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Abstract: The properties of the hyperdeterminant, a genuine multipartite entanglement figure
of merit for 4 qubits, are studied. We analyze when the hyperdeterminant detects quantum phase
transitions and how it is related to the wave function of the system. By studying the ground state
of two well-known quantum hamiltonians, Ising and XXZ, we analyze how entanglement behaves in
terms of the hyperdeterminant. To conclude, we introduce finite temperature effects which leads us
to explore the full spectrum of energies of both models.

I. INTRODUCTION

Recent developments in technology have allowed the
study of quantum systems with low number of qubits to
become a reality. These systems allows us to test vari-
ous properties of Quantum Mechanics directly from the
experiments. The feature from this theory that is most
intriguing, and has no classic analogous, is entanglement.
This non-local property of Quantum Mechanics is the one
responsible for most of its striking features such as tele-
portation, secret sharing and Quantum Computation, as
can be seen in Ref.[1], or Quantum Phase Transitions
(QPT) Ref.[2]. Classical phase transitions are driven by
thermal fluctuations, as explained in Ref.[3], and it is a
well known fact that the correlation length of the sys-
tem diverges on the vicinity of the critical point. On the
other hand, QPT happen at absolute zero temperature.
By modifying an external field parameter or a coupling
constant of the hamiltonian, QPT are driven by quan-
tum fluctuations. Similarly as its classical counterpart,
close to a critical point, the system becomes correlated
at all scales. This is why we expect the entanglement
of the system to peak around these transitions. Quan-
tum Sensing takes advantage of this feature of quantum
many-body systems and uses it to improve accuracy on
detection devices as explained in Ref.[4].

Since entanglement is the core of both quantum many-
body systems and Quantum Information Theory, it is
crucial to know how to describe, and more importantly,
quantify it. Describing multipartite entanglement is a
non-trivial task that occupies physicists all around the
world. It is widely known that the Von Neuman entropy
perfectly describes bipartite entanglement due to its nat-
ural connection to the Schmidt decomposition. Multipar-
tite entanglement is not fully understood, and multiple
figures of merit have been proposed as candidates to de-
tect when a certain state is entangled in a multipartite
way. As Miyake and Wadati showed in Ref.[5], hyperde-
terminants are thought to be the natural generalization
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of more simple entanglement measures, such as the con-
currence or 3-tangle for 2 or 3 qubits respectively. In the
following sections we will study a multipartite entangle-
ment figure of merit, the hyperdeterminant, of a 4-qubit
chain.

The paper is organized as follows. In Section II we
describe the invariants we will use to describe multipar-
tite entanglement and some of its properties. In Section
IIT we study the Transverse Ising model, starting from
its ground state to later study the whole spectrum, in
order to introduce finite temperature effects. In Section
IV we perform a similar study for the XXZ hamiltonian.
In Section V we present our conclusions and summarize
our results while also exploring possible applications in
Quantum Sensing and Metrology.

II. HYPERDETERMINANT, POLYNOMIAL
INVARIANTS AND FINITE TEMPERATURE
EFFECTS

The wave function for a general 4-qubit chain state
reads:

Wy= Y aiulijkl), (1)

4,3,k,1=0,1

where a;;5; € C and must satisfy normalization of the
wave function. Since entanglement must not grow, on
average, by Local Operations and Classical Computation
(LOCC), multipartite entanglement can be classified in
terms of this group and its stochastic version, SLOCC. As
it can be seen in Ref.[5], the different classes and states
can be classified in terms of the hyperdeterminant.

The hyperdeterminant is a mathematical construction
discovered by Cayley in Ref.[6], who first gave the ex-
pression for a 2x2x2 tensor. In the general case, it
is defined as a discriminant for a multilinear map f :
VioV,®- - ®V, - K from finite-dimensional vector
spaces V; to their underlying field K which may be R
or C. The hyperdeterminant, Hdet(f), is a polynomial
in components of the tensor f which is zero if and only
if the map f has a non-trivial point where all partial
derivatives with respect to the components of its vector
arguments vanish.



In this paper, we define the hyperdeterminant of a wave
function as

Hdet(|¢)) = Hdet(a;jx)- (2)

The definition given above does not allow for a clear
construction of the hyperdeterminant. Following the
Schlafli’s construction as in Ref.[5], the hyperdeterminant
for 4 qubits can be built as :

Hdets(C') = cooc11 — cioco1,
Pg(l‘) = Hdetz/.cij — (bijO + bijlz)7

Hdets(B) = A(P3()), (3)
Py(z) = Hdetg/.bijk — (aijko + aijk1$>7
Hdety(B) = %A(&(r)),

where C, B, A are arbitrary matrices, /. means "replace”,
P 4(z) are polynomials and A is the discriminant of the
polynomial. We could also construct the hyperdetermi-
nant for the 4-qubit chain in terms of lower degree in-
variants of the SLOCC group, SL(2,C)%. In terms of the
fundamental polynomial invariants the hyperdeterminant
reads:

Hdet(|¢))) = S% — 277> (4)

where S and T can be constructed via tensor contractions
or from low degree polynomial invariants as can be seen
in Ref.[7].

If the wave function of the system can be expressed as
a product state of any partition of the system, then it is
easy to prove that

i) |Y) =11 ® [p)23s = Hdet(|¢))) = 0,
1) h) =112 @ |@)34 = Hdet(]y))) =0,

where |€) and |p) are different general wave functions
for the qubits that the exterior index of the ket indi-
cates, thus allowing for a prediction of the value of the
invariants. In the case of any partition like i) we can
show that all invariants are strictly zero, meaning that
the hyperdeterminant is zero. This is not a surprising
result, since genuine quadripartite entanglement can not
be present if only 3 qubits are entangled. On the other
hand, partitions such as ii) behave differently. For the
partition shown in Eq.(5), S, T and the hyperdeterminant
are strictly zero. The invariants reflecting the properties
of the wave function in this case are the fundamental in-
variants of SL(2,C)*, whose explicit form can be found
in Ref.[7]. Depending on the partition, these invariants
either become proportional to the concurrence of 2 qubits
or zero. This lower degree invariants reflect more clearly
the structure of the wave function as they have much
less terms than S, T and the hyperdeterminant, which is
a polynomial of around 4 million terms. The invariants,
and hence the hyperdeterminant, are not only zero due
to factorizations, since symmetries can make exact can-
cellations between the coefficients occur.

()

Let us also introduce temperature as quantum statisti-
cal mechanics dictates, Ref.[8], the density matrix of the
system in thermal equilibrium with an external reservoir
is given by:

676H

where Z = Tr (e‘BH) is the quantum canonical function,
8= ,C%T and k; the Maxwell-Boltzman constant. For all
numerical calculations we will set this constant to 1 in
order to avoid numerical fluctuations. To compute the
hyperdeterminant in terms of temperature we use the
following definition:

Hdet(pg) = 3 3 e PP Hdet (j0)), ()
i=0,15

where H|y;) = E;|¢;) and the sum runs over all the
spectrum of eigenenergies and eigenstates. Using this
model we can see how the ground state will dominate
at low temperatures whether at high temperatures all
eigenstates will contribute with the same weight to the
sum.

In the upcoming sections we will consider a state to
be quadripartitely entangled under the hyperdetermi-
nant if it is different from zero. If the S and T in-
variants are different from zero but an exact cancel-
lation occurs, which makes the hyperdeterminant null,
we will also consider the state to be quadripartitely
entangled under it. There are certain states, such as
W) = %(|0001> + |0010) + |0100) + |1000)), that have
null hyperdeterminant and S, T are also zero, although
the state is clearly entangled. This means that the hy-
perdeterminant is unable to capture all types of quadri-
partite entanglement.

The study of the upcoming hamiltonians has been
wrought with a code developed in Python using mostly
functions from the library mpmath Ref.[9] for arbitrary
precision numerics. All calculations have been carried to
an arbitrary precision of 100 decimals. All simulations
have been done on a 4-qubit chain with periodic bound-
ary conditions.

III. TRANVERSE ISING MODEL

The ferromagnetic Ising Model is defined by the fol-
lowing quantum hamiltonian:

H:—Zafcrf+1+)\af, (8)

Where o are the well known Pauli matrices for s = %
spins. This model is known for having a critical point
at A = 1 where the infinite system switches from an or-
dered ferromagnetic phase to a disordered paramagnetic
phase. Since we are working with a finite chain it is to ex-

pect that finite-size effects will affect our simulation. As
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FIG. 1: The dependence of the hyperdeterminant of the trans-
verse Ising model around the QPT is shown.

per our chain, the hyperdeterminant behaves as shown
in Fig.1.

We see how the hyperdeterminant peaks closely to
the infinite chain transition point. In fact, it peaks
at A ~ 0.84 and attains a value of Hdet(|oi ")) ~
1.116 - 107*®. Comparing this value with the abso-
lute maximum hyperdeterminant obtained in Ref.[10],
Hdet(|HD)) ~ 1.98 - 107, we see how our model gets
multipartite entanglement, but it is still very weak.

As we have seen in Section II, we need to compute the
full spectrum of eigenstates in order to introduce tem-
perature. The excited states of the Ising model can be
classified in 3 types:

1. S = T = 0 which imply Hdet(|1)))=0, due to fac-
torizations of the wave function.

2.8 =T = ct. # 0 which cancel out to give

Hdet (1)) =0

3.8 = f(A);T = f'(\) and Hdet(|y))) = f(A) or 0
due to factorizations when both functions are zero.

This classification also applies for the XXZ model shown
in Section IV. The analysis of all the spectrum is given
in Table I.

From it we see that only the ground state and the
second excited state (and their symmetrics, the 13t" and
15*") have non zero hyperdeterminant. Not only so, but
the peak of the second excited state is also five orders of
magnitude greater than the one associated to the ground
state. This is due to the fact that the greatest possible
number of configurations of the system happens when
two spins are excited.

To compute the hyperdeterminant with finite temper-
ature effects we use Eq.(7) in order to generate Fig.2
where we can see how the hyperdeterminant saturates
approximately when T' ~ 10. Its fast saturation is due to
the fact, that the only other state contributing to it is the

Hdet |S T
Eo,15 F) [s1(M)[t(N)
E1,5 0 82()\) tz()\)
Ea 3 ') [s3(N)[ts(N)
E3489,11,12|0 0 0
E6,7 0 cts cty
Fio,14 0 sa(A)|ta(N)

TABLE I: Summary of the different invariant values for all
excited states for the Ising Model. F; indicates how many
times the state is exited above the ground state. All terms
just indicate how the invariant depends on external parame-
ters and have been calculated up to A = % since for larger A
the different energies start crossing and switching their roles

between excited or ground states.

second excited state. It is from this state where the unex-
pected change in magnitude order comes, as explained in
the previous paragraph. We also see how the maximum
of the hyperdeterminant jumps abruptly due to the low
energy difference between the ground state and the 27¢
excited state.

This peculiar behavior of the second excited state may
play an important role in Quantum Sensing and Metrol-
ogy, where temperature can not be neglected and thermal
fluctuations of the states appear. As we can see in Fig.2,
the peak smoothens and moves to A ~ 1.25.

We have seen for the Ising model how the hyperdeter-
minant detects the QPT and all states generated follow
the properties presented in Section II. In order to ensure
the hyperdeterminant is a good figure of merit to detect
QPT we will study the XXZ Model.
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FIG. 2: The evolution of the hyperdeterminant over some
chosen values of temperature is shown. A lighter color in the
upper curves means a higher temperature.



IV. XXZ MODEL

The XXZ model is defined by the following quantum
hamiltonian

H= Z‘Tf‘fﬁrl +olol +Aciof, +Aaf. (9)

7

If we set A = 0, as we can see in Ref.[11], this model is
in the ferromagnetic phase for A < —1, in the critical
XY spin-glass phase for —17 < A < 1 and in the Néel
antiferromagnetic phase for A > 1.

Surprisingly, the hyperdeterminant VA and VA is ex-
actly zero. Due to this fact, the hyperdeterminant is not
able to detect any QPT for this model, but on the other
hand, S and T are able to do so, as shown in Fig.3.
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FIG. 3: It shows the dependence of the S, T invariants of
the XXZ model over the anisotropy parameter. The region
—2 < A < —1 is empty because there both invariants are
strictly O and the logarithmic scale is unable to show it.

We see how both invariants are able to detect both
QPT, but they cancel out exactly to make the hyper-
determinant 0. This can be explained in terms of the
explicit form of the ground state. For the ferromagnetic
phase we clearly have a product state |¢g) = [1111) or
|0000) which has no entanglement at all. For the Néel
phase, the non normalized state is given by

lo(A)) = |0011) + [0110) + [1100) + [1001)—
% (A + V8 + AQ) (10101) + [1010)), (10)

which is an entangled state. If we set A = 1 then the
state reads

[Wo(1)) = | )aslp ™)1 + [ daalp )2 (11)

where |¢F) = |01) & [10). If we are able to factorize
the system into subsystems which are entangled between
them, then we could justify S and T being zero. Since
in this case the factorization is in terms of two pairs, the

fact that the invariants are zero is due to symmetry. The
XXZ chain is U(1) symmetric YA but when A = 1, SU(2)
symmetry is also fulfilled, hence making the invariants 0
(Ref.[12],[13]).

In a similar fashion as we did in the last section, the
XXZ model exhibits analogous features regarding the in-
variants. As before, by performing the same analysis as
in Section III, we can construct Table II in which now
we show the different dependencies of the energy E(A)
instead of the excited states for the sake of simplicity.

E= |Hdet|S T
—4 0 0 0
4 0 0 0
0 0 0 0
01 0 cts |cty
—4A |0 cts |cty
4A 0 0 0
E'(A)|0 s(A)[E(A)

TABLE II: Summary of the different invariant values for all
excited states for the XXZ Model. All terms just indicate how
the invariant depends on external parameters and E’'(A) =
—2(A + v/8 4+ A?). The energy 01 corresponds to the only
state which has a different structure than the rest of the states
with null energy, hence leading to a different behavior of the
invariants. The terms ct,/; simply mean that the invariants
are constant and with different values.

All states generated can be studied under the classifica-
tion of Verstraete et al.in Ref.[14] and is left for upcoming
studies.

As we have seen, the hyperdeterminant is completely
null for all eigenstates of the XXZ7 Hamiltonian, hence it
is mandatory to compute the thermal average, in an anal-
ogous way as Eq.(7), for the invariants S and T. In order
to keep the figure simple, we only show the S invariant
in the region of low temperatures in Fig. 4.
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FIG. 4: The evolution of the S invariant over some chosen
values of temperature is shown. A lighter color in the lower
curves means a higher temperature.



We see how when higher energy states are contributing
to the average, S slowly loses its ability to detect both
QPT. It is worth noting that introducing temperature as
in Eq.(7) we preserve the properties of the invariants re-
garding the detection of entangled states, while changing
its properties regarding the detection of QPT.

Unlike the Ising model, XXZ behaves as we would ex-
pect when temperature is introduced, making the detec-
tion of QPT vanish when thermal fluctuations are con-
tributing to the system. This holds great importance
in any experimental quantum setup, where decoherence
plays a decisive role in how the system evolves and hence
may prove useful for Quantum Sensing and Metrology.

V. CONCLUSIONS

We have studied a multipartite generalization of the 2-
qubit concurrence, the hyperdeterminant. We have stud-
ied its behavior for both the Ising and the XXZ model,
successfully detecting the QPT in the first case. Since the
hyperdeterminant can not detect QPT in the XXZ model
we decided to explore the behavior of more fundamental
invariants, S and T, since they reflect clearly the prop-
erties of the wave function. Finally, we introduced finite
temperature effects by means of the quantum canonical
partition function from statistical mechanics.

Multipartite entanglement is not yet fully understood.
It is clear how to generalize concurrence and other lower
dimension invariants but the hyperdeterminant is still
not able to capture the essence of entanglement in a sim-
ilar fashion as the Von Neuman entropy does. Further
studies will consist on a deeper analysis of the polynomial
invariants in hope of finding a general way to quantify
and detect QPT, and more importantly, entanglement.

Quantum Sensing and Metrology takes advantage of
entangled systems in order to measure experimentally

little variations of macroscopic quantities, such as the
magnetic field. As it is seen in Ref.[4] or Ref.[15], entan-
gled states play a key role in achieving the Heisenberg
limit of measurements where the uncertainty of a mea-

sure scales as %, whereas the standard quantum limit for

a single qubit system scales as \/%

The main problem of those systems is that any im-
provement on the sensitivity scaling gets usually wors-
ened due to decoherence of the system. For instance,
GHZ states pose an improvement of sensitivity ofv/N.
But, on the other hand, GHZ has a decoherence rate N
times faster than a product state, hence leaving no real
improvement overall on the sensitivity attained.

Since ground states are the most stable of all, the use of
highly entangled spin chain may play an important role
in extending the coherence time of systems that achieve
the Heisenberg limit. As we have seen, if we are able
to set up a spin chain in a QPT we expect the system
to have maximum entanglement. In this case we would
be able to approach the Heisenberg limit with a state
that is the most stable over all the spectrum. Regarding
our 4-qubit chain, it is left for further studies to find
out which hamiltonian produces the maximally entangled
state under the hyperdeterminant, the |HD) state.
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