratio frequencies (1:2, 1:4, 2:3) of the beat or 

pulse, e implies a hierarchy of pulses in strong-

weak patterns. Finally, f and g mean the 

relative timing perception generated by 

expectations and their violation or fulfilment. 

While f could be labelled by terms as allegro or 

lento, g could be indicated as accelerando or 

ritardando. With regard to timing and tempo 

relations, timing is tempo-specific in both 

production and perception, because rhythms 

are timed differently at different tempi. 

Figure 7 
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Rather than perceiving rhythm as an abstract unity or a continuum, rhythm and 

timing is heard in “clumps”: islets on a chronotopological map or a rhythm chart, based 

on an abstract mathematical notion which represents a visual space for all possible 

rhythms in all possible interpretations. 

 

This figure extracted from Honing (2013) shows two sample rhythms (a and b) 

and how they are located in a chronotopological map based on three axes. These 

rhythm charts allow the testing of listeners’ perception of slightly altered rhythms, 

which are mentally categorized as regulars. 

Aside from a perceptual phenomenon theory of rhythmic cognition, another 

proposal is that of embodied cognition. It argues that our physiology and body 

metrics, as well as our body movement, influence rhythm perception. There are 

findings coming from babies supporting accentual-beat preferences after being 

rocked in duple or ternary-timed (i.e. 2/4, 3/4) lullabies. Laurel Trainor (2010) 

indicates that neural similarities in rhythmic auditory and motor circuits which 

enable synchronization through movement are also present in other species, such as 

crickets. Given the discovery of association between sensory- and auditory-motor 

systems (Zatorre et al., 2007), a hypothesis that metrical interpretation rests upon 

covert sensorimotor action seems well supported (Repp, 2007). However, another 

understanding of meter (as a musically-specific form of entrainment that allows us to 

synchronize a periodic aspect of our attention to environmental external rhythms in 

a perceptual pattern of accentually differentiated beats, i.e. beats as perceptual 

Figure 8 
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abstractions of peaks of attentional energy) regards the metrical structure as a “mode 

of attending” (London, 2012). This is to say that meter is a by-product of our 

attentional cyclical system,41 rather than a hierarchical musical structure per se.  

In summary, rhythmic cognition can be divided into four basic domains: beat, 

grouping, meter and tempo, which together yield our rhythmic cognitive flexibility, 

i.e. human ability to “extract structural properties from music and interpret them in 

multiple contexts” (Ravignani et al., 2014). While rhythm is essentially a general 

structured pattern of temporal change, beat is its fundamental element consisting of 

points in time that occur in a perceptually periodic way (Patel, 2008). In turn, 

grouping corresponds to the organization of the musical stream into motives, 

phrases, and sections, while meter regulates beats in strong and weak patterns. In 

fact, grouping and meter can be treated as subsystems of rhythmic organization 

(Andrea et al. 2013), although they are considered the basic structural components 

of rhythmic patterns (Lerdahl & Jackendoff, 1983). In relation to their strength, 

beats are organized hierarchically (building metrical structures), where the level of 

the primary strong beat is traditionally called the tactus. Finally, tempo has an 

important role in the interpretation and perception of rhythms, because it is able to 

modify the grouping conditions and metrical hierarchy induction in listeners. 

5.2 Rhythmic processing mechanisms 

Tecumseh Fitch (2013) proposes a cognitive and comparative perspective on human 

rhythmic cognition, distinguishing two fundamental cognitive processes: pulse 

extraction from meter induction. While the former consists of converting “a periodic 

event sequence to an (unaccented) isochronic pulse stream”, the latter consists of the 

“conversion of an event stream or unaccented pulse stream to a hierarchically-

grouped metrical tree structure”. These cognitive processes are indeed independent, 

because they can appear separately. Metrical induction is present in languages and 

poetry (but not isochrony) and seems unique to humans. Contrarily to what occurs in 

non-human animals, where pulse extraction and synchronized entrainment are found, 

                                                           

41
 Despite that this point will be analysed later, we assume that meter is indeed processed as a 

hierarchical structure of beats, although does square with an attentional explanation. 
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meter induction is not. Computationally, pulse involves detecting periodicity, whereas 

meter involves building hierarchical structures. 

Beat induction is a cognitive skill that allows a regular pulse in music to be heard 

and to synchronize to it, and therefore allows dance and collective musical 

performance. The beat comes from a highly salient, periodic layer of articulation in 

the musical texture (between 400ms and 800ms) and does not need to be physically 

present to be perceived. The meter, as a cognitive phenomenon, is an emergent 

temporal structure of at least two levels of pulse that involves our perception and an 

embodied anticipation of rhythmic patterns (perceived periods of duration present in 

music). Therefore, perceiving rhythm must be seen as the interaction between the 

acoustic patterns and the listener projecting meter onto it. Origins of music in beat 

induction are supported by experiments which show that babies and newborns can 

detect beat and meter, regardless if they are bounced or rocked in time with the 

tested stimulus by their parents. Thus, this innate, domain-specific skill might be a 

“predisposition to extract hierarchically structured regularities from complex 

rhythmic patterns” (Honing 2013). 

Fitch (2013)’s model of metrical 

trees equates rhythmic syntax to 

linguistic syntax considering them as 

sub-types of hierarchical processing, 

that are both dominated by a head 

node. In this way, he shifts the focus 

from a harmonic syntax (Lerdahl & 

Jackendoff, 1983) towards a rhythmic 

syntax. Since pulse and meter are 

cognitive constructs (not explicitly 

present in the raw acoustic signal) which is inferred by the listener, rhythm (like 

pitch) becomes a mental construct, which need not be identical to aspects of the 

signal. Once the pulse frequency is extracted from the incoming events, a downbeat 

(a prominence) must be located in the stream, thus creating metrical patterns of 

strongly-weakly accented events around which a hierarchical grouping of sonic 

events could arise, building a hierarchical structure with downbeats occupying the 

Figure 9 
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head node position. As it occurs in linguistic constituents, the prominence of a 

musical event depends on its place in the overall metrical hierarchy, and not on its 

serial location.  

Fitch claims that what permits to dance is this metrical structure (not only the 

pulse), and that «an event’s prominence differs depending on the meter assigned by 

the listener», which create rhythmic and metrical expectancies, whose deviations 

(i.e. syncopations) or violations (breaking rigid isochrony or meter) conforms effects 

of surprise in the listener. 

Against these views of headed rhythmic hierarchies in metrical cognition (Fitch, 

2013; Honing, 2012; Patel, 2014), other approaches (Lerdahl and Jackendoff, 1983; 

Lerdahl, 2013) deny the existence of a hierarchical head in strong-weak patterns, 

arguing that this grouping structure does not align with melodic anacrusis.42 

Nevertheless, Fitch argues that anacrusis is explained by the interaction of melodic 

and metrical trees, wherein «pickup notes [are] melodically connected to the root of 

the following metrical tree but are not part of the tree itself». Fitch’s Grouping Tree 

model, though hierarchical, is said not to be necessarily recursive, alleging to the 

existence of ternary measures or three beat rhythms: triplets.43 

Periodic beat patterns are basic for every culture’s music, permitting 

entrainment of rhythmic action to sound, as occurs in dance, due to a specific beat 

perception and synchronization (BPS)44 mechanism: an «ability to perceive a beat in 

music and synchronize bodily movement with it». Beat induction “allows us to hear 

a regular pulse in music, to which we can synchronize [...] to dance and make music 

together” (H&P, 2012). Recent studies show that beat induction by appearing in 

young infants as well as in newborns must be innate rather than be the result of 

learning. While this skill also appears within other species, like some birds (parrots, 

hummingbirds and songbirds) and mammals (sea lions, Asian elephants...), non-

                                                           
42

 Anacrusis: ‘note(s) preceding the first downbeat in a bar’, often configuring the initial melody. 

43
 We will discuss the binary implications of ternary meter in section 4.4.2 (also in a foot note). 

44
 BPS should be distinguished from simple pulse-based synchronization, since the first involves 
extracting a regular beat from a complex signal, flexibility in moving tempo and cross-modality 
rhythmic responses, whereas the latter only implies pulse-extraction from simple pulse trains, limited 
(if any) flexibility in movement tempo, and modality restriction (Patel, 2009). 
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human primates seems to lack it —empirical research in chimps demonstrates their 

limitations in inducing pulse (Fitch, 2013). 

Beat induction, although somehow present in language through poetry, could be 

restricted to music. Meter, instead, shows correspondences between spoken language 

and music. These links are due to the existence of a few different metrical accent 

structures among which each language must choose.45 Different from the perceived 

linguistic meter, the musical meter shows a stress pattern which maps regularly to 

the rhythmic tree, suggesting that musical meter has a simpler structure than 

speech. However, regarding beat induction, cases of “beat deafness” have been 

tested in people with normal language and normal musical perception (Phillips-

Silver et al. 2011), demonstrating its constitutive independence. Assuming that BPS 

is not a language off-shoot, it may have been selected independently. 

After having analysed rhythm categorization in perception and production, as 

well as pulse extraction and meter induction, now we turn to beat and meter origins, 

comparing how both elements are perceived and produced in animals. 

5.3 Animals with rhythms: drumming and songs 

Rhythmic synchronization is very unusual in nature, only appearing in certain 

anurans, arthropods, birds and mammals —including gibbons— (Bowling, Herbst & 

Fitch; 2013). Simultaneous acoustic or visual signal production in groups indicates 

precise patterns of temporal signal interactions, fundamentally based on synchrony 

or alternation (see Greenfield, 1994). Bowling et al. (2013) point out the important 

role of isochrony for the development of temporal regularity in vocalizations, 

because it “makes the behaviour of others predictable”, suggesting that musical 

rhythm origins lie in “cooperative social interaction” facilitating precise temporal 

group coordination. After testing synchronization skills in human non-isochronic 

speech, and asking why this isochrony does not appear in a speech coming from a 

hypothetical musical protolanguage, the authors conclude that sexual selection is 

not the selective force promoting synchronization (because women and men manifest 

equal skills), but a more general “cooperative urge” for sharing experiences and 

emotions. However, they still accept as plausible a synchronous vocal display, i.e. 

                                                           
45

 In fact, these acoustic cues allow rats to detect and distinguish languages only by their rhythm. 
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chorusing (Merker et al., 2009), enhancing human capacity for isochronous signal 

production and entrainment. 

Patel (2009)’s Beat Perception and Synchronization (BPS) tests (renamed “Pulse 

Perception and Entrainment” in Fitch (2013)) in non-human animals, together with 

Schachner et al. (2009) analysis of videos showing dancing animals, demonstrate 

that birds and mammals can infer pulse from music or visual inputs, as well as can 

follow and anticipate it through body movements. That is the case for Sulphur-

Crested Cockatoos,46 parrots, budgerigars, an Asian Elephant and a California Sea 

lion.47  It is worth to say that BPS or PPE tests applied to non-human primates, 

concretely to chimpanzee Pan troglodytes (Hattori et al., 2013), offer evidence that 

they lack this ability, which by contrast is present very early in human new-borns. 

Although both the African Grey Parrot and the Sulphur-Crested Cockatoo 

maintained a consistent phase matching to the beat, only the latter displayed foot-

lifting phase matched with the beat, that is, showing a motor flexibility similar to 

human highly flexible motor response in entrainment." While synchronization of 

movement to a musical beat develops spontaneously in humans, it does not occur in 

most animals. Rhythmic entrainment is distinct from beat perception and 

synchronization (BPS) because the latter “involves a periodic motor response to 

complex sound sequences […], can adjust to a broad range of tempi, and is cross-

modal” (Patel et al. 2009). 

Drumming is closely related to instrumental music —“the use of the limbs or 

other body parts to produce structured, communicative sound, possibly using 

additional objects” (Fitch, 2005)— because it involves the use of limbs to hit 

sounding objects or the own body, and it is developed in our closer relatives, the 

Great Apes, thus making the non-tonal percussive behaviour of drumming a nice 

human instrumental music homologue. Apart from gorillas, chimpanzees and 

bonobos, in which bimanual drumming is used to mark aggressiveness in fighting 

and hierarchy in social positions, only few other vertebrates, such as palm cockatoos, 

woodpeckers, kangaroo rats and desert rodents, are found to drum out rhythmic 

patterns by using either a stick, their own bill, or their hind feet (respectively). 

                                                           
46

 Snowball, sulphured-crested cockatoo video-link: http://www.youtube.com/watch?v=cJOZp2ZftCw 
47

 Californian sea lion video-link: http://www.youtube.com/watch?v=6yS6qU_w3JQ 
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Surprisingly, for this work, bonobos, the most social great apes, are able to 

“maintain a steady drummed beat for at least 12s” (Fitch, 2005). Curiously, the 

singing skill of gibbons, i.e. their complex vocal displays in duets, is also developed 

in absence of experience, and is accompanied by a vigorous movement component 

(Fitch 2005), suggesting a possible homologue to dance. Hence, this reported 

behaviour reinforces our protomusic hypothesis by incorporating (together with 

drumming) complex, rhythmic gestural patterns —linking a common precedent for 

our current music and dance. 

Apart from pulse synchronization and entrainment, a hierarchical metrical 

structure might also be present in the animal kingdom. Although evoked responses 

in electro-encephalographic signal (revealing mismatch negativity to metrical 

structure violations) have been found in human new-borns and adults detecting 

downbeats omissions, there is a lack of evidence of meter in other non-human 

animals (macaques, pigeons…). Nevertheless, more experiments should be made to 

confirm its complete absence. Personally, we have the intuition that metrical 

hierarchy must be a by-product of our language capacity, even if it is supported and 

enhanced by our attentional mode of perceiving. 

5.2 Two hypotheses on rhythm origins 

Looking at the basic capacities allowing rhythmic cognitive flexibility, two main 

hypotheses have arisen after having found beat entrainment and rhythmic 

behaviours within different species: vocal learning and social convergence; which are 

strongly related to language and music emergence. On the one hand, the former 

predicts the appearance of beat entrainment —processing of relative timing of 

events by expecting their phases or periods, and adjusting these expectations to 

actual occurrences (Grahn, 2012)— in vocal learning species with vocal mimicry 

skills, because of the tight connection between motor and auditory brain regions 

that they present. On the other hand, the latter predicts rhythmic abilities as a 

social coordination instinct, where group synchronization arises from rhythmic 

isochrony, which permit cooperation in auditory signal generation (Fitch, 2012). 

This vocal learning hypothesis for BPS relies on brain circuitry correspondences: 

motor-auditory links and overlapping regions as basal ganglia and supplementary 
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motor areas. However, BPS may also require circuitry for open-ended vocal 

learning, permitting novel sound patterns imitation throughout life, and the ability 

to imitate non-verbal movements. Comparative data from animal rhythmic 

behaviour has demonstrated that pulse extraction and synchronization is not a 

property unique to humans. Furthermore, not only synchronized behaviour has 

been attested for audio signalling in insect and frog species but also for visual 

signalling in fireflies. However, only humans shows a cross-modal capacity to 

synchronize, and at different tempos. 

While data coming from parrots and the Asian elephant seem to support the 

idea, those studies revealing an absence of entrainment in other vocal learners 

(songbirds kept in human homes, captive dolphins and orca exposed to music…) 

challenge this hypothesis, suggesting vocal learning is necessary, but not enough for 

BPS or PPE. In the case of Californian sea lions, which are otariids and the unique 

non vocal learners’ members within the pinniped family, one can defend that the 

neuronal connections from a common ancestor shared with walruses and phocids 

(both vocal learners) still remain in place. 

As it has been explained above, Patel’s (2006) hypothesis is that vocal learning 

and rhythmic synchronization are linked: concretely, BPS is a consequence of a 

selected vocal learning ability. Complex vocal learning (CVL) is the ability of 

learning to produce complex acoustic communication signals based on imitation 

(Patel, 2009).  These links between BPS and CVL are based on a tight auditory-

motor interface integrating auditory perception with rapid and complex vocal 

gestures promoted by vocal learning, as well as on particular modifications of brain 

substrates, like vocal learning birds’ basal ganglia —structure involved in human 

beat perception from music. However, CVL is not enough, and BPS needs additional 

foundations as: open-ended vocal learning, non-vocal movement imitation and 

complex social group life (Patel, 2009). As neuroanatomical research suggests, 

homolog brain circuits involving the striatum, thalamus and forebrain, appear in 

vocal learner birds and mammals, in spite of their divergence 200 million years ago 

(Jarvis, 2007), thus constituting a case of convergence or deep homology, with 

similar underlying brain mechanisms. Whereas adult human BPS seems to differ 

from animal BPS, infant human BPS is found to be closer to animal BPS patterns, 
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especially in “sporadic synchronization” —limited periods of genuine 

synchronization to the beat. 

Rhythmic entrainment to music is no longer unique to humans, since it is found 

in several bird species and mammals. This capacity to move the body or the limbs 

following an external beat is necessary for music playing and dancing cross-

culturally. However, it is relevant the absence of this rhythmic entrainment in non-

human primates, since “they naturally engage in 'drumming' in the wild” (Fitch, 

2009). The fact that gorillas roughly beat their own bodies or objects and 

chimpanzees drum on rainforest trees with their feet or hands (which generates 

certain rhythmic signals), plausibly suggest a drumming propensity in our last 

common ancestor. This tree (rebuilt from Ravignani (2014)) depicts these findings:  

 

 

The vocal learning hypothesis (Patel 2006, 2008), although rightly based in a 

cross-modal linkage between auditory and motor brain areas, does not explain why 

certain complex vocal learner species, though possessing “vocal mimicry”, lack the 

ability to entrain. Looking for an explanation, Fitch (2009) proposes that engaging 

in social action might develop a key role in auditory entrainment, since entrainment 

is present in group oriented behaviours: such as parrots' vocal “badges” of group 

membership and children's better entrainment in socially-engaged game-playing 

contexts. In this line, the correlation of social group behaviour with entrainment to 

beat and complex vocal learning seems to be coherently related to the Darwinian 

hypothesis of a greater social interaction pushing human cognition and selecting 

increased intelligence. 

Figure 10. Underlined species are widely accepted vocal learners. Italicized species have rhythmic behaviours. 
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5. VOCAL LEARNING AND OTHER HYPOTHESES 

As we have seen, Patel (2006) observed that animals showing BPS were almost all 

vocal learners. For this reason, an interesting hypothesis linking these two abilities 

could be established: “selection for vocal learning might lead to a capacity for 

rhythmic entrainment as a side-effect” (Fitch, 2013). This hypothesis is based on the 

narrow neuronal connections between auditory and vocal motor systems, which 

seem to be unusual in vertebrates without the vocal learning ability. Concretely, 

complex vocal learning may have arisen in both mammalian and avian evolution, 

and in humans it is tightly linked to speech. In fact, it allows us to learn the socially-

shared open-ended vocabulary of spoken languages. Thus, it seems that the selection 

of complex vocal learning might have promoted more general connections between 

auditory input and motor behaviour, a linkage that is tested by researchers such as 

Schachner et al. (2009), Hasegawa et al. (2011), Cook et al. (2013) and Hattori et al. 

(2013).  

6.1 Vocal behaviour in animals 

Vocal learning is an ability which permits to modify the acoustic and syntactic 

structure of own species-specific sounds. It is distinct from auditory learning, which 

is present in most (if not all) vertebrates and consist of forming memories of heard 

sounds, because vocal learning, although depending on auditory learning, consists of 

imitating and improvising upon sounds. Vocal learning is more restricted, only found 

in three avian clades: songbirds, parrots, and hummingbirds; two marine mammal 

clades: cetaceans (dolphins and whales) and pinnipeds (seals and sea lions); 

elephants, some bats and humans. In contrast, its presence in non-human primates 

is dubious, because it would only consist of pitch little changes of innate calls and 

imitating sounds without using the larynx.  

Egnor and Hauser (2004) distinguish three vocal learning behaviours in animals: 

 

1. Vocal comprehension learning: appropriate response to vocalizations 

2. Vocal production learning: spectrotemporal features of vocalizations are modified 

after auditory experience 

3. Vocal usage learning: the right use of a call in an adequate social, ecological context  
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Vocal production learning is obviously present in songbirds, but it does not seem to 

occur in non-human primates’ development.48 It has been found acoustic variation 

between social groups (dialects) and acoustic convergence (conspecific vocal 

behaviour matching) in adult non-human primates' vocalizations, thus supporting 

that social context affects their vocal production, maintaining and advertising social 

group membership. While vocal plasticity appears stronger during development in 

humans and most songbirds, it is hard to detect in the development period of non-

human primates. In fact, vocal plasticity in adult non-human primates “consists of a 

subtle acoustic change on top of an innately determined call structure”49 (Egnor and 

Hauser, 2004), which is quite different from human vocal plasticity (found in 

language acquisition), which involves subcortical and cortical brain structures. 

Assuming that we have the “ability to acquire new vocalizations or modify the 

spectral or temporal structure of existing vocalizations based on environmental 

cues” (Armador and Margolias, 2011), we have to focus on how the “processing of 

auditory cues that are memorized” and changed in motor patterns is implemented in 

the brain. It has been found that non-learning species that produce innate 

vocalizations only possess midbrain vocal nuclei. Besides, while call production 

(innately-specified vocalizations) involves the brainstem and the midbrain system, 

song production (learned vocalizations) recruits the forebrain system.   

Vocal mimicry of human speech has been attested in parrots, songbirds and seals. 

Its selection suggests an auditory-motor linkage, which may have promoted 

entrainment. In the absence of vocal mimicry, other factors per se, such as 

phylogenetic proximity to humans, exposure to music, movement imitation and 

complex social structure, do not entail entrainment to pulse. The evolution of vocal 

mimicry in avian species is associated with parallel modifications to the basal 

ganglia, the same mechanisms that support musical beat perception in humans 

(Schachner et al., 2009). Therefore, vocal mimicry selection has come hand in hand 

with basal ganglia modifications, which promoted a tight auditory-motor coupling. 

Since entrainment does not appear in avian species in their natural behaviour, vocal 

                                                           
48

 Although it is found to some extent in primates’ adulthood, in both sexes, and in a wide variety of 
call types: contact and alarm calls and sexual advertisement 
49

 This call structure implicates the anterior cingulate cortex, supplemental motor area, motor cortex, 
cerebellum and subcortical structures (as the periaqueductal grey). 
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mimicry should be what it might have been selected. The parallel case may have 

occurred in the human lineage, and, once complex vocal learning was selected, our 

rhythmic behaviours may somehow participate in our vocalizations as well.  

6.2 The evolution of vocal learner birds’ brain 

Although certain elements of call production may have been present in early 

vertebrates 400 million years ago and they are still well preserved, vocal learning has 

evolved intermittently and independently in distinct higher vertebrates lineages. 

Studies on mammals and birds indicate a “strong forebrain regulation of descending 

motor pathways arising from non-primary auditory forebrain pathways” (Armador 

and Margoliash, 2011). Given that only the three vocal learning bird groups show 

seven similar telencephalic brain structures [see the picture below], Jarvis (2006) 

proposes that these set of seven vocal brain nuclei might have evolved into a 

complex behaviour in a common ancestor within the past 65 million years, strongly 

constrained by epigenetics and followed by independent losses. 

After comparing the seven areas through gene expression analyses (a behavioural 

molecular mapping detecting the transcription factor ZENK), Jarvis (2006) 

distinguished hearing-activated areas from vocal-activated areas, the former 

Figure 11 
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creating an auditory pathway similarly located in vocal learning and non-learning 

birds. The seven vocal-activated areas, can be divided into two groups: (i) a posterior 

vocal nuclei located away from auditory areas in parrots, adjacent to them in 

hummingbirds and embedded within them in songbirds, thus forming a posterior 

vocal pathway for learned vocalizations; as well as (ii) an anterior vocal nuclei, 

within the forebrain, forming a loop connecting the cerebrum and the thalamus. 

Jarvis points out that in songbirds, "the anterior vocal pathway may be responsible 

for vocal learning and some as yet undefined role in the social context of singing, as 

well as song syntax". It applies to parrots as well, although their differences arise 

from the interactions between posterior and anterior vocal pathways. 

If the cerebral nuclei for vocal learning are divided into a posterior vocal 

pathway (PVP) for the production of learned vocalizations and an anterior vocal 

pathway (APV) forming a loop for the control of vocal learning, similarities with the 

circuitry in mammals arise, because PVP projects to motor neurons (as it occurs in 

mammalian brain motor cortex projections) and APV loop resembles mammalian 

Figure 12 
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1. All vocal learning species, even those with evolutionarily quite distant lineages, share 

neuroanatomical circuitry that is topologically similar, even when the concrete neural 

structures comprising each component in each species may be different. 

2. A common group of genes, including the ones that guide axonal connections, are 

commonly, but specifically, expressed in these circuits in vocal learning species, but not 

in closely related vocal non-learning species. 

3. These shared patterns of neuroanatomical circuitry and gene expressions necessary for 

vocal learning may be coded via common (but still not evident) sequences of genes that 

are language-related in humans and which start functioning upon environmental demand 

at different evolutionary lineages (a deep homology to subserve convergent evolution). 

cortical-basal ganglia-thalamic-cortical loop. As such, this avian system of 

organization is comparable to the mammalian six-layered cortex connected to basal 

ganglia, suggesting a deep homology between birds and mammals’ vocal learners 

(see the picture above [fig. 12] extracted from Jarvis and Petkov (2012)). 

In short, as Jarvis (2006), we defend that a common ancestor of birds possessed 

vocal learning and the seven cerebral nuclei. However, this trait could not be 

manifested in certain orders because of epigenetic constraints imposed by the 

environment and the animal morphology: survival cost or predation danger, 

syringeal and respiratory system, and so on. Furthermore, assuming Jarvis (2006), 

the vocal learning system could be a universal brain structure, even for mammals, 

perhaps inherited from a common reptilian ancestor with avian, similar to the 

auditory pathway in vertebrate groups, permitting auditory learning. 

M.A. Arbib and A. Iriki (Arbib, 2013) summarize Jarvis’ vocal learning findings 

relating language and music evolution to birdsong evolution, in the following points: 

 

In contrast, Rizzolati and Arbib (1998) and Corballis (2002) hypothesize that 

vocal learning might have arisen in the hominid lineage from a gestural system —

therefore differing from bird vocal learning origin— without considering the role of 

audition in human vocal learning. In the same line, Arbib and Iriki (2013)’s 

hypothesis50 supports a gestural origin that is based on a mirror neuron system. This 

                                                           
50

 Arbib and Iriki (2013) defend a the notion of a language-ready brain arising from a niche 
construction as a bridge between biological and cultural evolution, a process based on altering the 
relation to the environment, thus changing the adaptive pressure constraining species evolution, as 
well as altering the cultural niche in which human evolve so as to construct new intentional and 
neuronal niches, wherein new behaviours remodel the brain by social contact. 
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system would function for imitation, intention attribution and language, but it 

would be activated in monkeys51 and primates as well, during action recognition, 

manual dexterity and grasping, and communicative gestures. Given that vocal 

learning is lacking in non-human primates, and it has not led to language in vocal 

learner species, other mechanisms must be also implied in language emergence, such 

as a communicative gestural system, social community living, orofacial gestures, and 

intentional behaviour. In fact, these other systems also promoting language could be 

seen as necessary ingredients of the increased “mental powers” proposed by Darwin, 

which enriched human cognition and allowed Homo sapiens to pass from musical 

protolanguage to language.  

6.3 An audiomotor hypothesis for beat evolution 

Looking at our closest phylogenetic relatives (i.e. primates), an audiomotor 

evolutionary hypothesis is proposed by Merchant and Honing (2014). It decomposes 

the neurocognitive mechanisms underlying interval-based timing and rhythmic 

entrainment, so as to suggest their gradual emergence. They also claim that humans 

and other primates share interval-based timing, but that rhythmic entrainment 

ability is only partially shared. 

Human rhythmic entrainment implies two features: tempo or period matching, 

“the period of movement equals the musical beat period”, and phase matching, 

“rhythmic movements occur near the onset times of musical beats” (Merchant and 

Honing, 2014); both based on temporal anticipation (Repp, 2005). Moreover, this 

cognitively complex auditory-motor interaction shows flexibility to synchronize to 

broad range of tempi, as well as integer rates of fractions and multiples of the basic 

beat (Honing,  2013), suggesting a human mind access to distinct levels of 

periodicity, selected as the beat at every case (Drake et al., 2000). 

Merchant and Honing (2014) challenge the vocal learning hypothesis (Hasegawa 

et al. 2011, Patel et al. 2009; Schachner et al. 2009) arguing that the studied sulphur-

crested cockatoo showed only occasional periods of synchronization and that Cook et 

                                                           

51
 Arbib and Iriki (2013)’s mirror system hypothesis links macaques F5 brain region to Broca’s area, 
as well as its connection to vocal folds found in squirrel monkeys, to some extent explaining a 
protospeech emergence coming from controlling a protosign. 

 



48 

 

al.(2013)’s Californian sea lion is not considered a mimic vocal learner. The gradual 

evolution of complex vocal learning proposed by Petkov and Jarvis (2012) would 

shift beat entrainment to a gradual development of auditory-motor skills, part of 

them already found in non-human primates. Hence, rhythmic entrainment would be 

gradually developed in primates across evolution, selecting some different 

constitutive properties. In monkeys, for instance, there is a preference for 

visuomotor integration, manifested in behavioural imitation during socially 

coordinated actions with some level of rhythmic entrainment.  

Merchant and Honing (2014) hypothesize that the similar timing performance for 

single intervals found in primates and the rhythmic entrainment gradually increased 

in anthropoids may depend on the neural system defining “the nested hierarchical 

properties of sequential and temporal behaviour”, computing single sensorimotor 

associations, simple action chunks and superordinate action chunks. They report 

that macaques’ performance of single interval tasks —such as interval production, 

categorization and interception, i.e. rhythmic grouping— is comparable to human 

skills. However, their multiple interval tasks —such as rhythmic entrainment, 

synchronization and continuation— differ from them. It may be due to a strong 

coupling absence between the auditory and motor systems, which is otherwise found 

in complex vocal learners.  

Rhythmic behaviours, such as music and dance, engages a motor cortico-basal 

ganglia-thalamo-cortical circuit [henceforth, mCBGT], also used in sequential and 

temporal processing, which controls voluntary skeletomotor movements including 

SMA and the putamen (Coull et al. 2011). Studies in monkeys also reveal the 

engagement of a mCBGT circuit for perceptual and motor aspects of timing and 

control of movement sequences.  

However, while mCBGT circuit in humans shows different loops responsible for 

the concatenation of sequential auditory information (or formation of chunks) and 

for temporal chunking of sensory information, starting in the anterior part of 

Broca’s area and its right homologue, “the anterior prefrontal CBGT and the 

mCBGT circuits in monkeys might be less viable to multiple interval structures, 

such as regular beat”, perhaps due to monkeys partial development of Broca’s area 
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and its association with basal ganglia and premotor areas. In addition, human direct 

connections between medial and ventral premotor areas and Broca’s area are 

reduced to a smaller tract in macaques. We can compare macaque and human brains 

and pathways, as they are shown by Merchant and Honing (2014). 

 

All these findings suggest that the similarities among primates in executing and 

perceiving single interval timing may depend on the conserved functional-

architecture of medial and ventral premotor areas and putamen forming the 

skeletomotor mCBGT loop, which may permits an abstract neural representation of 

time during rhythmic behaviours in primate lineage. 

6. A RHYTHMIC BRAIN 

We have compared rhythmic behaviours in animals following two main hypotheses: 

the complex vocal learning hypothesis permitting entrainment to the beat and the 

social convergence hypothesis of rhythmic behaviours in primates, which were, to 

some extent, linked together in the audiomotor theory. We will now focus on how 

beat and meter are processed by humans through attentional fluctuations that 

follow the environmental stimuli, via neuronal rhythmic oscillations that engage 

their firing synchronously with the rhythmic beat. 

7.1 The Dynamic Attending Theory on beat and meter 

The Dynamic Attending Theory (DAT) (Jones and Boltz, 1989; Large and Jones, 

1999) focuses on “how attention is directed in time”, and considers the metrical 

Figure 13 

mCBGT: motor Cortico-Basal 

Ganglia-Thalamo-cortical circuit 

MPC: Medial Prefrontal Cortex 
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structure as an active listening strategy,52 rather than a simple rhythmic parsing 

mechanism. In other words, meter’s dynamic structure permits “to facilitate future 

oriented attending, to direct perception and to coordinate behaviour with external 

events” (Bolger et al. 2013).53 Thus, attentional dynamics (Large & Jones, 1999) 

aims to explain the listeners’ response to time-varying events, proposing that 

internal oscillations or attending rhythms are able to entrain to external events and 

targeting attentional energy to expected points in time. This theory therefore 

postulates a coordinated relationship between external rhythms,54 created by distal 

events, and internal rhythms, actively generating temporal expectancies.  

Given that the brain must represent and process beat and meter periodicities, 

Nozaradan et al. (2011) provide electroencephalogram (EEG) evidence of neural 

entrainment to beat and meter showing that “beat elicits a sustained periodic EEG 

response tuned to the beat frequency” as well as “meter imagery elicits an additional 

frequency tuned to the corresponding metric interpretation of this beat”. In fact, 

Nozaradan et al. (2011)’s support the resonance theory for beat and meter 

perception55 (Large and Kolen, 1994), where the emergence of beat perception comes 

from the entrainment of neuronal populations resonating at the frequency of the 

beat, and where meter perception comes from higher-order resonance of 

subharmonics of beat frequency. Nozaradan et al. (2011)’s experimental results show 

that beat perception from a complex auditory signal elicits a periodic response in the 

EEG spectrum, appearing as a steady-state beat evoked potential (EP) at the beat 

frequency, as well as the voluntary binary- or ternary-metric interpretation of the 

                                                           

52
 A modulation of attentional resources over time occurs in correspondence with the induced meter, 
and the temporal events coinciding with the strong beats are highly anticipated. 

53
 Their research support the role of meter in generating temporal expectations, in orienting attention, 
and in affecting pitch accuracy judgements and temporal differences. 

54
 Large & Jones (1999)’s idea of rhythms broadly involves non-isochronous and isochronous time 
structures —such as the time patterns found in language or in music—, considering external rhythm 
as “a sequence of temporally localized onsets, defining a sequence of time intervals that are projected 
into the flow by some external event”. 

55 As Nozaradan et al. (2011) state, “beats can be organized in meters, corresponding to subharmonics 
(i.e. integer ratios) of the beat frequency”. However, beat perception could also consist of perceiving 
periodicities from not necessarily periodic sounds. 
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beat induces an additional periodic signal in the EEG at the corresponding 

subharmonic of beat frequency: f/2 or f/3, respectively. 

  

These pictures have been extracted from Nozaradan et al. (2011) to report Evoked Potentials of 

different amplitude peaks depending on perceiving (1st) a steady beat at the frequency of 2.4Hz; (2nd) 

the steady beat categorized through a binary meter with a secondary peak marking the strong beat of 

the binary pattern (1.2Hz); and (3rd) the steady beat categorized through a ternary meter showing 

two secondary peaks: one marking the strong beat of ternary pattern (0.8Hz) and other marking the 

second weak beat —thus creating a binary subdivision of this ternary pattern. 

 

Bolger et al. (2013) experimentally revealed that meter-driven orienting of 

attention over time is cross-modal:56 processing visual and auditory targets equally. 

Their results indicate that the cross-modal meter effect is not restricted to 

isochronous stimuli, but that it also applies to general structured rhythms as well as 

highly variable rhythmic patterns.57 Moreover, they also support an attractor 

hypothesis where highly expected positions within the meter structure create an 

anticipatory effect that presents greater attentional energy and leads to a secondary 

periodic oscillation over time interacting with the main metrical structure.  

                                                           

56
 Bochard, Tassin, Zagar (2013) also demonstrate that oscillatory attention tapped into cognitive 
processes combining visual stimuli, auditory rhythm and language. When a correctly-divided word 
syllable is presented on-beat, its visual recognition is quicker than when it is presented off-beat, 
showing that auditory rhythmic attention influence word recognition beyond the auditory modality. 

57
 For instance, music complex rhythms are found to engage more oscillators whose coupling builds 
more stable beat periods, as well as their internal fluctuation facilitates the metrical structure access. 
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Figure 14 

In order to achieve attentional synchrony, anticipatory attending is needed, in other 

words, “a temporal shift of attention that anticipates the onset time of a sound” 

(Jones, Moynihan, MasKenzie and Puente, 2002). While the beat is a psychological 

phenomenon relating to the subjective emphasis of certain events equally spaced in 

time, the emergent property of meter is characterized by multiple, hierarchically-

related periodicities over time scales as 

well as is based on beats, perceived with 

different salience in a metrical structure 

of stronger and weaker events. The figure 

(fig.14) shows how the attentional energy 

fluctuates according to the metrical 

position of each beat, that is, as a 

function of the metrical salience of 

temporal positions.  

A top-down structure onto rhythmic experience is usually imposed by listeners, 

grouping isolated sound sensations into temporally-arranged system of ideas, 

describing a metrical hierarchy: “repeating intervals of equal duration, which are 

further subdivided into equal intervals” (Motz et al. 2013). Nested metrical levels 

indeed constraint the represented rhythmical structures: metrical patterns are 

preferentially treated, because rhythms occurring at equally-spaced subdivisions of a 

repeating cycle have perceptual advantages and are represented more accurately.58 

The “top-down imposition of metrical levels on [...](rhythmic) patterns is the 

dynamic result of oscillators resonating at integer multiples of the duration between 

beats” (Motz et al. 2013), in other words, neural oscillators synchronize with the 

external event which endogenously deploy focused attention to expected upcoming 

sounds. When a non-metrical sequence is perceived, this non-integer ratio sequence 

is systematically regularized, i.e. temporally distorted, shifted toward the nearest 

integer ratio subdivision, attracted to a stable metrical pattern. Therefore, 

individuals employ effective cortical representations of non-integer ratio sequences 

regularized towards the nearest expected metrical structure. 

                                                           
58

 A lot of evidence support that people are better remembering, reproducing, synchronizing with, 
detecting changes and making perceptual judgements when sound events sequences occur within a 
repeating time period equally subdivided into integer ratio relationships or harmonics. 
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The following table compiles the views of beat and meter from the DAT: 

 

7.2 Brain oscillations in synchronzationi and anticipatory attending 

Predictive action representing temporal information is required to move in 

synchrony (playing an instrument, dancing...) with an auditory rhythm. Through 

the low-level cortical oscillations underlying sensory predictions, the brain creates an 

internal model of the world, inferring and predicting what and when is going to 

happen in the sensory environment (Giraud et al., 2012). 

In some way related to BPS, Fujioka, Trainor, Large and Ross (2012) have found 

that “the periodic modulation of beta activity following fast-paced regular auditory 

stimuli could aid the initiation of movement”, which supports an auditory-motor 

facilitation. Gamma (28-48Hz) and beta (15-20Hz) oscillatory patterns detect 

violations of expectations during the perception of an isochronous sequence of tones, 

with a first larger gamma-band response followed by an increased beta rebound.  

Passive listening to isochronous sound stimuli modulates beta oscillations, which 

reveal an initial rapid beta decrease following the stimulus onset and the subsequent 

rebound —probably representing the internalized interval—, and show a temporally 

BEAT: Although acoustic features —such as loudness modulations, timbre variations, 

and melodic or harmonic accents— normally induce musical beats; prior musical 

experience, periodicity expectation and periodic motions’ generation also generate 

mental representations inducing the musical beat. The Dynamic Attending Theory 

(George and Boltz, 1989; Large and Jones, 1999) considers beat perception as the 

synchronization of the beat periodic structure with the listener’s attention, which leads 

to a periodic modulation of expectancy as a function of time. As it is suggested in 

primate studies, the neuronal beat-induced periodic EEG response varies according to 

the phase of the beat-induced cycle, which can elicit a cyclic fluctuation of the 

responding neuronal population excitability, thus modulating their amplitude. 

METER: Although accents or periodic physical changes in beat —such as changes in 

duration, loudness, timbre or pitch— usually induce musical meter, its mental 

representation can also emerge (voluntarily or involuntarily) in cases of absence of 

accentual cues. Given that metric structure introduces additional periodicities based on 

beat frequency integer ratios (a natural human tendency in timing perception and 

production) suggests that metric interpretation enhances subharmonics within the 

neuronal network entrained by the beat. There is a human natural bias for binary 

structures in timing processing (Repp, 2005), even in ternary meter. It explains, for 

instance, the existence of musical “amiolias” —when the ternary meter briefly changes 

to binary meter— because of secondary attentional peaks. 
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correlated beta modulation in auditory- and motor-related cortical and subcortical 

areas, as well as a neural synchrony measured as cortico-cortical phase coherence at 

beta frequencies modulated with the sound rhythm (Fujioka et al. 2012). 

Although neural processing for timing at the frequency range of 1-3Hz involves 

basal ganglia and cerebellum, reported in musical tempo prediction, beta-band 

activity (around 20Hz) modulation, reflecting changes in an active status of 

sensorimotor functions, provides a mechanism for maintaining predictive timing and 

coordinating auditory and motor systems. Following the sound stimulus tempo, 

sensorimotor cortex, inferior frontal gyrus, supplementary motor area and 

cerebellum —as well as the thalamus and the posterior parietal cortex— are 

activated, which allows us to anticipate acoustic events through predictive temporal 

representation of stimulus rate, spanning motor and auditory brain areas. 

7.3 Rhythm and meter in language 

Paralleling the metrical structure of strong-weak beat perception found in music, a 

similar patterning of strong and weak elements also occur in speech, where stressed 

and unstressed syllables offer relevant prosodic information. Although the same 

degree of temporal regularity does not appear in speech compared to music, listeners 

seem to perceive stressed speech events isochronously, thus yielding regularity, as 

well as it occurs with the repetitive —hence, predictable— prosodic information. In 

speech, metrical stress patterns have a key role facilitating higher-order semantic 

processing. Cason and Schön (2012) apply the Dynamic Attending Theory framework 

to speech perception, claiming that “attentional resources are preferentially 

allocated to locations at which stressed syllables are predicted to occur”. According 

to that, dynamic attending may enhance speech sounds processing, because the 

stressed syllables timing expected by listeners contributes to speech perception. 

Cason and Schön (2012)’s experiment reveals that a music-like rhythmic prime 

when is matched to the speech’s prosodic features enhances spoken words’ 

phonological processing. This is due to the beat and metrical structure of the prime, 

which permits the generation of temporal expectations. Moreover, in word 

comprehension, predictive mechanisms seem to involve segmental rather than 
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lexical predictions (Gagnepain et al. 2012), which may give evidence that auditory 

cortex samples speech into segments, making them predictable in time.  

For speech rehabilitation, the use of rhythmic therapies enhancing phonological 

processing has been found very useful. For instance, Rhythmic Speech Cuing 

(Thaut, 2005), which paces speech production by using “patterned” cues placing a 

beat on salient syllables, could benefit non-fluent aphasics production, as well as the 

use of metrical structure for practising bisyllabic and trisyllabic word patterns in 

languages showing these metrical feet. Metrical stress therapies are also applied to 

Cochlear Implanted children, since their speech acquisition priming effect; and 

rhythmic regular temporal structure aiding learning and memory improve word 

recall in Multiple Sclerosis patients. 

Before starting this new section, we will summarize what has been said on 

rhythmic cognition and our rhythmic brain in order to refresh certain properties 

which seem to be common with pitch and tonality origins. Humans cognitively 

categorize acoustic events by regularizing their duration to integer ratios of pulse so 

as to group them and extract the underlying beat and meter, as well as to experience 

its tempo and tempo’s fluctuation. Then, we highlighted two key processes, pulse 

extraction and meter induction, which permit to yield music metrical structure. 

While the latter seems absent in non-human animals, the former process has been 

found in certain animals entraining to the pulse through body movements, creating 

expectancies about the phase of the beat. Furthermore, these animals perceiving and 

entraining the pulse are found to be complex vocal learners, which entails the 

existence of tights connection between auditory and motor regions in the brains, as 

the study of songbirds’ brain has revealed. However, rhythmic social behaviour (i.e. 

primate’s drumming), as well as macaques’ grouping during rhythm perception, 

should be considered as important contributors to the human protomusic stage as 

well, because of their phyolgenetically proximity. On the other hand, beat and meter 

perception in humans could, alternatively, be explained from a Dynamic Attentional 

Theory in which neuronal populations —especially those firing in beta rhythms— 

synchronize with the (visual or auditory) stimulus’ frequency, creating expectancies 

or certain salient points over time. 
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Figure 15 

7. PITCH AND TONAL-HARMONIC COGNITION 

Even though several neural network studies have focused on both production and 

perception of music, pointing to a general purpose system able to learn complex 

harmonic structures, they do not specify why human auditory system easily seeks 

tonality (pitches or sounds containing integer harmonics), that is to say, why our 

hearing mechanism is specialized to the harmonic spectra that only appears in 

animal vocalizations when most inorganic sounds occurring in nature are indeed not 

tonal. However, it should not be surprising, because this specialization of our ear to 

analyze harmonic series might be a simple ancient adaptation to the characteristics 

of our voice, paralleling other animal ability in identifying their own species-specific 

communicative sounds, vocalizations, calls or cries. 

8.1 The spectral origins of pitch 

Kammraan Z Gill and Dale Purves (2009) realized that, although humans can 

distinguish between 240 pitches over an octave in the mid-range of hearing, the most 

widely used scales cross-culturally comprise five to seven tones dividing octaves into 

specific intervals. Concretely, these intervals are 

indeed “those with the greatest overall spectral 

similarity to a harmonic series”, meaning that all 

the simultaneous overtones or secondary 

frequencies accompanying a harmonic acoustic 

sound. These harmonics are integer ratios of the 

fundamental pitch, i.e. following proportions as 

1:2, 1:3 or 2:5. This picture geometrically 

expresses how frequencies are divided into integer 

ratios, illustrating harmonics and subharmonics. 

The following musical scale expresses the (approx.) harmonic series of C0 

(16.35Hz): 

 
Figure 16 
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Figure 17 

However, there is a lack of general agreement on the harmonic series’ role in scales. 

Ball (2008), for instance, does not find any reason to base scales on it. Nevertheless, 

he accepts that it is undeniable that they are not arbitrary, since “most have 

between four and seven notes arranged asymmetrically within the octave”, and that 

all show unequal intervallic steps. In fact, it is this asymmetry which indicates a 

tonal centre to the listener, together with the tones’ structural position. 

Previous approaches to scale structure and its origins, such as (i) consonance 

curves made up of integer ratios, (ii) musical patterns defining a musical grammar, 

(iii) competing preferences for small integer ratios and equal intervals, and (iv) 

multiple-tones scales (see Gill and Purves, 2009), have failed to explain the human 

preference for 5-to-7 tones’ scales and its biological rationale. 

For this reason, Gill and Purves (2009) join Helmholtz’s 

(1877) view of the relative consonance deriving from harmonic 

relations of two tones with Bernstein’s (1976) consideration of 

the scale structure determined by the appeal of lower 

harmonics in naturally-generated harmonic series. Then, they 

compare the harmonic structure of every interval in any scale 

to the general harmonic series structure (rather than the 

intervals between fundamental frequencies and individual 

harmonics). Finally, they evaluate their degrees of similarity 

by making an average of all the scale-intervals contrasted to 

the harmonic series intervals [see fig. 17].59  

It is found that “many of the relatively small number of scales [...] comprise 

intervals that, when considered as a set, are maximally similar to a harmonic series”, 

and are more similar to harmonic series when the number of discrete tones is 

decreased. The number of tones in musical scales seems to be delimited by the 

difficulty to sing larger intervals (requiring greater neuromuscular energy for 

                                                           

59 Figure 17, taken from Gill and Purves (2009), shows the mechanism used for obtaining the average 

of similarity between scales (the internal intervallic relations of two notes of a scale and their 

harmonics) and the natural harmonic series , in particular, it illustrates the Major third interval. 
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coordinating production) and the optimal minimum of enough variety available for 

comfortable intervallic combinations. 

The picture placed below (fig. 18) shows, as a sample, the case of comparing 

different pairs of notes from the minor pentatonic scale, with all the possible dyadic 

relations (A) and its percentage of similarity (B), when the intervals are compared to 

the harmonic series. 

 

Gill and Purves (2009), applying this method, have found that human cross-

cultural pentatonic and heptatonic scales occupy the ranking top position, showing 

the highest possible average made of integer ratios close to the harmonic series 

ratios. For instance, the pentatonic minor scale, whose interval relations were 

analysed above [fig. 18], occupies the top position of mean percentage similarity [see 

fig. 19] because its integer ratios 

are the most similar to ratios found 

within the harmonic series.  

 

8.2 Harmony from pitch 

Computing pitch relations is unique and critical for music processing. But it does not 

mean that it has evolved for this purpose, because pitch information processing 

Figure 18 

Figure 19 
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allows human to distinguish environmental sounds, which only some of them show 

naturally occurring periodic sounds with relevant pitch information. Neurally, the 

right-hemisphere auditory cortex specialization for pitch processing may have 

emerged for the way of processing the environmental sounds: quickly and roughly, 

or slowly and accurately (Zatorre, 2005). 

A main point of Gill and Purves (2009)’s statistical results is that human clearly 

prefer particular characteristics of harmonic series in musical scales, probably 

because “human ability to perceive tonal (i.e. periodically repeating) sound stimuli 

has presumably evolved because of its biological utility”, that is, because of the 

presence of harmonic resonances in nature, mostly produced by animal species 

producing periodic sound for socialization and reproduction. Although the harmonic 

stimuli are present in stridulating insects’ sounds, songbirds’ songs and mammals’ 

vocalizations, human vocalizations might have been the most biologically relevant 

and frequently experienced. Since primates are specifically attracted to conspecific 

vocalizations and human auditory systems have specialized for processing vocal 

sounds (harmonic series depending on vocal fold vibrations permitting voiced speech 

and vowels), it is plausible that musical scales resulted from a preference for dyads 

resembling maximally to harmonic series, in other words, human vocalizations. 

However, not only harmonicity matters, but also frequency ranges, timbres and 

prosodic fluctuations coming from human vocalizations are influential in musical 

preferences, as affective responses of nonhuman primates to music similar to their 

vocalizations frequencies and prosody (Snowdon and Teie, 2009) strongly suggest. 

Hence, while scale preferences seem based on harmonic series coming from vocal fold 

vibrations, other musical aspects (embellishments, microtonal intervals, 

glissandos...) may come from additional features of the human voice. 

8. ORIGINS OF TONAL-HARMONY 

In music, hierarchy not only occurs in metrical structure, but also in tones. Cross-

cultural tonal hierarchies convert certain tones into reference pitches, which show 

stability, frequent repetition and rhythmic emphasis, as well as occupy structural 

important positions. Therefore, more prominent and stable structurally significant 

musical tones yield a hierarchical ordering of them into different levels. Cross-



60 

 

cultural musical styles express the notion of tone centrality, i.e. “one central tone 

anchors a subset of hierarchically related tones”. While an acoustic approach looks 

at the harmonic series of complex periodic sounds to explain the formation of 

musical scales and chords, a cognitive approach takes into consideration the role of 

cultural experience in musical learning and perception. 

9.1 Tonal hierarchies 

Krumhansl and Cuddy’s ([henceforth K&C], 2010) theory of tonal hierarchies rests 

upon three interrelated propositions: 

 

While (1) reflects the psychological, internal status of tonal hierarchies 

organizing prominent, stable, and structurally significant tones, which affects 

memory, sense of stability, phrasing and generation of expectations, (2) refers to the 

musical, external status of tonal hierarchies, i.e. the tones salience on the surface of 

music, emphasized by frequency and duration. Then, (3) describes the relationship 

between the subjective and objective descriptions of tonal hierarchies, claiming that 

sensitivity to tones’ distributions enables the listener to abstract the tonal hierarchy. 

K&C (2010) propose two basic cognitive principles underlying tonal hierarchies’ 

structure: the existence of cognitive referential points and sensitivity to statistical 

regularities. Cognitive reference points —“to which other category members [other 

tones and chords] are encoded, described and remembered” efficiently (K&C, 

2010)— provide and economical description of the domain by guiding perception 

and cognition. These reference points show processing priority and memory 

stability. Distinct from other domains, they are not independently defined from the 

category, i.e. they do not have invariant cross-contextual inherent qualities, because 

the function of a tone depends on the musical context, relying on a listener’s 

relational processing (relative pitch) rather than on fixed labels (absolute pitch).  

1. Tonal hierarchies have psychological reality, that is, their cognitive representations 

play a central role in how musical sequences are perceived, organized and 

remembered, as well as how expectations are formed. 

2. Tonal hierarchies are musical facts, made evident in the musical surface and 

characterizing diverse styles and genres. 

3. Tonal hierarchies are abstracted by the listeners by using statistical frequency 

patterns of tones distributions and tones combinations. 
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This stable hierarchical tonal framework is isolable at the neural level and can be 

selectively affected in brain pathologies, tightly related to musical memory. With 

respect to the second principle, sensitivity to environmental regularities consists of 

an extracting mechanism which processes statistical properties of musical surface, 

just beginning with the statistical learning occurring early in human development. 

K&C (2010) claim that tone centrality arises from musical style regularities, such 

as “repetition of tones and tone sequences, melodic and rhythmic emphasis, 

durational and metric stress, and positioning of central tones at or near beginnings 

and endings of phrases”. Then, a mental representation is developed by the listener 

after exposure to music, coupling tone distributions and style-specific knowledge, 

which permits to generate expectations and remember musical patterns. According 

to Huron (2006), generating expectancies through statistical learning (i.e. 

anticipating frequently occurring events) has adaptive value in evolution, because 

knowing “what, when and where something is likely to occur speeds perception, 

action and evaluating the consequence of alternative actions” (K&C, 2010). 

A tonal hierarchy gives a stable, abstract frame of reference, which does not 

contain information about specific pitch heights, but reference to pitch classes, 

whose relative stability does not depend on tones’ position in music. Thus, tonal 

hierarchies are cognitive representations of the implicit knowledge of abstract 

musical structure within a culture or a genre, while event hierarchies describe the 

relative prominence of musical events occurring within particular sequences of 

specific pieces of music. Both hierarchies are complementary and provide the 

musical structure to the listener, as well as they give patterns of stability and 

instability. For that reason, Bharucha and Krumhansl (1990) propose three 

principles of tonal stability in terms of psychological distance and memory: 

contextual identity, contextual distance and contextual asymmetry. 

The following points are reported from experiments evidencing a tonal hierarchy: 

 

1. A tone is expected to resolve (or lead up) to a tone of greater stability in the hierarchy. 

2. Absolute pitch listeners name tones faster and more precise when they pertain to 

higher hierarchical positions in C major. 

3. If a melody ends with an out-of-scale tone, a larger P300 component appears in ERP. 

4. Tonal melodies are easier to recognize, as well as to detect pitch alterations. 
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Even though K&C (2010) defend the cognitive origin of tonal hierarchies from a 

psychoacoustic explanation based on the harmonic structure of complex tones, thus 

emphasizing the role of experience in music internalization, a recent experiment 

contrasting the harmonic relations among tones of all world musical scales reveals a 

human specialization for detecting the harmonic series spectrum, suggesting a 

conspecific vocalization specialization in human perceptual systems. While in a 

learning approach tonal hierarchy arises after an extensive exposure internalizing 

music, likely through a statistical input processing of frequent tones and their 

combinations; in a non-learning approach hierarchy reflects acoustic properties of 

tones depending on complex tones harmonics. 

9.2 Acquisition and loss of tonal hierarchies 

Internalized as cognitive resources, tonal hierarchies require a mature memory, and 

it is plausible that they emerge in development later than the basic perceptual 

sensitivities building them. While statistical learning occurs in the one-year-old 

infant brain, discriminating melodic contours, frequencies, harmonic ratios, phrasing 

and some pitch-scale patterns; tonal hierarchies apprehension and representation do 

not occur until the age of 5-6 years (for detecting stable tonal centres), whereas the 

7-year olds and adults perfectly detect harmonic and key implications and changes. 

Sensitivity to statistical regularities seems to depend on the maturation of our 

memory system, which would make it able to deal with hierarchical processing. 

Failures and loss of tonal hierarchy are accompanied by musical memory failures. 

This link has been corroborated by studies on neurological disorders and 

dissociations: normal language and intellectual functioning contrasting with musical 

functioning failures. Studies of acquired amusia, a clinical disorder affecting musical 

abilities after brain damage, support the linkage between tonality and recognition 

memory for familiar melodies, suggesting a role of tonal encoding of pitch in 

accessing to stored memory representations. Hence, impairment of acquired 

cognitive references leads to severe failures of melody recognition. The same is found 

in congenital amusia, a developmental disorder due to a neurogenetic anomaly, 

where the inability to detect out-of-key notes and recognize familiar tunes is also 
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found. Conversely, Alzheimer Disease manifests the alternative dissociation: musical 

memory is preserved as well as tonal encoding of pitch. 

9.3 Tonality as the musical grammar 

Perceiving a tonality depends on psychological mechanisms involving harmonic 

interactions of frequencies creating virtual pitches, memory traces of immediate 

contexts and internalized regularities of harmonic sequences. “Tones of greater 

surface salience in the sequence [… act] as reference points or anchors for other tones 

of lesser surface salience” (K&C, 2010), and, as Smith and Schmuckler (2004) have 

found, structural salient cues rely on total duration rather than frequency of 

occurrence. Hence, a distributional emphasis of tones establishes and maintains the 

listener’s sense of tonal reference points, correlating subjective and objective musical 

properties in all the cultures. For that reason, any listener can use tone distributions 

to perceive the main anchoring tones of tonality in different musical styles or genres. 

Paralleling some linguistic experiments on teaching invented languages with 

parametric rules applying to words according to their lineal position instead of their 

constituent position, the twentieth century western music 12-serialism created a 

musical grammar abolishing the tonal hierarchy, where the twelve chromatic tones 

were strictly ordered in series or tone rows, so as to avoid giving salience to any tone. 

Despite the stylistic intention of avoiding tonal implications, listeners are found to 

be influenced by local tonal implications, without internalizing the ordered sequence 

of tones in the series. Musical organization mechanisms are therefore not avoided. 

Reviewing what has been seen in this section on the evolution of pitch and 

tonality, first we claim that discrete pitches configuring cross-cultural scales are 

determined by the similarity among their intervallic relations and the distances of 

the harmonic series overtones, which divide a note frequency into integer ratios 

forming simultaneous harmonics. The brain specialization in processing acoustic 

harmonic sounds is proposed to come from human conspecific vocalizations’ 

preference over non-human or non-harmonic acoustic sounds. With respect to the 

tonal-harmony evolution, it is claimed that it depends to some extent on the 

emergence of hierarchy, organizing the scale pitches or notes in hierarchical levels, 

and essentially on grammar, yielding a system of internal reference to quiescent 
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points, whose salience over the others in turn depends on (i) their position in the 

metrical structure, (ii) their acoustic properties and (iii) the hierarchical scale level 

determining their function in each moment. Finally, the interaction between tonal-

harmonic structure and the metrical structure gives rise to the musical ebb-and-flow. 

 

 

  

SUMMARY 

In this part we proposed a protomusic stage, between a musical protolanguage and our 

current music, in which meter was in place due to the influence of a syntactic protolanguage 

(200-150KYA) and cognitive mechanism merge yielding hierarchies. A rhythmic protomusic 

with a hierarchical organization of the beat may have arisen. Given that some animals 

(certain complex vocal learners) can perceive beat and entrain to it, and that certain 

primates show rhythmic behaviour (drumming) and grouping categorization, we claim that 

humans were able to externalize the beat via metrical structures. In fact, this meter is 

essential for music and dance, and may have impacted our phonology (accented syllables) 

and poetry as well. Although our brain shows proficiency in processing a steady beat, it also 

has developed a specialization for processing pitch and harmonic relations. We claim that it 

has come from selecting the processing of our conspecific vocalizations, made of harmonic 

spectra. Then, once hierarchy and grammar emerged, a musical grammar also appeared, 

showing musical scales organizing pitches and referential quiescent points yielding 

tonalities. Thus, music and language evolution are deeply linked. 
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CONCLUSIONS 

9. GENERAL OVERVIEW 

The faculty of music parallels the faculty of language in many ways: both are 

governed by structural principles that are easily and unconsciously learned through 

environmental culture exposure, and both are used in social interaction to 

communicate intentional meaning. Their internal computing mechanisms are also 

genetically developed, neurally grounded and physiologically restricted. This, in 

turn, allows the processing of learned rule systems (grammars) which should be 

distinguished from the external perceivable output, which is culturally driven 

through musical idioms and languages. Moreover, music and language faculties are 

indeed bimodal, either externalized through acoustic sounds (music and spoken 

languages) or by gestural movement (dance and sign languages), generally implying 

the co-occurrence of both (instrumental music, co-speech gestures). While both 

possess grammatical systems, their expressed meanings differ: music evokes 

emotions by structurally marking sound qualities and their internal relations, 

whereas language expresses lexical concepts by referring to entities (objects or 

events) and propositions. And this fundamental distinction entails very different 

communicative usages within determined social contexts. 

Despite making use of certain linguistic-related neural mechanisms —such as 

Broca’s area to compute harmonic relations—, music is found to activate brain 

regions specific both to music perception and to structural processing (discrete pitch 

interrelations and isochronous rhythm grouping). In fact, some properties including 

spectral frequencies and the organization of time do not appear to contribute to 

language in a significant way. In addition, although the prosodic cues of speech also 

activate emotional brain areas, music seems to be even more tightly linked to the 

limbic system and emotions than language is.  Music even yields (to some extent) a 

modification of subcortical brain morphology throughout a lifespan, thus affecting 

hormonal production, mood, memory functions and other computational skills 

positively. This is the reason why music is used as a clinical tool. Despite the fact 

that specific music disorders are found in some patients, music therapy encourages 

the improvement of certain pathological symptoms, enhancing motor control, and 

even promoting communicational behaviours. 
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As language and music have a strong genetic basis and both are deeply grounded in 

the brain and developed effortlessly within every culture, natural selection must 

have underpinned them in some way. More concretely, they must have been 

selected, not as a whole, but rather through the selection of their different 

constitutive components, which may have had their own evolutionary history for 

other purposes. The emergence of linguistic hierarchy and grammar [see fig.4], which 

only occurred in Homo sapiens, may have cognitively impacted our minds, 

completely changing our interaction with the world and giving rise to our cultural 

and uniquely-human behaviour. Thus, a grammar providing lexical items (indexed 

concepts via phonology) with reference (including deixis) was added to merge, an 

internal mechanism that was able to combine elements from different domains 

(protoconcepts). At that point, our current language/symbolic thinking was in place. 

Assuming the existence of ancestral communicative systems (i.e. protolanguages 

that preceded our linguistic capacity), and also accepting Darwin’s proposal of a 

musical protolanguage, the emergence of symbolic thinking may have impacted this 

musical protolanguage. Consequently, it may have split into music and spoken 

language. The prosodic components of speech and vocal (as well as instrumental) 

music support this common origin, which is further backed up by the fact they share 

the same neural substrate. Furthermore, (i) phylogenetic studies on emotive 

processing of animal vocalizations, (ii) the different neural pathways affording calls 

and songs, and (iii) the existence of a vocal learning capacity in humans (as a vocal 

memorizing and manipulative mechanism), come together to suggest that there is a 

common rudimentary vocal communicative system among primates and other 

mammals, whose components are partially shared with even further removed taxa 

(e.g. some birds). Even if this may have led to a protolanguage that was more 

prosodic than musical —hence showing more emotional cues than rhythmical or 

pitch-discrete elements—, after different ingredients showing “musicality” were 

selected, a musical protolanguage may have evolved into protomusic, with rhythmic 

components participating as well [see fig.1]. The existence of other protolanguages, 

however, must not be rejected. A multimodel in which protolanguages interact with 

each other may bring different components of language (intentionality, creativity, 

structure…) together. 
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Rhythmic cognition and pitch (tonal-)harmonic cognition also show cognitively 

rooted components within the brain, which indicate an evolutionary process of 

selecting these mechanisms and predispositions. Essentially, the selection of complex 

vocalizations may have, in turn, promoted beat extraction and spectral perception 

of pitch which enabled humans to perceive meter and create tonality (obviously, 

once hierarchy and reference had emerged). While beat and meter may have led to 

musical structure, reference applied to organized pitches may have yielded a musical 

harmonic grammar [see fig.6]. 

Although rhythm has been overlooked until just a few decades ago, complex 

rhythmic mechanisms seem to be a promising clue to explain musical structure. Beat 

extraction and metrical induction enable a chunking mechanism to process and 

remember groups of sounds categorized to follow integer ratios (normally binary 

subdivisions) of an isochronous pulse. This, in turn, becomes hierarchically organized 

in strong and weak patterns, leading to a metrical structure. While beat extraction is 

found in animals (with complex vocal learning species displaying entrainment to the 

beat) [see fig.10], meter has not yet been found in any animal. 

In contrast, humans innately detect meter from birth. For this reason, the vocal 

learning hypothesis for beat extraction and entrainment proposes that, after having 

selected this complex ability, the tight relation of motor and auditory brain areas 

may have triggered the motor ability to entrain pulse. That would not only create 

phases of expectation, but also suggest that metrical structure —which permits 

music and dance— may not have been present from the very beginning, as it implies 

hierarchical structure processing. 

Phylogenetically, human externalization of rhythm seems to parallel the 

rhythmic behaviour found in primates (i.e.drumming), which indicates social 

position within the group and serves to intimidate both advertencies and intruders. 

Moreover, macaques and other primates show a half-developed perception system of 

grouping rhythms. Aside from animal research, cognitive studies on attention also 

corroborate a metrical organization of music. According to DAT, meter could be 

explained by attentional energy fluctuations. It would be carried out by beta-band 

activations within the brain that synchronize with the input stimulus and create 
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cyclic expectancies. These rhythmic neuronal activations can also explain the 

existence of ternary meters, in contrast to the simple binary meter, by appealing to 

secondary attentional peaks that interact at different frequencies. 

Briefly regarding pitch and (tonal-)harmonic cognition, the acoustic manner of 

processing music —if we consider music as a faculty which is externalized 

bimodally—, it must be highlighted that discrete pitches (sounds showing harmonic 

spectra) are interrelated to each other following cultural scales (learned intervallic 

steps separating successive pitches within an octave). Moreover, these pitches are 

also hierarchically ordered through giving predominance to certain notes over the 

rest by positioning them at important structural positions and modifying their 

acoustical properties.  

Our human capacity to perceive the harmonic spectra of different pitches and 

their spectral relations (harmony) seems to be promoted by conspecific vocalization 

specialization.  This is furthermore supported by the cross-cultural use of 5 to 7 

notes within scales which is constrained by the (limits of) comfortable production of 

vocal folds and by an optimal combinability. Furthermore, tonal hierarchies give 

functions to pitches, considering them as stable or unstable acoustic anchors, i.e. 

referential points over time. This creates the ebb-and-flow of music, derived from the 

flux between tension and release. 

Given the existence of percussive drumming, we should see music as having a 

core structural element, rhythm that structures pitches in a temporal stream. A 

secondary acoustical structure arises from pitch-interrelations, which yields melody 

and its internal harmonic functional relations: ([(rhythm) pitch] melody...harmony).  

In summary, although music and language may have had a common origin in the 

past —a musical protolanguage sharing melodic contours and prosody—, it may 

have split into music and language by incorporating linguistic-specific properties 

and music-specific properties. A protomusic stage made of (1) syllabic vocalizations, 

(2) discrete-pitch signals and (3) externalized rhythmic synchronizing behaviours 

which follow pulse and are accompanied by movement, would therefore be expected. 

We defend that new properties were gradually added to the musical protolanguage. 
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Assuming that language and music may have impacted each other, we propose that 

one of these interactions may have been hierarchy. We argue that hierarchy, as a 

cognitive and computational process, originates from linguistic merge but it was, in 

turn, co-opted in meter. Furthermore, the ability to generate hierarchy renders a 

(musical) grammar which makes “reference to a quiescent point” over time and 

frequency, i.e. tonality. As such, the products of hierarchy (meter) and reference 

(pointing to quiescent points, tonality) yield the general ebb-and-flow of music. 

Conversely, meter has also impacted language, at least the syllabic stress of words, 

and perhaps prosodic rhythm, since current rhythmic therapies enhances the fluency 

and the recovery of speech. 

  

CONCLUDING REMARKS 

Music and language, unique to humans and cross-culturally found, are based on a common 

original system of communication, a musical protolanguage, which explains the sharing of 

prosody, rhythm and neural mechanisms among the current faculties. 

Vocalizations may have been fundamental for both core aspects of music: rhythm and pitch-

based tonal harmony, as well as for speech, phonology and the language acquisition of an 

open-ended lexicon. In fact, the evolutionary selection of complex vocal learning has had an 

important role in our species, promoting a brain circuitry for processing harmonic spectra, 

internal pulse generation and coordinating movement, which led to the two essential 

components of our current music: rhythm (following beat and meter) and pitches (within a 

hierarchical tonal system). 

Animal evidence of pulse extraction in vocal learners, as well as the rhythmic social 

behaviour of primates, clearly points to a human protomusic made up of vocalizations and 

rhythmic behaviour, an ancestral system of music and dance. Neural and clinical studies 

corroborate that our brain is specialized in harmonic spectra and rhythmic meter processing, 

which supports the role of vocalizations in founding our uniquely-human music. In turn, this 

specialization has also influenced our linguistic prosody and phonology. 
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10. FURTHER ISSUES 

Looking at animals’ rhythmic categorization will reveal which mechanisms are used 

by our brain to categorize acoustic sound patterns of different durations, and will 

indicate which processes are common and shared with other animals, as well as 

which are unique to humans, and (perhaps) driven by language and our linguistic 

thinking. In contrast, from the assumptions of this thesis, it is not expected to find 

any tonal-harmonic processing in animals, given that it comes from our grammar. 

Otherwise, the hypothesis presented here should be revised or rejected immediately. 

Being speculative, while rhythmic cognition may have appeared simultaneous to 

linguistic hierarchy emergence (200-150KYA), tonal-harmonic cognition may have 

appeared afterwards, at the same time of the emergence of grammar. Perhaps it was 

as a consequence of a simplified referential device, strongly related to the language 

externalization in culturally-modern humans with symbolic minds. More studies 

interrelating grammar emergence and the symbolic figurative production of Homo 

sapiens should be done, in order to precisely make chronologies of our language and 

music evolution. Although arguable, assuming our dissociated hypothesis, perhaps 

grammatical deficits appear separated from linguistic deficits (i.e. from the basic 

mechanism merge and its hierarchy). Future investigations should clarify this point. 

“Music”60 should be seen as a bimodal capacity, which links auditory (and visual) 

perception and production to motor activities. As such, new studies should consider 

the implications of linking vocal or instrumental music and dance (as two possible 

ways to express the cognitive experience of music), given that both are based on 

rhythm as the structural component of “music”. In contrast, the harmonically 

interconnected pitches and the accurately linked gestures give to “music” its evoking 

counterpart. Thus, it should be re-explored how to use “music” clinically, through 

music therapy and dance therapy in order to recover or improve damaged and 

affected (motor) skills in certain diseases, as well as to enhance children’s cognitive 

and social abilities. Furthermore, the relation between beat and repetitive rhythmic 

behaviours in autism or schizophrenia should be deeply analysed in future research. 

                                                           

60 Here we use the term “music” referring to an internal capacity, which is structurally-driven by 

rhythms and grammatically-externalized or -perceived through evoking emotions. For instance, a 

rhythmic play of coloured lights could also be included in this reinvented-term. 
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ANNEX 

11. Musical diseases and music therapies 

About 4% of the general population suffers from amusia, a disorder associated with 

structural differences in temporal and frontal cortices distinct from aphasic linguistic 

deficits. Congenital tone deafness is considered to be a developmental disorder 

arising from failures in fine-grained pitch encoding, related to general psychoacoustic 

difficulty in fine pitch resolution. Individuals affected by amusia show a reduced 

quantity of white matter in the right IFG but a larger amount of grey matter, 

showing a cortical malformation, due to an altered pattern of neuronal migration. 

Amusicians also may have affected the left frontotemporal auditory-motor network. 

Other musical diseases include hallucinations and epilepsy. Musical hallucinations, 

which may be self-generated, disordered impulses within the secondary auditory 

areas, activate all the musical listening regions except for the primary auditory 

cortex, as it lacks an external stimulus. Musicogenic epilepsy is due to an anomalous 

activation of temporal-limbic structures associated with the emotional response to 

music. An ictal hyperfusion in the right temporal lobe, insula, amygdale and 

hippocampus head, seem to be involved in this diseases. 

Music therapy aids in a vast range of diseases and disorders, because it improves 

fine-movement precision, posture control and walking, affective states and mood 

(Montinaro, 2010). Music therapy, with dance and rhythmic games, is used for 

neuromotor rehabilitation in stroke patients, Parkinson and Alzheimer diseases, 

multiple sclerosis, ataxia and spasticity; for social communication enhancing in 

children with autism, for neurotrophin modulation and mood restitution in 

hypertensive patients, and depression, anxiety and stress diagnostic cases. 

Therefore, it is found that moving with a musical beat alleviates symptoms in 

movement disorders, as Parkinson Disease (Fitch, 2009). 

Another clinical observation of music comes from cases of aphasics recovering verbal 

fluency in which music promotes structural changes in patients’ brains after having 

undergone a melodic intonational therapy (Albert et al, 1973; Schlaug et al., 2009). 

The main change is an increase in the thickness of the right arcuate fasciculus, 
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(although non-significant), related to the degree of verbal fluency improvement, as it 

is shown through greater right hemisphere activation in speaking. 

Stahl et al. (2011) highlights the clinical importance of rhythm (rather than melody) 

in music therapy for aphasic patients, due to the role of the supplementary motor 

cortex and the basal ganglia in human beat perception (Grahn, 2009). Moreover, it 

has been said that simply tapping to a beat enhances our auditory time perception 

abilities (Manning & Schutz, 2013). Given that perceiving and producing 

hierarchical structures in language are usually attributed to Broca’s area —BA 44 

and 45— (Friederici et al., 2006), together with findings of activations of Broca’s 

right homolog in harmonic syntax tasks (Koelsch et al, 2002),  we can point to the 

human expanded Broca’s region connecting to posterior associative and auditory 

areas to place rhythmic cognition, thus playing a role in building hierarchical 

structures in metrical perception (Vuust et al., 2006; Geiser et al., 2008). 

12. Alexithymia (an emotional disease) 

Alexithymia is recognized as a risk factor of psychiatric and medical disorders, such 

as somatisation, anxiety, depression, hypertension, and chronic pain; and exhibits 

high comorbidity with disorders of the Autism Spectrum. Affected individuals are 

described as cold and distant, interpersonally indifferent, and show paucity of facial 

emotional expressions and stiff wooden posture. In addition to that, the impairment 

of facial emotional recognition and words connoting emotional meanings lead to 

social communication problems. This neurobiological dysfunction could be 

attributed to right hemisphere hypoactivity and left hemisphere hyperactivity, as 

well as to some interhemispheric communication deficit. A deficiency in detecting 

the emotional qualities of prosody —cues of others’ emotional state and intention in 

social communication— has also been reported for this trait. Goerlich, Aleman and 

Martens (2012)’s experiments on women —because of the gender behavioural and 

electrophysiological differentiation in perceiving prosody— show reduced sensitivity 

during the perception of mismatches in the emotional cues of speech and music. 

Since alexithymia affects how the brain processes emotional speech qualities —

equally in attended and unattended processing—, it could be inferred a link from 

this ability to an evolutionary selected trait implied in the musical protolanguage. In 
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fact, the two alexithymia dimensions reveal a dissociable impact on emotional 

processing, with a left-hemisphere bias during early stages of unattended processing 

(for the cognitive dimension, rather related to the linguistic feelings) and with an 

additionally sensitive to the intensity of emotional speech at later processing stages 

(for the affective dimension, rather related to prosody, music or emotions). 

13. Adaptationist vs. Non-adaptationist models for music evolution 

Darwin (1871) observed that music, despite being a human universal carrying a 

physiological cost and playing an important role in society, does not show any 

obvious function. For that reason, music would be better seen as a fossil remaining 

from a former adaptation, that is, a communicational system used by earlier 

hominids whose core original function is now developed by language. 

Several authors has taken his idea about musical protolanguage (Jespersen, 1922; 

Livingstone, 1973; Richman, 1993; Brown, 2000; Mithen, 2005; Fitch, 2006), i.e. a 

common origin of music and language (more concretely, speech), and are now 

investigating the cognitive, neural and genetic mechanisms underlying both faculties 

in modern humans, as well as comparing our human vocalizing abilities in this 

domains to non-human animal communicational systems with complex learned or 

innate vocalizations. 

Tecumseh Fitch (2006) proposes music to be “an instinct to learn, fuelled by certain 

proclivities and channelled by various constraints”, in which cultural and biological 

aspects intertwine. An example of a proclivity would be the innate template of 

young birds to pay attention to and imitate their conspecific vocalizations, that is, 

to distinguish their species-specific song from others which do not fit their template. 

Hence, their adult normal song are neither innate, nor entirely learned, but 

channelled by a species-specific set of proclivities and constraints, such as their vocal 

learning ability or their innate templates. A parallel case for human music might be 

applied, following Fitch (2006), where music is constituted by basic learning and 

imitative abilities, as well as proclivities “for tonal and rhythmic sounds arranged in 

interesting structures, with particular favoured frequencies and tempos”, and 

constraints on “repetition rates, frequency limens, number of notes in a scale, basic 

consonance and dissonance judgements”. The adaptative ability to acquire complex 
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novel aspects from the environment is the authentic responsible for the great 

diversity in our music, language and culture. 

From a non-adaptationist approach, musical abilities have not been naturally 

selected; they are simply by-products and peculiarities of our nervous system, which 

links them to pleasure likely due to an accidental brain-circuitry wiring (Spencer, 

1857; James, 1890; Pinker, 1997). In this position, Patel (2010) enumerates Pinker’s 

non-musical foundational elements building on music, without being selected 

specially for it: 

1) A prosodic component of language: music has prosody-like properties, and the brain 

rewards the analysis of prosodic signals (patterns of linguistic rhythm and intonation) 

because prosody is an important component of language 

2) An auditory scene analysis: music is rich in harmonic sounds (sounds in which 

frequency components are integer multiples of some fundamental frequency), and the 

brain rewards the analysis of such sounds because harmonicity is an acoustic cue used to 

identify sound sources, an important part of auditory scene analysis 

3) Emotional calls: music can evoke strong emotions because it contains pitch and 

rhythm patterns that resemble our species’ emotional calls, 

4) Habitat selection: because it contains sound patterns reminiscent of evocative 

environmental sounds (e.g. “safe” or “unsafe” sounds such as thunder, wind, or growls) 

5) Motor control: musical rhythm engenders rhythmic movement (e.g., in dance), and 

such movement is rewarded by the brain because rhythmic motor patterns are 

associated with biologically meaningful behaviours, such as walking, running, or 

digging. 

Similarly, but different in some sense, Patel’s Transformative Technology of the 

Mind (TTM) theory maintains that “music is a human invention that can have 

lasting effects on such non-musical brain functions as language, attention, and 

executive function, and is concerned with explaining the biological mechanisms 

underlying these effects”. Furthermore, Patel proposes that complex and universal 

human traits can originate as inventions, instead of biological adaptations, 

indicating parallel cases, such as reading or fire-making. Thus, within TTM 

framework, functional specializations in brain simply come as an experience-

dependent neural plasticity product in the individual lifetime. Showing that music 
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cognition is rooted in non-musical human brain functions that is also shared with 

other species, would imply that some musical aspects are not shaped by natural 

selection for music; like tonality processing or synchronization of movement to a 

musical beat. 

14. The Darwinian musical protolanguage 

Stage (i) could be linked to the genus homo (Homo habilis), or even the genus 

Australopithecus, as social intelligence and technological-ecological intelligence 

played a key role in these early societies. Looking at (ii), the aesthetical use of 

vocalizations may have selected and evolved complex vocal learning abilities. From 

that, one can infer the idea that some phonological and syntactical aspects may have 

preceded the ability of speech to convey propositional meanings —which fits with 

cross-species findings of complex vocal learning evolution without propositional 

meaning. However, the role of sexual selection can be challenged by two facts of 

modern language (Fitch, 2013a): “it is equally developed in males and females” (if 

not better in females), and “it is expressed very early in the ontogeny, essentially at 

birth” (although even in the womb, when tuning phonology); contrasting to the 

normal expression of sexual traits in the competitive sex at sexual maturity. Solving 

this possible incongruence, Fitch (2013a) proposed that two different forces selected 

a musical protolanguage: the sexual selection of mature males’ song and the kin 

selection of mother-infant communication. The latter may have occurred during the 

evolution of propositional semantic meaning in the musical protolanguage, and may 

have been supported by the current child-care context of motherese, and by the fact 

that both male and female infants participate in parents-offspring communication 

during the extended childhood, which enhances the survival of human small 

reproductive outcome.In addition, current research has recently demonstrated that 

sexual selection can often induce female birdsong, and that “pair-bonding” 

mechanisms can also make both sexes choosy, allowing the competition for thigh-

quality mates, and in turn better offspring. In contrast, others could defend that it is 

quite possible that sexual selection did not take any part in selecting a musical 

protolanguage, but rather kin selection only, given the current functions of mother 

infant music, as lullabies, and infants’ preferences to song over speech. 
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Stage (iii) presents a big challenge to Darwin, because his model explains lexical 

semantics but not phrasal semantics, thus missing the origin of functional words and 

grammatical morphemes. Otto Jespersen’s (1922) hypothesis of a holistic 

protolanguage —rediscovered and supported with evidence by Alison Wray (2000) 

and Michael Arbib (2005)— squares with Darwin’s musical protolanguage model 

and fills the phrasal semantics gap by suggesting that a cognitive analytical process 

may have slowly divided the entire sung phrases (with whole propositional 

meanings) into isolated musical chunks, which in turn were associated to individual 

meaningful components from a precursor of our conceptual system.  

 

 

 

 


