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Abstract: Using a small sample of cold bosonic atoms submitted to a strong artificial magnetic
field, we obtain the ground state of the system in the lowest Landau level. Our goal is to identify
the ground state obtained with the known Laughlin state. The calculations have been done by
exact diagonalization of the corresponding Hamiltonian. The obtained ground state is a strongly
correlated state with zero interaction. This state shows all of the characteristics familiar from the
fractional quantum Hall effect.

I. INTRODUCTION

The quantum Hall effect is observed in two-
dimensional electron systems subjected to low tempera-
tures and strong magnetic fields. In that case, a stepwise
dependence of the Hall resistance RH on the magnetic
field B is shown. Otherwise, the relation between RH
and B becomes strictly linear, as confirmed by Edwin
Hall [1]. The proposed system is a many-body system
with electrostatic interaction, so-called Coulomb interac-
tion. This interaction plays an irrelevant role to the un-
derstanding of the integer quantum Hall effect (IQHE).
Thus, the phenomenon can be interpreted as a single-
particle effect. On the other hand, the essence of the
fractional quantum Hall effect (FQHE) lies in the interac-
tion. Therefore, it needs to be treated as a many-particle
effect. This paper is focused on the FQHE.

Many-body systems with Coulomb interaction are
quite complicated. Nevertheless, there is the possibil-
ity of removing most of the electron-electron interaction
by replacing the system of interacting electrons with an
equivalent system of quasiparticles, so-called composite
fermions (CF). Therefore, the problem is transformed to
a much simpler single particle problem of rather complex
objects. Following the CF model, it is possible to define
a wave function that describes the system. However, al-
though these wave functions are very accurate, they are
not an exact solution for the system of electrons under
Coulomb interaction. The main problem is the Coulomb
interaction [2].

In this paper, we propose a model that simulates the
system of electrons with Coulomb interaction submitted
to real magnetic fields. This model consists on the con-
finement of ultracold atoms in a rotating two dimensional
trap, which generates an artificial magnetic (gauge) field.
The purpose of the article is to identify the exact ground
state of the proposed boson system in the lowest Lan-
dau level, which corresponds to the limit of very high
magnetic fields, with the bosonic Laughlin state. The
importance of this state is that it presents strong quan-
tum correlations that cause the bosonic Laughlin state
to show all of the characteristics familiar from the con-
ventional FQHE.

This document is organized in the following way. In
section II we present the QHE. In section III we introduce
these new composite particles and the interpretation of
the FQHE using them. In section IV we find the wave
function of the system. In section V we describe the pro-
posed boson system and the bosonic Laughlin state. In
section VI we give our results and finally the conclusions
are commented in section VII.

II. INTEGER QUANTUM HALL EFFECT

A. Two-dimensional electron systems

The QHE can only appear in 2D electron systems.
Electrons in a high magnetic field are forced onto circu-

lar orbits, following the Lorentz force ~F = q( ~E +~v× ~B).
Quantum mechanically, not all the orbits are allowed.
There is a discrete set of orbits with their corresponding
energy levels, the so-called Landau levels. Electrons can
only reside at these energies, but not in the large energy
gaps in between. The existence of these gaps is crucial
for the occurrence of the quantum Hall effect. However,
in three dimensions, the electrons in the direction of the

magnetic field can have any amount of energy (~v× ~B = 0).
Therefore, the energy gaps are filled up and hence elim-
inated, preventing the quantum Hall effect from occur-
ring.

B. Quantization of the Hall resistance

The quantization of the Hall resistance is determined
by the number of Landau levels that are completely filled.
The filling factor is the number of filled Landau levels
ν = N

M where N is the number of electrons and M = eBA
h

is the capacity (degeneracy) of each Landau level, where
e is the elementary charge of an electron, h is Planck’s
constant and A is the area of the sample. The capacity in-
dicates the number of single particle states with the same
Landau energy. At low temperatures, all electrons try to
fall into the energetically lowest available states. Conse-
quently, given an electron density n, those magnetic fields
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Bν = nh/e
ν , at which all electrons fill up an exact number

of Landau levels, keeping all higher Landau levels exactly
empty, will be the values at which the Hall resistance will
show the quantized values RH = Bν

ne = h
νe2 .

C. Origin of plateaus

The origin for plateau formation arises from the ener-
getic valleys and hillocks along the interface caused by
impurities and the resulting localization of carriers. An-
other and no less important condition to show the IQHE
is the existence of imperfections in the two-dimensional
electron system. Instead, one would revert to Edwin
Hall’s straight line, since the plateaus would not be ob-
served. These defects create localized states in the energy
gap. Consequently, as long as the magnetic field is being
reduced in order to fill more Landau levels, some of the
electrons get trapped and isolated. The localized elec-
trons no longer contribute to the density of carriers nor
to the current, which means that n only takes into ac-
count the delocalized electrons. Therefore, a reduction
of B implies a reduction of n. However, the most fasci-
nating result is that they evolve at the same rate, provid-
ing the appearance of the plateau in the Hall resistance
RH ∝ Bν

n .

III. COMPOSITE PARTICLES

Composite particles are quasiparticles composed by an
electron and a number of magnetic flux quanta. These
quanta φ0 = h

e are the elementary units in which a mag-
netic field interacts with a system of electrons. From the
2D point of view, the action of the magnetic field can
be interpreted as the creation of vortices in our plane of
electrons. Each vortex is associated with a magnetic flux
quantum. Inside the vortices, electronic charge drops to
zero. As a consequence, placing vortices onto electrons
will cause the displacement of nearby electrons and the
disappearance of the electronic charge. Thus, the elec-
tron system will reduce its electrostatic Coulomb energy.

The number of vortices forming the composite particle
may vary. At least, each electron always needs to be sur-
rounded by one vortex in order to satisfy the Pauli exclu-
sion principle. This situation corresponds to the IQHE,
where the Landau levels are completely filled by elec-
trons and therefore electrons have no freedom to avoid
one another.

In the FQHE, Landau levels are only partially occu-
pied (fractional filling factors). This means that given
a certain Landau level completely filled, the FQHE is
achieved by applying stronger magnetic fields than the
corresponding IQHE, since the capacity of the Landau
level increases and therefore the level is partially occu-
pied. Stronger magnetic fields provides more magnetic
flux quanta and hence more vortices than electrons. Con-
sequently, composite particles of more than one vortex

will be created.
Composite particles can show either fermion or bo-

son behavior, depending on the number of attached flux
quanta. An electron plus an even number of flux quanta
becomes a composite fermion. An electron plus an odd
number of flux quanta becomes a composite boson.

A. Composite bosons

In this case, all the external magnetic field is incor-
porated into the new particles via flux quantum attach-
ment to the electrons. Thus, they reside in an apparently
magnetic-field-free region. Since CBs behave like bosons,
at very low temperatures they can be found in the same
lowest energy state, generating the corresponding energy
gap (Bose-Einstein condensate). As we have seen, this
gap is essential for the QHE. Therefore, the quantization
of the RH is manifested.

B. Composite fermions

Similar to the previous case, the magnetic field is also
incorporated into the new particles, so they reside in an
apparently magnetic-field-free region. Nevertheless, in
this case the particles cannot condense at the same en-
ergy level (Pauli exclusion principle). Instead, they fill
up successively the sequence of lowest-lying energy states
(Fermi Sea). Consequently, there is no energy gap and
hence the quantized Hall resistance is not shown. This is
precisely what happens with ν = 1/2.

But what about filling factors near 1/2? CFs still
have two vortices, however, they no longer reside in a
magnetic-field-free region, but in an effective magnetic
field. Consequently, CFs experience the effect of the field
and their motion becomes quantized into CF-Landau or-
bits as it did with electrons. They fill up the correspond-
ing CF-Landau levels, generating CF-energy gaps. As a
result, CFs exhibit an IQHE. However, this time Lan-
dau levels are filled by CFs instead of electrons. The
quantization of the Hall resistance will arise exactly at
the filling factors corresponding to the effective magnetic
field at which the CF-Landau levels are completely filled.

This last CF model can be generalized for all FQHE
states, including the CBs states. Instead of creating CBs,
CFs in an effective magnetic field are always created.
Thus, a direct analogy between the IQHE and the FQHE
is established.

IV. FRACTIONAL QUANTUM HALL EFFECT

Composite fermions experience a reduced magnetic
field B∗ = B − 2pNφ0

A , where 2p is the even number of
magnetic flux quanta that composes the CF. As a conse-
quence, the degeneracy of each CF-Landau level is also

modified by M∗ = eA|B∗|
h = A|B∗|

φ0
= |M − 2pN |, which
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implies that the filling factor of CFs is ν∗ = N
M∗ . The

FQHE is shown when some CF-Landau levels are com-
pletely filled, i.e. ν∗ ∈ N. Therefore, a fractional filling
factor of electrons can be understood as an integer fill-
ing factor of CFs. The relation between both is given
by ν = ν∗

2pν∗±1 , ν
∗ ∈ N, where the − sign corresponds to

the situation when B∗ points opposite to B. We conclude
that the FQHE of electrons is equivalent to the IQHE of
CFs.

Note, this last expression does not include filling fac-
tors with even denominators ν = 1/2, 3/2, 1/4... In these
cases, all the magnetic field is exactly incorporated to the
CFs. They reside in a magnetic-field-free region B∗ = 0.
Therefore, they do not present CF-Landau levels nor CF-
energy gaps, so they cannot exhibit the quantization of
the Hall resistance. However, it has been found that the
5/2 and 7/2 FQHE states show such quantization even
though they should not. They should behave like the
1/2 state, but they do not. The scenario, which cur-
rently remains unresolved, suggests that there could be
higher-order electron-electron correlations than those of
the CF model.

A. Microscopic theory

The analogy between the IQHE of electrons and the
IQHE of CFs can be exploited in order to formulate a
microscopic theory for the FQHE. The wave functions for
the IQHE of electrons are known. Thus, as we know that
there is an analogy, we can construct a wave function for
the IQHE of CFs, which we have seen that can be identi-
fied with the FQHE of electrons at ν = ν∗

2pν∗±1 , ν
∗ ∈ N.

This wave function is given by [2]

Ψν∗/(2pν∗±1) =
∏
j<k

(zj − zk)2pφ±ν∗ (1)

where zj = xj − iyj denotes the electron coordinates
as a complex number, φ±ν∗ is the Slater determinant
wave function for ν∗ filled Landau levels of electrons, and∏
j<k(zj − zk)2p is the Jastrow factor. Multiplication by

the Jastrow factor binds 2p vortices to each electron in
φ±ν∗ to convert it into CFs. Therefore, the whole wave
function can be interpreted as ν∗ filled Landau levels of
composite fermions.

Eq. (1) is a generalization of the Laughlin’s wave func-
tion, which was invented earlier for an explanation of the
ν = 1/m FQHE states, m odd. Laughlin’s wave function
corresponds to ν∗ = 1 in Eq. (1), so acquires the physical
meaning of one filled Landau level of composite fermions.

V. MODEL

For quantitative studies, the wave functions of Eq. (1)
need to be projected into the lowest Landau level, which

corresponds to the limit of very high magnetic fields.
Even though the resulting wave functions are not the
exact solution for a system of electrons with Coulomb
interaction [3]. The main problem of the study is the
Coulomb interaction, so the purpose of our model is to
simulate the system of electrons with Coulomb interac-
tion submitted to real magnetic fields, from another sys-
tem with the same physics but different interaction. One
of the experimental possibilities to mimic these systems
using dilute ultracold atoms, consists on the confinement
of N neutral bosons with repulsive contact interaction
in a rotating two dimensional trap, which rotation fre-
quency plays the role of the magnetic field.

The total Hamiltonian of N bosonic atoms trapped in
a rotating parabolic potential can be written as [3]

H = Hsp + V (2)

where V is the two body interaction potential and Hsp

is the sum of the single particle Hamiltonians given by

Hsp =

N∑
i=1

[
p2
i + p2

zi

2M
+
M

2
(ω2
⊥r

2
i + w2

zz
2
i )− ΩLzi +Wi

]
(3)

where ~r = (x, y), M is the mass of the atoms, ω⊥ and
ωz are the trap frequencies in the xy-plane and in the z-
direction respectively, Ω is the rotation frequency of the
system, Lz is the z-component of the angular momentum
and Wi is the anisotropic potential due to the presence
of impurities, which we are not going to consider. As
we want to produce an effective 2D system, we impose
ωz >> ω⊥.

The artificial magnetic field along the z-direction gen-

erated from the rotation of the trap is ~B = 2MΩc
e ẑ. The

corresponding vector potential satisfies ~B = ~∇× ~A. This
vector potential is not unique. Thus, there is some gauge
freedom in the choice of the vector potential for a given
magnetic field. The most convenient gauge for our pur-
pose is the so-called symmetric gauge:

~A = (Ax, Ay) =
B

2
(−y, x) =

MΩc

e
(−y, x) (4)

which breaks translational symmetry in both the x and
the y directions, but it does preserve the rotational in-
variance around the z-direction. With all these consider-
ations, Eq. (3) can be rewritten as

Hsp =

N∑
i=1

[
(~p− e

c
~A)2
i

2M
+
M

2
(ω2
⊥ − Ω2)r2

i

]
(5)

where the electronic charge −e and the speed of light c
are solely introduced for reasons of algebraic equivalence.
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The two body interaction potential, which needs to
simulate the Coulomb interaction of electrons, is ex-
pressed as a repulsive contact interaction characterized
by

V =
~2g

M

∑
i<j

δ(2)(~ri − ~rj) (6)

where g =
√

8πa/λz is the dimensionless coupling param-

eter, a is the 3D scattering length and λz =
√
~/Mωz.

The contact interaction is important when ~ri = ~rj .
Thus, in order to reduce the interaction, atoms need to
occupy different positions. This implies that the contact
interaction is repulsive to reduce the energy of the sys-
tem. As mentioned in section III, from the point of view
of electrons, vortices were placed onto electrons causing
the displacement of nearby electrons and the disappear-
ance of the electronic charge to reduce its electrostatic
Coulomb energy. Therefore, Eq. (6) is consistent with
the Pauli exclusion principle and the Coulomb interac-
tion.

We need to restrict the system to the lowest Landau
level (LLL) regime in order to make quantitative studies.
As we have seen in section III, this level is achieved in
the strong magnetic-field limit, i.e. for large rotational
frequencies Ω. The Hamiltonian projected onto the LLL
can be written as

Ĥ = ~(ω⊥ − Ω)L̂+ ~ω⊥N̂ + V̂ (7)

where L̂ and N̂ are the total z-component angular
momentum and particle number operators respectively.
This Hamiltonian describes a many-particle system of N
identical bosons. The multi-particle symmetric states of
N identical bosons are given by

|Φ〉 ≡ |α1(z1)α2(z2) . . . αN (zN )〉S =

√∏
α nα!

N !

·
∑
P∈SN

|αP1(z1)〉|αP2(z2)〉 . . . |αPN (zN )〉 (8)

where |α〉 are the single-particle states and nα is the
number of times that each of the single-particle states
appears in the multi-particle state (

∑
α nα = N). The

sum is taken over all different states under permutations
P acting on N elements. The appropriate single-particle
states that describe single particles in a 2D parabolic con-
finement potential are the so-called Fock-Darwin states,
given by

|ψ〉 ≡ |m〉 =
1

λ
√
πm!

(
z

λ

)m
e−|z|

2/2λ2

(9)

where z are generalized complex coordinates z = x +
iy, λ =

√
~/Mω⊥ and m is the single-particle angular

momentum. Note that the state is only characterized by
the angular momentum.

A. Second quantization

The Hamiltonian (7) describes a many-particle system.
Therefore, it is very useful to use the second quantized
formalism and set the problem in the Fock space. From
now on, we will consider λ, ~ω⊥ and ω⊥ as units of length,
energy and frequency respectively. The kinetic contribu-
tion of the Hamiltonian is a one-body operator, so it can
be written in second quantization as

Ĥkin =
∑
ij

〈ψi|
(

1− Ω

ω⊥

)
L̂+ N̂ |ψj〉a†iaj

=
∑
ij

[ ∫
dzψ∗i (z)

((
1− Ω

ω⊥

)
(−i∂θ) + 1

)
ψj(z)

]
a†iaj

=
∑
j

[(
1− Ω

ω⊥

)
mj + 1

]
a†jaj

(10)

Instead, the interaction contribution of the Hamilto-
nian is a two-body operator, so

V̂ =
1

2

∑
ijkl

〈ψiψj |V̂ |ψkψl〉a†ia
†
jalak

=
g

2

∑
ijkl

[ ∫
dz1dz2ψ

∗
i (z1)ψ∗j (z2)δ(2)(z1 − z2)ψk(z1)ψl(z2)

]
· a†ia

†
jalak

=
g

2

∑
ijkl

1

π

δmi+mj ,mk+ml√
mi!mj !mk!ml!

(mi +mj)!

2mi+mj+1
a†ia
†
jalak

(11)

where we have used Eq. (6).

B. Bosonic Laughlin state

The Laughlin’s wave function for electrons under
Coulomb interaction is not exact. Instead, there is an
exact wave function for the proposed boson system, the
so-called bosonic Laughlin state [4]:

ΨL(z1, z2, . . . zN ) = N
N∏
i<j

(zi − zj)2e−
∑
|zi|2/2λ2

⊥ (12)

where N is a normalization constant. It represents the
exact ground state of a 2D boson system in the limit
of very high magnetic fields (LLL) at total angular mo-
mentum L = N(N −1). The Laughlin state is a strongly
correlated state with zero probability to find two particles
at the same place [4]. Therefore, the contact interaction
(6) is zero. Consequently, the boson system presents a
fermion-like behaviour in the Laughlin state.
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From the point of view of the electron system, the
bosonic Laughlin state corresponds to the ν = 1/3
Laughlin state of electrons (1). In accordance with the
CF model, this implies that all the electrons are attached
to two vortices (2p = 2). Therefore, as we have seen in
section III, all the electrons see zero electronic charge in
the other electron positions. As a result, the Coulomb
interaction is zero. Note that there is no unoccupied
vortex in the Laughlin state. A vacant vortex would ex-
pand the system and would cause an increase in energy
(excited state). Thus, the bosonic Laughlin state shows
all of the characteristics familiar from the conventional
FQHE [5, 6].

VI. RESULTS

In this section, we calculate the ground state of the bo-
son system subjected to an artificial magnetic field in the
LLL regime by performing exact diagonalization. Then
we compare it with the bosonic Laughlin state (12). The
result must be exact.

In order to do this, we have prepared an algorithm
described as follows: we fix the number of particles N
and the total angular momentum L. We construct a
basis with the multi-particle Fock states. First, we iden-
tify all the possible configurations of the atoms that give
us the angular momentum of interest, without repeat-
ing configurations. Then, we rewrite each configuration
in a Fock state, which is characterized by the occupa-
tion number. The number of states in the basis deter-
mines the dimension of the Hilbert space in which we
will diagonalize. We use the generated states to calcu-
late the matrix elements 〈Φr|Ĥ|Φs〉, where Ĥ includes
Eq. (10) and (11). We diagonalize it to obtain its eigen-
values and eigenstates. Finally, we identify the ground
state. All the calculations are performed for N = 3
atoms, the corresponding Laughlin’s angular momentum
L = N(N − 1) = 6, coupling parameter g = 1 and ro-
tational frequency Ω/ω⊥ = 0.95, which has to be large
enough to ensure the LLL regime and so, the Laughlin
state.

We compare the obtained ground state with Eq. (12).
It can be shown that the overlap between both states is
given by

〈ΨL|ΨGS〉 = N
[

γ006β006

ν006α0α0α6
+

γ015β015

ν015α0α1α5
+ . . .

]
(13)

where the sum is taken over all the Fock states of the
basis, characterized by three subscripts that indicate the
angular momentum of each atom. β are the coefficients

of the GS obtained from the algorithm, ν =
√

n0!n1!...n6!
N ! ,

αm = 1√
πm!

and γ is the number of times that each of

the Fock states appears in Eq. (12). The normalization
constant has been calculated similarly. Performing de-
tailed numerical calculations, we obtain N = 0.0615457
and 〈ΨL|ΨGS〉 = 1.

VII. CONCLUSIONS

The FQHE is observed in 2D electron systems with
Coulomb interaction subjected to low temperatures and
strong magnetic fields. This many-body problem has not
an exact analytical expression. However, replacing the
system with CFs allows us to find a wave function that
describes the system accurately. A particular case of this
wave function, is the Laughlin’s wave function, which
describes the ν = 1/m FQHE states, m odd.

In order to simulate this system, we have proposed an
ultracold boson system with repulsive contact interaction
in a rotating two dimensional trap and we have found by
performing exact diagonalization that its ground state in
the limit of very high magnetic fields (LLL) at total an-
gular momentum L = N(N − 1) is exactly the bosonic
Laughlin state. We have seen that, even in a bosonic sys-
tem, the bosonic Laughlin state is a strongly correlated
state with zero interaction that shows all of the charac-
teristics familiar from the FQHE. As this state describes
very accurately the system of electrons under Coulomb
interaction, we conclude that the proposed boson sys-
tem is a very good candidate to simulate the 2D electron
system with Coulomb interaction submitted to real mag-
netic fields in the Laughlin state.
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