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1 Introduction

City size distribution follows a robust regular pattern. Zipf�s law claims that the population

size of a city is inversely proportional to its rank: the second largest city in a country is

about a half the size of the largest city, the third largest city is about a third the size of the

largest city, and so forth. Zipf�s law has repeatedly been shown to hold in the top tails of

city size distribution across di¤erent countries and periods (e.g., Rosen and Resnick, 1980;

Dobkins and Ioannides, 2001; Ioannides and Overman, 2003; Gabaix and Ioannides, 2004;

Soo, 2005).

This paper proposes a new explanation for this empirical regularity, i.e. Zipf�s law in the

top tail of city size distribution. Our model assumes that numerous random factors a¤ect

city size (e.g., industry composition, road networks, climates, geographic constraints such

as mountains and waters, human capital, zoning restriction, etc.), and predicts city size as

a product of these factors. We prove that the city size distribution converges to the log-

normal distribution by applying the central limit theorem (after a log transformation). The

log-normal distribution is, as shown in Eeckhout (2004) and Eeckhout (2009), consistent

with Zipf�s law in the top tail. Since modern central limit theorems require only weak

conditions, our result applies quite generally; the random factors need not follow any speci�c

distribution, di¤erent random factors can come from di¤erent distributions, and the factors

may be correlated with each other to some degree.

Outside the top tail there is ongoing debate over what distribution best describes the city

size distribution. Eeckhout (2004) argues that the city size distribution for all cities follows

the log-normal distribution. Rozenfeld, Rybski, Gabaix and Makse (forthcoming) argue that

Zipf�s law holds for cities greater over 12,000 population size. Our model generates the log-

normal distribution as Eeckhout (2004). However, given the current debate over the city size

distribution for all cities, we focus on Zipf�s law in the top tail which has repeatedly been

con�rmed in the literature.

A number of other explanations have been proposed to explain the empirical city size
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distribution. The workhorse in this literature is the dynamic random growth process!(e.g.,

Simon, 1955; Gabaix, 1999; Eeckhout, 2004; Duranton, 2006, 2007; Rossi-Hansberg and

Wright, 2007; Córdoba, 2008); if the growth rate of a city is independent of its size (i.e.,

Gibrat�s law holds), city size distribution converges to the log-normal distribution or the

Zipf distribution with additional conditions.1 Two static models have been o¤ered as well:

Hsu (2009) uses the central place theory and Behrens, Duranton and Robert-Nicoud (2010)

use human capital distribution across cities.

Our model is a static version of the random growth models. The random shocks are

aggregated in the cross section instead of time. However, being a static model yields unique

interpretations and implications. First, the random shocks in our model represent di¤erent

factors a¤ecting city size, and we show that Zipf�s law may emerge from the interaction of

the multiple factors even when each factor does not follow the Zipf distribution. This leads

to an important message: one cannot use Zipf�s law to test a model of cities.2 Classical

urban economics models such as Henderson (1974) have sometimes been criticized because

they do not generate Zipf�s law (e.g., Krugman, 1996; Gabaix, 1999). However, a typical

economic model focuses on one economic force it aims to deliver. A single model alone may

not generate Zipf�s law, but when we have many such models together as in reality, Zipf�s

1Simon (1955) proposes a random growth mechanism to explain the Pareto distribution in city size

distribution. Gabaix (1999) shows that Gibrat�s law (i.e., the growth rate of a city being independent of its

size) with a lower bound on city size can lead to Zipf�s law (i.e., Pareto distribution with coe¢ cient 1) in

the steady state. Eeckhout (2004) argues that the city size distribution for all cities follows the log-normal

distribution and provides an economic model that generates it. Duranton (2006) provides an economic

foundation to Simon (1955) using the endogenous growth model with product proliferation developed by

Romer (1990). Duranton (2007) uses small industry-level shocks to explain fast changes in industry location,

slow changes in a city�s relative ranking in population, and very stable city size distribution. Rossi-Hansberg

and Wright (2007) propose a dynamic model with endogenous city formation. Their model can generate not

only Zipf�s law but also often-observed deviations. Córdoba (2008) translates the Gibrat�s law into more

economically meaningful restrictions about preferences, technologies, and the dynamic shocks.
2We thank Gilles Duranton for guiding us to this implication.
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law may emerge.

Second, our theory does not require Gibrat�s law. Instead, our theory requires that city

size can be expressed as a product of multiple factors. This puts a restriction on the shape

of city production function as Gibrat�s law in the random growth models puts a restriction

on the dynamic growth pattern across cities. A product, as compared to a sum, implies that

there is complementarity among the factors. In order for a city to become large, it has to

do well overall. If a city fails in one factor (e.g., climate), it can severely limit city size.

In addition to the complementarity among the factors, our theory requires that city size

is determined by numerous small factors in order to apply the central limit theorem. If city

size is determined by only a few dominant factors, our theory may not work. We examine

this issue by running a simulation. The result suggests that Zipf�s Law can emerge in the

top tail even when there is only a small number of factors.

Our model also di¤ers from other urban economics models in that we assume di¤erent

cities are endowed with exogenously di¤erent physical attributes such as rivers and climate.

We use them as a subset of the random factors a¤ecting city size. The other models assume

that all locations are ex-ante identical and endogenously generate city size distribution.

The approach of using heterogenous natural features to explain the empirical city size

distribution was �rst suggested by Krugman (1996). Our model develops the idea in the

following ways. First, we provide an explicit economic model. Second, our model extends

the randomness beyond just natural features, to include randomness in other man-made

features such as industry composition, road networks; the randomness in these features can

happen due to the randomness in policy making, big �rms�location decisions, etc.

Even though the heterogenous features alone can generate the di¤erences in city size,

it is unquestionable that the agglomeration economies also play a major role in shaping

city size distribution. Our model allows the agglomeration economies in each factor. The

agglomeration economies amplify city size di¤erences initiated by the heterogeneous features

across cities.
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The Zipf coe¢ cient roughly measures the degree of concentration of population among

cities (see section 4 for the de�nition of the Zipf coe¢ cient). The more concentrated the

population distribution becomes, the smaller the Zipf coe¢ cient becomes. Since the ag-

glomeration economies amplify city size di¤erences by making big cities even bigger, greater

agglomeration economies lead to a lower Zipf coe¢ cient. Dobkins and Ioannides (2001) �nd

that the Zipf coe¢ cient for the U.S. declines from 1.044 in 1900 to .949 to 1990. One inter-

pretation based on our model is that agglomeration economies became more important over

this period.

Our model also generates implications that one can test against other types of models.

First, against the random growth models, our model predicts that each city has a stable

unique equilibrium city size. Thus, in response to a temporary shock, city size tends to go

back to the original equilibrium size. On the other hand, the random growth models predict

that each shock has permanent e¤ect on city size and thus city size does not have a tendency

to go back to the original size. Second, against the models relying only on agglomeration

economies assuming ex-ante identical features across cities, our model predicts substantial

city size variation even in a period when agglomeration economies play little role. Third,

against the models relying only on exogenous heterogeneous features, our model predicts

that population distribution will become more concentrated into larger cities in the period

when agglomeration economies become more important.

Davis and Weinstein (2002) test these implications. They study the distribution of re-

gional population in Japan from Stone Age to the modern era and obtain the following

results. First, after the extensive bombing over Japanese cities during World War II, includ-

ing two nuclear attacks, most cities returned to their relative position in the distribution of

city sizes within about 15 years. This con�rms our �rst implication. Second, throughout his-

tory there has always been a great deal of variation in population density across regions, even

in the Stone Age when agglomeration economies would not seem to have played an impor-

tant role. This con�rms our second implication. Third, the population distribution became
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more concentrated into larger cities in the last century when agglomeration economies be-

came more important as Japan became industrialized and more integrated into the world

economy. This con�rms our third implication. Based on these �ndings, Davis and Weinstein

(2002) advocate for a hybrid model of agglomeration economies and heterogeneous natural

features. Our model is the �rst one in this direction.

The rest of the paper is structured as follows. Section 2 presents the base model. Section

3 shows that our model generates the log-normal distribution. Section 4 shows that our

model is consistent with Zipf�s law in the top tail. Section 5 concludes.

2 Base Model

The key idea of this paper is that the city size distribution can generate Zipf�s law in the

top tail if city size can be expressed as a product of numerous random factors. This section

provides an underlying model to support this idea. The model starts from Roback (1982).

The Roback model predicts the wage and rent of a city as a function of its local production

amenities and consumption amenities. In order to transform the Roback model into a model

of city size distribution, we make two changes. First, we add a housing market and this

works as the main congestion force pinning down the population size of a city. Second, we

allow local production and consumption amenities to depend on population size to capture

the agglomeration economies. As the result, the model predicts city size as an increasing

function of production amenities, consumption amenities and land supply.

2.1 Description

A continuum of potential city sites are indexed by s 2 [0; 1]. The locations di¤er exogenously

in three groups of characteristics: natural consumption amenities a 2RJ , natural production

amenities o 2RK , and physical land supply factors l 2RM . These natural features capture

rivers, mountains, climate, coastal locations, etc. The locations di¤er endogenously in ag-
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gregate consumption amenities A2R, aggregate production amenities O2R, aggregate land

supply L2R as well as population size N , wage w, and rent r. These endogenous features

encompass the e¤ects of man-made facilities such as restaurants, high ways, zoning restric-

tions as well as the natural amenities. Note that a, o, l are vectors but A;O;L are scalars

capturing the aggregate e¤ects. The local consumption amenities A, production amenities

O, and land supply L all depend on the natural features a;o and l as well as population size

N :

A = A(N; a);

O = O(N;o);

L = L(N; l):

There are two commodities: a composite good and housing. The composite good is freely

tradable with zero transportation cost while housing is locally provided. The markets for

both goods are perfectly competitive.

�N workers live in the economy. All workers are homogeneous and freely mobile with

zero moving cost. A worker �rst chooses a city to live in and then chooses her consumption

bundle consisting of the composite good q and housing h. The utility function U(q; h;A)

is increasing in the consumption amenities A. Each worker supplies one unit of labor. The

decision of a worker can be summarized by the following maximization problem:

max
s
V (rs; ws;As)

where

V (rs; ws;As) � max
q;h

U(q; h;As) subject to q + rsh = ws.

where rs, ws, and As are housing rent, wage, and consumption amenities in city s. We use

the composite good as the numeraire.

Each city has numerous �rms producing the composite good. All �rms use the same

constant-returns-to-scale technology and thus we can consider one aggregate �rm for each
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city, which behaves like a perfectly competitive �rm. The aggregate �rm uses labor n and

buildings which we assume come from the same stock of housing as workers�housing h. The

production function F is increasing in the production amenities O. The decision of a �rm

in city s can be summarized by the following maximization problem:

max
n;h

F (n; h;Os)� wsn� rsh

where n and h are labor and housing input.

All housing is owned by absentee landlords. Instead of explicitly modeling housing devel-

opers, we assume for simplicity that housing supply is a function of rent r and land supply

L:

HS (r;L) :

2.2 Equilibrium

An equilibrium of the model fS; �u;ws; rs; Nsjs 2 Sg consists of the set of populated sites

S, equilibrium utility level �u, and wage ws, rent rs, population size Ns for each city s 2

S, satisfying the following �ve conditions. First, workers get the same utility across all

populated locations:

(1) V (rs; ws;A (Ns; as)) = �u for s 2 S

where �u is the common utility level and S is the set of locations with positive population

size (S � fsjNs > 0g).

Second, �rms that produce the composite good earn zero pro�ts. Since the �rms use

constant returns to scale technology, the zero pro�t condition is equivalent to the unit cost

being equal to the unit output price:

(2) C(rs; ws;O (Ns;os)) = 1 for s 2 S

where C is the unit cost function.
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Third, the housing market in each city clears:

(3) HD(Ns; rs; ws;A (Ns; as) ; O (Ns;os)) = H
S(rs;L (Ns; ls)) for s 2 S

where HD is the aggregate housing demand function of workers and �rms.

Fourth, economy-wide labor market clears:

(4)
Z
S

Nsds = �N:

Fifth, unpopulated sites o¤er lower utility than the common utility level �u:

(5) V (rs; ws;A (0; as)) � �u for s 62 S.

Equations (1) to (3) determine wage ws, housing rent rs and population size Ns for each

city s 2 S, when the common utility level �u and the set of populated sites S are given.

Equation (4) determines the common utility level �u given the set of populated sites S, since

Ns is a function of �u. Equation (5) characterizes the set of populated sites S.

3 Log-Normal Distribution

We obtain the key result by imposing speci�c functional forms. First, we use the following

functional forms for workers�preference, �rms�production technology, and housing supply.

(6)

Preference: U(q; h;A) = A � q�h1��

Production technology: F (n; h;O) = O � n�h1��

Housing supply: Hs (r;L) = L � r

where �; � 2 (0; 1) and  > 0. These functional forms are quite standard and also have

some empirical support. For example, Davis and Ortalo-Magne (forthcoming) show that

the income elasticity of housing consumption is 1. The Cobb-Douglas function is arguably

the most common production function in economics. The housing supply function can be

motivated by the following story. Imagine a city located on a coast so can expand only in
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180 degrees. Its land supply L would be a half as large as that of a city that can expand in

360 degrees.

Second, we assume that consumption amenities As, production amenities Os and land

supply Ls can be expressed as the product of multiple underlying factors:

(7) As =

JY
j=1

Aj;s, Os =
KY
k=1

Ok;s, Ls =
MY
m=1

Lm;s;

where

(8)

Aj;s = aj;sN
�j
s ;

Ok;s = ok;sN
�k
s ;

Lm;s = lm;sN
�m
s :

Each factor Aj;s, Ok;s, Lm;s consists of exogenous features aj;s, ok;s, lm;s and agglomeration

economy terms N�j
s ; N

�k
s N �m

s . The agglomeration economy parameters �j, �k, �m can di¤er

across di¤erent factors.

With these functional forms, we derive our theoretical results. We �rst show that the

equilibrium population size of each city is unique and stable. This result relates to the

natural experiment Davis and Weinstein (2002) studied. Suppose that S and �u are �xed.

Using equations (2) and (3), we can solve for wage ws and rent rs as the functions of Ns.

By substituting these into ws and rs in the indirect utility function V we can express the

indirect utility function in terms of only population size N . (See Appendix A for details.)

(9) ~Vs (N) = �

�
1

N

� 1�

�A

(
JY
j=1

(aj;s)
�A

KY
k=1

(ok;s)
�O

MY
m=1

lm;s

) 1
�A

where �A;�O, and � are positive constants and 
 � �A
PJ

j=1 �j +�O
PK

k=1 �k +
PM

m=1 �m

is the aggregate agglomeration economy parameter.3 This indirect utility function ~Vs (N)

is the utility city s o¤ers when its population size is N . Equilibrium population size Ns is

determined by the remaining equation (1):

(10) ~Vs (Ns) = �u.

3�A =
1+�
1��� ;�O =

�+
1��� ;� = (1� �)

1����(1� �)�
(�1+�)(�+)

1+� �(1� ��)
�1+��
1+�
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Suppose that 
 < 1. It is clear from equation (9) that ~Vs (N) is continuous and strictly

decreasing inN with limN!0 ~Vs (N) =1 and limN!1 ~Vs (N) = 0: Thus, there exists a unique

Ns satisfying equation (10) for any positive �u by the intermediate value theorem. In addition,

this population size Ns is stable in Krugman (1991) sense. For example, suppose that a

negative temporary shock hits a city s and its population size decreases below equilibrium

city size Ns. With a smaller population size, the utility the city o¤ers is greater than the

common utility level �u and thus its population size increases back to equilibrium size Ns.

Note that if 
 > 1, equilibrium city size becomes unstable (i.e., ~Vs (N) is increasing in N)

and this can lead to a black-hole equilibrium where all people go to only one city.

The intuition behind this stability result is the following. As city size decreases, housing

price decreases allowing the city to o¤er higher utility. However, the downside of losing

population is the loss in the agglomeration economies in consumption amenities, production

amenities, and land supply. If the agglomeration economy parameter 
 is less than 1, the

housing e¤ect dominates so the city o¤ers better utility with a smaller population size and

this makes equilibrium city size stable. On the other hand, if 
 is greater than 1, the

agglomeration e¤ect dominates so a city o¤ers better utility with a larger population size.

This makes the equilibrium city size unstable and can lead to the black-hole equilibrium.

By solving equation (10), we obtain equilibrium population size Ns:

(11) Ns =

(�
�

�u

��A JY
j=1

(aj;s)
�A

KY
k=1

(ok;s)
�O

MY
m=1

lm;s

) 1
1�


:

Equilibrium population size Ns is strictly increasing in production amenities aj;s, consump-

tion amenities ok;s, and supply factors lm;s and strictly decreasing in the common utility level

�u.

So far we have taken equilibrium utility level �u and the set of populated sites S as given.

Equilibrium utility level �u is unique given the set of populated sites S. This follows from

equation (4) because the population size of each city is continuous and strictly decreasing

in �u with lim�u!0Ns (�u) = 1 and lim�u!1Ns (�u) = 0 as can be seen in equation (11) : The
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intermediate value theorem implies that equation (4) is satis�ed for only one value of �u. The

set of populated sites S is equal to the set of all locations [0; 1] because the indirect utility

limN!0 ~Vs (N) =1 and zero population size is not stable.4

Proposition 1 Suppose that 
 < 1.

(a) The population size of each city is unique and stable.

(b) Population size Ns of city s is increasing in consumption amenity factor aj;s, production

amenity factor ok;s, and land supply factor lm;s (j 2 J; k 2 K, m 2M).

Now we derive our key result that if the exogenous factors aj, ok, and lm are randomly

distributed, population size N converges in distribution to the log-normal distribution as

the number of these factors increases. We interpret aj;s,ok;s, and lm;s as the realizations of

random variables aj, ok, and lm so we do not show the city index s any more. Taking log

transformation of equation (11) we obtain

(12) logN =
1

1� 


(
JX
j=1

�A log aj +
KX
k=1

�O log ok +
MX
m=1

log lm + �A log

�
�

�u

�)
Mathematically �A log aj; �O log ok, and log lm play the same roles. In order to simplify

notations we introduce new symbol Xi which we use for all the three types. We can reorder

the attribute terms

(�A log a1; :::;�A log aJ ;�O log o1; :::;�O log oK ; log l1; :::; log lM)

as we like and assign X1; :::; XI where I � J +K +M . We rewrite equation (12) using the

new notations as

logN I =
1

1� 


(
IX
i=1

Xi + �A log

�
�

�u

�)
(13)

=
1

1� 


(
IX
i=1

X̂i +
IX
i=1

�Xi + �A log

�
�

�u

�)
(14)

4This is a undesirable feature coming from the functional forms we use. We can �x this by tweaking the

agglomeration economies for small cities or by introducing �xed cost to develop a city that has to be paid

by the absentee landlords. However, this �x would come at the cost of making the model more complicated

and less focused.
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where �Xi � E (Xi), and X̂i � Xi � �Xi: Note that E
�
X̂i

�
= 0. In order to show that

city size distribution converges to log-normal distribution, it su¢ ces to show that
PI

i=1 X̂i

in equation (14) converges to normal distribution as I increases. We obtain this result by

applying the central limit theorem to
PI

i=1 X̂i.

The classical central limit theorem states that
PI

i=1 X̂i converges in distribution to normal

distribution if X̂is are independent and identically distributed. Since this requirement is too

restrictive for our purpose, we use a version of modern central limit theorem which relaxes

these requirements. This version allows di¤erent random variables X̂i to come from di¤erent

distributions and also allows correlation among the variables to some degree. Kourogenis

and Pittis (2008) provide an excellent survey of modern central limit theorems. The version

we use corresponds to Theorem 4 in Kourogenis and Pittis (2008) which in turn is based on

Corollary 1 in Herrndorf (1984). We begin by describing the allowable correlation structure

among the random variables using ��mixing.

De�nition 2 For a sequence X̂1; X̂2; ::: of random variables, let �i be a number such that

jP (A \B)� P (A)P (B)j � �i for A 2 �(X̂1; :::; X̂n) and B 2 �(X̂n+i; X̂n+i+1; :::)

where �(X) is de�ned as the �-�eld generated by X. If �i ! 0 as i ! 1, the sequence

X̂1; X̂2; ::: is said to be �-mixing.

If a sequence
n
X̂i; i 2 N

o
is ��mixing, ~Xn and ~Xn+i becomes approximately independent

as i increases to in�nity. How much they are correlated with each other depends on how fast

�i converges to 0 as i increases. Now we state the central limit theorem.

Theorem 3 (Herrndorf (1984)) Let
n
X̂i; i 2 N

o
be an �-mixing sequence of random vari-
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ables satisfying the following conditions.

1) E
�
X̂i

�
= 0

2) lim
i!1

E(
S2i
i
) = �2; 0 < �2 <1

3) sup
i2N

E
���X̂i

���b < 1 for some b > 2

4)
1X
i=1

(�i)
1� 2

b < 1

where Si �
Pi

j=1 X̂j: Then 1
�
p
i
Si converges in distribution to the standard normal distribu-

tion N (0; 1) :

Since we construct X̂i so that E
�
X̂i

�
= 0, the �rst condition is satis�ed. The second

condition means that the variances of the partial sum behaves nicely. The third condition

requires that the moments of order b > 2 to be uniformly bounded. The fourth condition

puts restriction on the ��mixing rate. The third and the fourth conditions are linked by

b. As b increases, the third condition becomes harder to satisfy and the fourth condition

becomes easier to satisfy. By applying Theorem 3 we obtain our main result.

Proposition 4 If the sequence X̂1; X̂2; ::: satis�es the conditions listed in Theorem 3, the

city size distribution converges in distribution to log normal distribution. Asymptotically,

city size N I with I random factors follows logN
�

1
1�


nPI
i=1

�Xi + �A log
�
�
�u

�o
; �2I
(1�
)2

�
.

4 Zipf�s Law

This section shows the relationship between our model and Zipf�s law. Zipf�s law emerges

when city size follows Pareto distribution with the shape parameter 1. Suppose that city

size N follows Pareto distribution with scale parameter eN and shape parameter �:

CDF (N) = 1�
 eN
N

!�
.
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When there are M cities in total, the rank Rs of city s with population size Ns can be

approximated as

Rs �M (1� CDF (Ns)) =M
 eN
Ns

!�
:

When � = 1, we obtain Zipf�s law:

Ns �
1

Rs
�M eN:

In other words, the population size of a city is inversely proportional to its rank.

Typically, the parameters are estimated by the Zipf regression:

(15) logRs = C � � logNs

where C is a constant term. Due to data availability most empirical studies use only the

largest cities in a country to estimate the Zipf coe¢ cient � and �nd that Zipf�s law holds

well in the top tail (e.g., Rosen and Resnick, 1980; Dobkins and Ioannides, 2001; Soo, 2005).

Gabaix and Ioannides (2004) survey the literature and report that most estimates of the

Zipf coe¢ cient � fall into [0:8; 1:2].

For the whole distribution including bottom tail there is ongoing debate over what dis-

tribution best describes the city size distribution. The issue is that population size for cities

in the bottom tail are usually not available. Rozenfeld et al. (forthcoming) use their own

algorithm (City Clustering Algorithm) to construct cities from US Census tracts population

distribution and �nd that Zipf�s law holds for cities larger than 12,000 inhabitants in the

US. Eeckhout (2004) uses US Census places to look at small cities and �nds that the size

distribution for all cities follows the log-normal distribution. He also argues that the log-

normal distribution is hardly distinguishable from Pareto distribution in top tail and thus

approximately consistent with Zipf�s law in top tail. Ioannides and Skouras (2009) uses data

in Eeckhout (2004) and argue that there is a switch from log-normal distribution to Pareto

distribution around population size of 100,000.

Our model generates log-normal distribution asymptotically and thus, as in Eeckhout

(2004), consistent with Zipf�s law in top tail. However, this argument may not work if city
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size is determined by a small number of dominant factors or the random factors are too much

correlated with each other. We examine this issue as follows. First, we prove analytically

that our model can generate the Zipf coe¢ cient equal to 1 by adjusting model parameters,

regardless of the number of factors or the degree of correlation. Second, we calculate R2

in the Zipf regression for simulated samples with di¤erent number of factors and di¤erent

degree of correlation. The R2 shows how well our model can generate the linear relationship

implied by Pareto distribution between log rank and log city size.

Using equations (13) and (15) we can express the Zipf coe¢ cient as

� = �Cov (logN; logR)
V ar (logN)

= (1� 
)
�Cov

�PI
i=1Xi; logR

�
V ar

�PI
i=1Xi

� :

Thus, the Zipf coe¢ cient � depends on agglomeration economy parameter 
, distribution

of random shocks fXig, and the number of random shocks I. Since Cov
�PI

i=1Xi; logR
�
is

negative, we obtain the following results immediately.

Proposition 5 1. Zipf coe¢ cient � is proportional to 1� 
, thus decreasing in 
.

2. Suppose that we rescale the random shock distribution so that X 0 = 'X and use X 0

to calculate the Zipf coe¢ cient. The Zipf coe¢ cient � is inversely proportional to ', thus

decreasing in '.

Proposition 5.1 links agglomeration economies to the Zipf coe¢ cient. This result is in-

tuitive. A smaller Zipf coe¢ cient means that city size distribution is more uneven; larger

agglomeration economies make big cities even bigger creating more uneven city size distrib-

ution. Dobkins and Ioannides (2001) show that the Zipf coe¢ cient for the U.S. has declined

in the twentieth century. One explanation based on our model is that the agglomeration

economies became more important over this period.

Proposition 5.1 suggests that we can always match the Zipf coe¢ cient equal to 1 by

adjusting 
 or by rescaling the random shock distribution. Note that this result does not

depend on the number of factors or the degree of correlation. Gabaix and Ioannides (2004)
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show that the OLS estimate of � is downward biased in a small sample and provide the

magnitude of the bias for various sample sizes. This is not a problem for us because we can

match the Zipf coe¢ cient with the bias taken into account.

Now we examine the goodness of �t R2 by running a simulation. We proceed as follows.

We �x the number of factors and the degree of correlation among the factors, generate 25,000

city sizes using our model, truncate the distribution to include only top 135 cities and run

the Zipf regression.5 We repeat this 2,000 times and report average R2 and its standard

deviation. We vary the number of factors and the degree of correlation and repeat the whole

process.

We use the following process to generate random factors Xis.

X1 = "1.

Xi+1 = �Xi + (1� �) "i+1

where "i follows iid Uniform distribution [0; 1]. � captures the degree of correlation: all

factors are perfectly correlated if � = 1 and are independent if � = 0. We do not report 
,

�A, � and �u because these parameters do not a¤ect R2 once the random factors Xis are

determined. In order to see this, we obtain the following equation by inserting logN I in

equation (13) into equation (15):

logRj = C � � � 1

1� 


(
IX
i=1

Xj
i + �A log

�
�

�u

�)
It is clear from this equation that changes in these parameters are fully absorbed by changes

in �̂ and Ĉ and thus do not a¤ect predicted log rank and thus R2. By the same reason

rescaling the random shock distribution does not a¤ect R2 either.

The simulation result in Table 1 shows that our simulated distribution quickly converges

close to Pareto distribution in the top tail. When the factors are independent (� = 0),

5We use 25,000 clusters because this is close to the numbers of places (25,359) in Eeckhout (2004) and

clusters (23,499) in Rozenfeld et al. (forthcoming). We truncate them at the top 135 cities because this is

the threshold repeatedly used in the literature.
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Table 1: Average R2�s from the Zipf regressions on simulated samples

# of Factors �=0 �=0.5 �=0.9 �=1

1 0.790 (0.030) 0.791 (0.029) 0.789 (0.030) 0.790 (0.029)

2 0.917 (0.022) 0.917 (0.022) 0.916 (0.022) 0.789 (0.030)

3 0.955 (0.017) 0.955 (0.018) 0.955 (0.018) 0.791 (0.030)

4 0.970 (0.016) 0.970 (0.015) 0.965 (0.016) 0.790 (0.029)

5 0.977 (0.013) 0.976 (0.014) 0.971 (0.015) 0.791 (0.029)

6 0.980 (0.012) 0.980 (0.012) 0.974 (0.014) 0.789 (0.029)

7 0.982 (0.011) 0.982 (0.011) 0.976 (0.014) 0.791 (0.029)

8 0.983 (0.011) 0.982 (0.011) 0.978 (0.013) 0.791 (0.028)

9 0.983 (0.011) 0.983 (0.011) 0.978 (0.013) 0.790 (0.029)

10 0.983 (0.010) 0.983 (0.010) 0.980 (0.013) 0.791 (0.029)

average R2 becomes greater than .98 around 6 factors. When the factors are correlated

(but not perfectly correlated), our simulated distribution still quickly converges to Pareto

distribution. For example, when � = 0:9, average R2 becomes greater than .98 around 10

factors. The .98 is the benchmark R2 we obtain by running the same simulation but using

the Pareto distribution for city size.

5 Conclusion

This paper proposes a new explanation for the robust empirical pattern in city size distribu-

tion: if city size is determined as a product of numerous factors, this may generate Zipf�s law

in the top tail. The key implication of our theory is that we cannot reject a model simply

because the model does not generate Zipf�s law. A typical economic model focuses on one

economic force it aims to deliver, abstracting away the other forces existing in reality. Our

theory demonstrates that one single model may not generate Zipf�s law but Zipf�s law may
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emerge if we have many such models together as in reality.

A How to Obtain ~Vs (N)

Using the functional speci�cations in equations (6) to (8) we can rewrite the equilibrium

conditions (1) to (3) as

V (r; w;As) = As�
�(1� �)1��wr�(1��) = �u;(16)

C(r; w;Os) = (Os)
�1 ���(1� �)�(1��)w�r1�� = 1;(17)

HD(Ns; r; w;As; Os) � Ns
1� ��
�

w

r
= Lr � HS(r;Ls):(18)

Note that housing is demanded by both workers and �rms.

De�ne as =
JQ
j=1

aj;s; os =
KQ
k=1

ok;s; ls =
MQ
m=1

lm;s; � =
PJ

j=1 �j; � =
PK

k=1 �k; and � =PM
m=1 �m: From Equation (17) and Equation (18), we can solve r and w in terms of popu-

lation N as follows

rs =
h
(1� �)1��(1� ��)�os (ls)�� (Ns)�+(1��)�

i 1
1+�

;

ws = (1� �)
(1+)(1��)

1+� �(1� ��)�
1��
1+� (os)

1+
1+� (ls)

1��
1+� (Ns)

�(1+)�(1��)(1��)
1+� :

Substitute the above into the expression for the indirect utility in Equation (16), we get

~Vs(N) = �

�
1

N

� 1�

�A
h
(as)

�A (os)
�O ls

i 1
�A ;

where � = ��(1� �)1���(1� ��)�
1
�A (1� �)(1��)

�O
�A ;
 = � + �A�+ �O�;�A =

1+�
1��� ; and

�O =
�+
1��� :
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