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Abstract: The Quantum Mechanics formulation of Feynman is based on the concept of path
integrals, allowing to express the quantum transition between two space-time points without using
the bra and ket formalism in the Hilbert space. A particular advantage of this approach is the
ability to provide an intuitive representation of the classical limit of Quantum Mechanics. The
practical importance of path integral formalism is being a powerful tool to solve quantum problems
where the analytic solution of the Schrödinger equation is unknown. For this last type of physical
systems, the path integrals can be calculated with the help of numerical integration methods suitable
for implementation on a computer. Thus, they provide the development of arbitrarily accurate
solutions. This is particularly important for the numerical simulation of strong interactions (QCD)
which cannot be solved by a perturbative treatment. This thesis will focus on numerical techniques
to calculate path integral on some physical systems of interest.

I. INTRODUCTION

Feynman’s space-time approach based on path inte-
grals is not too convenient for attacking practical prob-
lems in non-relativistic Quantum Mechanics. Even for
the simple harmonic oscillator it is rather cumbersome to
evaluate explicitly the relevant path integral. However,
his approach is extremely gratifying from a conceptual
point of view. By imposing a certain set of sensible re-
quirements on a physical theory, we are inevitably led to
a formalism equivalent to the usual formulation of Quan-
tum Mechanics. Methods based on path integrals have
been found to be very powerful in other branches of mod-
ern physics, such as Quantum Field Theory or Statistical
Mechanics.

FIG. 1: Path integral qualitative representation for the
connection between the initial state with the final state.
The red line represents the classical trajectory, while the
dark lines are paths corresponding to quantum particles.

Our study is based on the seminal paper of Feynman
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[1]. In the first section of our writeup, we introduce the
basic concepts of path integral and numerical simulation.
Next, we discuss some specific examples such as the har-
monic oscillator.

II. QUANTUM MECHANICS BY PATH
INTEGRAL

In this section, we recover the main ingredient of the
path integral formalism for Quantum Mechanics intro-
duced in [1]. Our purpose will be to show by concrete
examples, such as the harmonic oscillator, that this for-
malism is equivalent to the Heisenberg and Shrödinger
approach of Quantum Mechanics.

In the Feynman formalism, the matrix elements of
the operator in the Heisenberg representation at posi-
tion xI and xF respectively at times tI and tF is ex-
pressed in terms of multidimensional integrals in the x-
space, namely

〈xF , tF |O(X(t))|xI , tI〉 =

∫ tF

tI

D[x]e−SE(x) (1)

where |x, t〉 = eiHt|x〉S is the position state at time t
in the Heisenberg representation, SE(x) is the euclidean
action and

D[x] =
( m

2π∆t

)N/2
∫ N−1∏

k=1

dxk . (2)

Here the time distance T = tF − tI has been divided in
N intervals of longitude ∆t = (tF − tI)/N . For any time
slice tk = t0+k∆t (k = 0, . . . , N , t0 = tI and tN = tF ) we
integrate over xk = x(tk), which stands for the x-position
of the path at time tk with x0 = xI and xN = xF . The
above expression is understood in the limit N →∞ and
∆t→ 0 with T kept constant. The action of the system
in units of } is

S(x) =

∫ tF

tI

dtL , (3)
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and the corresponding discretized Lagragian in the eu-
clidean space is

L =
m

2

(
xk+1 − xk

∆t

)2

+ V

(
xk+1 − xk

2

)
. (4)

The basic difference between Classical Mechanics and
Quantum Mechanics should now be apparent. In Classi-
cal Mechanics, a definite path in the (x, t)-plane is associ-
ated with the particle’s motion; in contrast, in Quantum
Mechanics all possible paths must play a role, including
those which do not bear any resemblance to the classical
path. Yet we must somehow be able to reproduce Clas-
sical Mechanics in a smooth manner in the limit h→ 0.

A. Spectrum from a transition amplitude

Here we show that by knowing the transition ampli-
tudes in eq. (1), all the physical properties of the system
(namely eigenvalues and eigenstates) can be known. This
approach is an alternative to that of Quantum Mechan-
ics where we directly diagonalize the Hamiltonian. In
the most familiar Shrödinger representation, the matrix
element in eq. (1) reads as

〈xF , tF |O(t)|xI , tI〉 =

= 〈xF |e−iH(tF−t)O(X)e−iH(t−tI)|xI〉 . (5)

Let’s now insert in this expression a complete set of eigen-

states
∑
n

|n〉〈n| = 1 and H|n〉 = En|n〉, namely

〈xF , tF |O(t)|xI , tI〉 =

=
∑
n,n′

〈xF |e−iH(tF−t)|n〉〈n|O|n′〉〈n′|e−iH(t−tI)|xI〉 (6)

=
∑
n,n′

e−iEn(tF−t)e−iEn′ (t−tI)〈n|O|n′〉ψ∗n(xF )ψn′(xI)

where 〈xF |n〉 = ψ∗n(xF ) is the eigenstates wave function.
Now, by setting xF = xI ≡ x0 and t → it and by inte-
grating over x0 we get in the euclidean space∫

dx0〈x0, tF |O(t)|x0, tI〉 =
∑
n

e−En(tF−tI)〈n|O|n〉 , (7)

where we have used the orthonormality of the wave func-
tions

∫
dxψ∗n(x)ψn′(x) = δnn′ . With this change, the ac-

tion of the system matches the hamiltonian, and is known
as the euclidean action SE(x). At large time T = tF − tI
only the ground state will contribute to the above sum,
namely∫

dx0〈x0, tF |O(t)|x0, tI〉
T→∞→ e−E0T 〈0|O(X)|0〉. (8)

By studying the special case O(X) = 1 , we can extract
the energy-level of the ground state from the behaviour

at large time of eq. (8),∫
dx0〈x0, tF |x0, tI〉 =

∑
n

e−EnT T→∞→ e−E0T . (9)

Moreover, in this case eq. (6) can be simplified and at
large time can provide the ground state wave function

〈x0, tF |x0, tI〉 =
∑
n

e−EnT |ψn(x0)|2 (10)

〈x0, tF |x0, tI〉
T→∞→ e−E0T |ψ0(x0)|2 . (11)

So dividing the propagator over its integral over all the
initial states we get the ground state wave function

〈x, tF |x, tI〉∫
dx〈x, tF |x, tI〉

T→∞→ |ψ0(x)|2 . (12)

It is useful to introduce the expectation value of a generic
observable O as

〈O(t)〉=

∫
dx0〈x0, tF |O(t)|x0, tI〉∫
dx0〈x0, tF |x0, tI〉

=

∫
Dµ(~x)O(xt) , (13)

where Dµ(~x) =
1

Z
∏N−1

k=0 dxk e
−S(~x) and the path vari-

ables are ~x = (x0, . . . , xt, . . . , xN = x0). Additionally,

Z =

∫ N−1∏
k=0

dxke
−S(x) has been set to have 〈O〉 = 1.

According to eq. (9), at large time distance we have

〈O(t)〉 T→∞→ 〈0|O(x)|0〉 . (14)

Interestingly, the expectation value of O(t0) =
δ(X(t0)− x) ≡ δ0 gives∫

dx0δ0〈x0, tF |x0, tI〉∫
dx0〈x0, tF |x0, tI〉

=
〈x, tF |x, tI〉∫
dx〈x, tF |x, tI〉

, (15)

which according to eq. (12) goes to |ψ(x)|2 at large time
distance, T .

III. HARMONIC OSCILLATOR VIA PATH
INTEGRALS: ANALYTIC SOLUTION

Now we consider the case of the harmonic oscillator
with potential V (x) = 1

2mω
2x2 and we estimate the wave

function and the energy-level of the ground state by eval-
uating eq. (1) for the operatorO(t) = 1 ≡ K(t). The ana-
lytic solution for K(xF , tF ;xI , tI) ≡ 〈xF , tF |xI , tI〉 when
tI = 0 can be expressed as [2]:
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〈xF , tF |xI , 0〉 =

√
a(t)

πi
eia(t)((x2

F +x2
I)cos(ωt)−2xF xI) , (16)

where a(t) ≡ mω

2sin(ωt)
. Therefore, by setting xF = xI ≡

x and t→ it, we obtain

〈xF , tF |xI , 0〉 =

√
b(t)

2π
eib(t)x

2(cosh(ωt)−1) , (17)

where b(t) ≡ mω

sinh(ωt)
. Thus, by doing t→∞ we get

ln(K(t→∞)) =
1

2
ln(

mω

π
)− ω(mx2 +

t

2
) =

= ln(

√
mω

π
e−ωmx2

)− ω

2
it , (18)

and from eq. (11) we obtain the analytic solution of
|ψ0(x)|2 for the harmonic oscillator.

IV. THE METROPOLIS ALGORITHM

From eq. (13), we can infer that the expectation value
of an operator is a N -dimensional integral over a periodic
path ~x. Being Dµ(~x) defined positive and normalized, it
can be interpreted as a probability measure. Thus, we
can estimate 〈O(t)〉 as a statistical average over a sample
of paths, ~x(k) (k = 1, · · · ,M), extracted randomly with
weight Dµ(~x):

Ō =
1

M

M∑
k=1

O(~x
(k)
t ) . (19)

For large M , 〈O(t)〉 ' Ō and the error goes to zero as

1/
√
M . The standard deviation of Ō can be used to give

an error on our estimation of 〈O(t)〉 at finite M . Let’s
now discuss the technical part to generate a sample of
paths ~x(k) distributed accordingDµ(~x). This can be done
by generating a Markov Chain of ~x(k) paths through the
Metropolis algorithm. The Metropolis algorithm starts
setting randomly an initial path ~x(0). In our simulation
setup, we set ~x(0) = 0. Then, the following three steps
come into play:

a. For each coordinate xi = x(ti) we consider a new
proposal x′i randomly generated starting from the initial
path. Specifically, we introduce a gaussian variable ξ
distributed in such a way that x′i = xi + ξ.

b. The Metropolis algorithm consists of accepting
or rejecting the new path ~x′ in the following way. We
calculate the change induced in the action ∆S = S(~x′)−
S(x) and if ∆S < 0 (namely the action is diminished by
the new path), we accept the new path ~x(1) = ~x′ with
probability e−∆S . In practice, we generate a random
number r uniformly distributed between 0 and 1. If r <

e−∆S then the algorithm accepts the new path, otherwise
it returns to the old value.

c. Then, the steps a. and b. are repeated even for
the path ~x(1), and it continues with ~x(2) and so forth.

The algorithm stops when the S(~x(k)) values on the
updated ~x(k) chain converge to a stable value, the so-
called thermalization phase (FIG. 2). In the next section,
we illustrate the algorithm with a concrete example.

V. HARMONIC OSCILLATOR VIA PATH
INTEGRALS: NUMERICAL SIMULATION

In this section, we simulate the harmonic oscillator
with the Metropolis algorithm [3]. This means that the
euclidean action corresponding to a single path is

SE(xj) ≡
N∑
j=1

[
m

2
(
xj − xj−1

∆t
)2 +

mω2

2

(xj + xj−1)

2
] .(20)

In order to get reliable numerical results, it is needed
that our discrete simulation well approximates the con-
tinuum limit, ∆t → 0, and the infinite time extension,
T →∞. Being ω related to the energy of our system, we
require ω∆t� 1 and ωT � 1, which corresponds in our
simulation to m = 1/2, ω = 1, T = 100 and ∆t = 0.5.
Then the euclidean action reads as

SE(xj) ≡
N∑
j=1

[
(xj − xj−1)2

16
+

(xj + xj−1)

8
] . (21)

A. Wave Function of the ground state

In order to obtain the wave function of the ground
state, we can use a time saving trick [4]. This trick con-
sists of introducing a delta function into the probability
integral

|ψ0(x)|2 =

∫
dx1...dxNe

−ε(x,x1,...) , (22)

which allows us to calculate the wave function by only
considering a concrete position of each path. For in-
stance, using the trick for the first position of the paths,
we have:

|ψ0(x)|2 =

∫
dx0...dxNδ(x− x0)e−ε(x,x1,...) (23)

Hence, this value must be recovered by the expression:

|ψ0(x)|2 =

√
mω

π
e−mωx2

→
√

1

2π
e−

x2

2 , (24)

when m = 1
2 and ω = 1. In this case, En = n + 1

2 and
n = 0, 1, 2, ...
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FIG. 2: Behaviour of the harmonic oscillator action as a function of sample of paths generated by the Metropolis
algorithm. Left: We consider a large simulation of 10000 paths. Right: We focus on the first 200 paths of the same

sample as the plot on the left. After 50 iterations, an asymptotic value is reached.

B. Expectation Values

From the numerical simulation we can calculate the
following matrix elements of the position operator and
their respective errors (σ) with the formulas introduced
in the previous section. The values obtained are:

〈ψ0|X|ψ0〉 = 0.00± 0.03 (25)

〈ψ0|X2|ψ0〉 = 1.01± 0.02 (26)

〈ψ0|X3|ψ0〉 = 0.0± 0.09 (27)

〈ψ0|X4|ψ0〉 = 3.12± 0.09 (28)

Whereas the analytic estimates from standard Quantum
Mechanics are:

〈ψ0|X2|ψ0〉 = 1 (29)

〈ψ0|X4|ψ0〉 = 3 (30)

Notice that we can also estimate the previous matrix ele-
ments by knowing the wave function of the ground state,
namely

〈ψ0|O(x)|ψ0〉 =

∫
dx|ψ0(x)|2O(x) '

'
∑
k

|ψ0(xk)|2O(xk)∆x . (31)

The estimated values in this way are:

〈ψ0|X2|ψ0〉 = 0.98 (32)

〈ψ0|X4|ψ0〉 = 3.11 (33)

where the difference is an estimate of the systematic error
in the approach, produced due to the fact that in the
right-hand side we have a discrete sum.

C. Symmetries and improvement of the estimations

One could observe that the estimated values for X and
X3 have to be exactly zero, since they are odd and the ac-
tion is symmetric for parity. However, in the last section
we have seen that the estimated values are not exactly
zero, with a small error. The reason why is because the
sample of paths is not symmetrical under parity transfor-
mation. This happens since Metropolis algorithm takes
paths randomly, thus it is not guaranteed that each path
would have a symmetrical one in the sample because
the algorithm breaks the parity symmetry. Nonetheless,
since two symmetrical paths give the same value for the
euclidean action SE(x) = SE(−x), we can create an im-
proved sample with symmetrical paths that implies hav-
ing these values exactly zero, in addition to enhancing
the statistics. Therefore, these new values are:

〈ψ0|X|ψ0〉 = (0.0± 1)10−17 (34)

〈ψ0|X3|ψ0〉 = (0.0± 1)10−17 (35)

while the estimations ofX2 andX4 are the same, beacuse
of the symmetry of the problem. In fact, from eq. (23)
we have made the calculations of (25)· · · (28), (32) and
(33) by considering the first position of each path, i.e.
by fixing t at the initial time. However, time reversal
invariance allows to calculate the same wave function at
any time, since the fluctuations are the same.

D. Ground state energy Level

From Virial Theorem, we can estimate the ground
state energy through the calculation of 〈ψ0|X2|ψ0〉. In
fact, in a stationary state in Quantum Mechanics the
Virial Theorem is
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2〈T 〉 = 〈xdV
dx
〉 . (36)

In the harmonic oscillator case, since the potential is V =

mω2 〈x2〉
2 , we obtain that

〈xdV
dx
〉 = mω2〈x2〉 (37)

〈T 〉 = mω2 〈x2〉
2

. (38)

FIG. 3: Ground state wave function obtained through
the time saving trick and with the symmetric sample.

The red line represents the gaussian function of eq. (24).

Therefore, by setting m = 1
2 and ω = 1, we can esti-

mate the ground state energy as

E0 =
〈ψ0|x2|ψ0〉

2
. (39)

That gives us a result of E0 = 0.51, which compared to
the analytic value E0 = 0.5, we can infer that is a good
estimation with a systematic error.

VI. CONCLUSIONS

In this thesis the goal has been studying one-
dimensional quantum systems using the formulation of
path integrals, both analytically and numerically. We
have seen that Feynman’s path integral formalism is
equivalent to the Schrödinger and Heisenberg interpre-
tations for Quantum Mechanics. In fact, by using path
integral formalism some expected values in Quantum Me-
chanics can be obtained analytically in different ways.
Furthermore, we have seen that Markov chains are useful
for generating paths with the desired probability distri-
bution and the Metropolis algorithm is suitable for the
numerical simulations, which by using path integral for-
malism enables to solve systems where the analytic so-
lution is unknown. With regards to the particular case
of the harmonic oscillator, it can be solved analytically
with the path integral formalism, which provides a semi-
classical approach. However, it can also be easily solved
by numerical simulations. For instance, it is useful to
take advantage of the symmetries of the problem in or-
der to obtain more accurate results. In general, the re-
sults presented in this thesis are well compared with the
theoretical values or with other results presented in the
literature.
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