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Abstract: Many different systems present states of latency in their activity. In this work, we
study how these latency states can appear in complex networks of interactions by running on them
a dynamical threshold process to model activity. We find the thresholds values for what is most
likely to find these states, the dependence with the network size and we make a brief description of
how these systems develop. This work is an initial description of latency states in networks, which
will be explored more in depth in future work.

I. INTRODUCTION

There are many situations in which we would like to
predict the movement of the decisions made by individ-
uals in a group. Responding to this desire in a general
way is extremely difficult even if we restrict to binary
decisions. However, and although simple, binary-choice
models can illuminate the dynamics of a surprising range
of decisions.

In particular, threshold models are based on the influ-
ence of others decisions in the choice of an individual to
act. The key concept is that there is a threshold value
which stays for the minimum number of neighbours who
must make one decision before a given individual does
so.

Threshold models can be applied in many different
problems and fields. For instance, in toxicology, or the
spread of diseases and the diffusion of innovations, [2][3].

Granovetter [1] illustrated the model with the example
of a hypothetical crowd poised on the brink of a riot. Ev-
eryone involved is uncertain about the costs and benefits
associated with rioting, but each member of the crowd is
influenced by his peers, such that each of them can be
characterized by some threshold rule: I will join a riot
only when sufficiently many others do; otherwise I will
refrain.

Interactions between individuals are then crucial and
the concept of complex network of interactions [4][5] is
useful to simulate the behavior of threshold models, or
other dynamical processes, on structured populations. A
complex network is a graph representation of a complex
system with discrete interacting elements (nodes) which
displays non-trivial topological features, like the small-
world property or heterogeneity in the number of neigh-
bours per node (degree). The links define the nodes that
can directly influence each other, but collective behaviour
emerges and the whole system is not equivalent to a mere
superposition of individual behaviors or direct influences.

One feature of threshold model on networks which has
not been explored so far is latency. This is interesting
as there are many systems that present latency states.
For example, serious diseases like HIV and cancers. For
HIV, the term latency is used to describe the long asymp-
tomatic period between initial infection and development

of AIDS. After an individual contracts the disease, there
is a normal immune response over a time scale of months,
followed by a latency period that can last beyond 10
years, during which an individual’s T-cell level slowly
decreases with time. Finally, after the T-cell level falls
below a threshold value, there is a final fatal phase that
lasts 2-3 years [6].

The existence of latency periods is also well known
for many forms of cancer. The formation of tumors is a
complex process and cancers do not occur immediately
after exposure to a causative agent and they usually take
many years up to several decades to manifest clinically.

On the other hand, latency can refer to the period
elapsed between the diagnosis of a primary tumor and
the emergence of detectable metastatic lesions[8].

Another example is virus latency, the ability of a
pathogenic virus to lie dormant (latent) within a cell. Af-
ter initial infection, proliferation of virus particles ceases
and a latent viral infection persists. However, the vi-
ral genome is not fully eradicated. The result of this is
that the virus can reactivate and begin producing large
amounts of viral progeny without the host being infected
by new outside virus and stays within the host indefi-
nitely, like Herpes virus [7].

Our goal in this work is to describe the mechanisms
which control latency states and the length of latent pe-
riods in dynamical threshold processes on networks.

II. MODEL

In this attempt to understand latency states in com-
plex systems, we will focus only on networks with a regu-
lar degree, FIG. 1a. The degree, ki, of a node, i, is defined
as its number of neighbors or, in other words, the number
of links attached to it. This means that there is only one
type of link to connect two nodes and every node has the
same number of neighbors, kj = k, ∀j ∈ N (self-loops
are not considered).

We want to work with networks as simple as possible
to ensure maximum homogeneity, thus making sure that
all the properties of the results are given by the charac-
teristics of the dynamics, and not by inhomogeneities in
the structure of the network. We focus only on the study
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of regular degree networks with degrees of k = 15 and
k = 16.

A. Dynamical Process

The threshold model that we use in this study is a
variant of the threshold model introduced by González-
Avella et al. [9].

The nodes have a binary state, and we make an analogy
with spins. Every node can be in the up state (si = +1)
or in the down state (si = −1) as we can see graphically
in the illustration 1a.

We start setting up the initial condition by associat-
ing to each node a state up with probability p and state
down with probability 1− p. In this particular case, the
probability p is 1

2 , so we have the same probability to find
a node with spin up or spin down in the initial state.

Now we can classify the nodes, until now indistinguish-
able, into two different types, active and inactive. This
classification depends on the neighborhood of each node
and the threshold value, Th, that has to be in the range
0 ≤ Th ≤ k.

The activation state of the node i is given by:

ni(t) = θ

 N∑
j=1

Γij
1− si(t)sj(t)

2
− Th

 (1)

Where si(t) is the state of the node i at time t with
two possible values ±1, and Γij is the adjacency matrix
of connections in the network. Γij = 1 if there is a link
between nodes i and j, and Γij = 0 if it is absent, ∀i, j ∈
N .

By equation 1, an active node at time t, ni(t) = 1, is
defined by having a number of neighbors in the opposite
state (to its state) greater than or equal to the value of
the threshold. If there are not enough neighbors in the
opposite state, the node is marked as inactive, ni(t) = 0.

As we can appreciate in the illustration 1b, if we focus
on a node (marked in green) we see that its neighbors
are those that can be reached through a link (marked
in blue). To determine the activity of a given node, we
are interested in those neighboring nodes that have a
contrary state to the one of the reference node (marked
in red). If the number of the red marked nodes is larger
than the threshold value, then the reference node is fixed
as an active node, ni(t) = 1.

It is crucial to determine which are these active nodes
in the network since only these will have the option to
change their state in the development of the dynamical
process. Once we have listed all the active nodes, then
we can make a step forward in the simulation and flip
the state of one of these active nodes.

The choice of the node that will change state is done
randomly. Each active node has the same probability
(1/NA) of being selected to flip its previous state, where
this NA is the number of active nodes in the network

(a) (b)

Figure 1: In the illustration above we can see, on the
left side, (a), how the spins distribution looks like on a
piece of a degree regular network with 〈k〉 = 3. On the
right side, (b), how this distribution allows us to define

the active and inactive nodes.

at that moment. Once a node is selected, its state is
flipped and this forces us to check again all the network
to determine which nodes now will be active and inactive.
Whenever we do this calculation the time will be updated
by 1/NA, where NA is again the number of active nodes
in the network at that moment. Obviously the realization
will end when there are no more active nodes (NA = 0),
thus arriving at a steady state where there cannot be
more changes.

III. RESULTS AND DISCUSSIONS

We study the development of active nodes over time
to find latency states. At each time, the state of nodes is
given by equation 1. We can see that if we are in cases
where the threshold is very large or very small compared
with the degree, the result is very predictable. Depend-
ing on whether Th � k

2 or Th � k
2 the results differ

qualitatively.
We must remember that the model tells us that the

initial probability of finding a state up or state down for
a given node is the same and equal to one-half. When we
are in the situation that the threshold value is Th � k

2 say
Th = 12, the probability to have an active node is barely
bigger than 0.2 percent, considering that the probability
of having x neighbors with the opposite state goes like
(1/2)x. In this case, an active node will always become
inactive after flipping. This flipped node will be too far
from the threshold, so the possibility of having a sufficient
number of active neighbors so that in the future this node
will be active again is negligible.

In the opposite case, where the threshold value is Th �
k
2 , some nodes will always remain active after changing
sign. And also exists the possibility that this node, if
now is inactive, that will be attached to sufficient active
nodes whom can lead the reactivation of our previous
node rewrite this sentence.

So, as shown in the Figure 2, these situations are those
for thresholds between 16 or 15 to 12, for Th � k

2 , and

thresholds between 5 to 1, for Th � k
2 . Obviously, in
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Figure 2: Representation of the fraction of active nodes,
(
NA

N

)
, versus the physical time for every possible threshold,

(0 < Th ≤ k) . For these graphs we have used a network of N = 100000.

these ranges of the threshold value latency periods are
not observed.

Now we will focus on the study of values of the thresh-
old close to k

2 where latency states appear.

We can see how for of Th ≈ k
2 in Figure 2, the number

of active nodes has a very particular behavior. At the
beginning, it decreases very steeply to a value much lower
than the initial one. After this, only a few active nodes
are maintained, with a fraction approximately constant,
in a state of latency during a high period of time. And
finally, the system has a peak before it dies.

These latency periods are not a timely fact due to a
special distribution of the nodes. Because it is always
repeated explain the preceding words better, we can ob-
serve it by looking at Figure 2c or 2d. In each of the
realizations, the initial distribution has been changed.
Neither it is a fact of the degree since for different de-
grees we obtain similar results, see again the Figures 2c
and 2d.

The existence of latency periods can also be seen in
Figure 3. There is a progressive increase in the probabil-
ity of finding active simulations for ever greater times. A
clear transition is shown between Th > 10 where all the
embodiments go to a frozen state and Th < 6 where a
steady state is reached, that is to say, their activity does
never end. In the situation where Th >

k
2 , whenever you

flip an active node it becomes inactive, but it remains
with a value close to the threshold.

In Figure 4, we introduce new variables that will be
of interest. The vulnerable active nodes are those active
nodes attached to exactly Th nodes in the opposite state
and there is at least one of these that is active. So if the
node itself or one of its neighbors is selected to flip, the
previously vulnerable active node will become inactive.
Similarly, we introduce the vulnerable inactive nodes as
those which are inactive with Th − 1 neighbors with a
contrary state and at least one neighbor active with the
same state. So if the neighboring active node is selected
it will become active.

Treball de Fi de Grau 3 Barcelona, June 2017
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(a) Cumulative distribution finction of the live time for
simulations with k = 15.

(b) Cumulative distribution finction of the live time for
simulations with k = 16.

Figure 3: Representation of the cumulative distribution
function, P (t), of the life time of 100 realizations for

every threshold value. This shows us the probability of
finding a still active simulation after a given time. We
only represent the results for (Th ≥ 6), because for the
realizations with (Th < 6) never end. For these graphs

we also have use a regular degree network of
N = 100000.

We will also define the vulnerable active links as those
links between two active nodes with a contrary state.
And the vulnerable inactive links as those links between
two active nodes with the same state.

From Figure 4, we can see how there is a clear rela-
tionship between the peaks for the active nodes and the
peaks related to the vulnerable inactive nodes. Since all
the realizations have a peak in the vulnerable inactive
nodes that precedes the peak of the active nodes and the
subsequent end of this realization, we view this as some-
how the number of vulnerable inactive nodes grow and
surround the active nodes. Thus when an active node
is selected to flip its state there will be a sudden rise of
active nodes. The number of nodes that will become ac-
tives is at least equal to the number of inactive vulnerable
neighbours that had the selected node.

(a) Average of 100 realizations with a fixed threshold value, Th = 8.

(b) Average of 100 realizations with a fixed threshold value, Th = 9.

Figure 4: Representation of the fraction of the active
nodes, active nodes with up state, inactive nodes with

down state, states up, vulnerable active nodes,
vulnerable inactive nodes, vulnerable active links and

the vulnerable inactive links. For these graphs we have
use a regular degree network of N = 100000 and a fixed

k = 15.

This sudden rise of active nodes is shown in every final
stage of the latency states, as we can see in the Figure 4.
These new active nodes have just Th neighbors against
their state. This leads us to a state where the active
nodes are linked to inactive nodes far from the thresh-
old, so the change of an active node does not imply the
creation of new activity. The active nodes will be de-
pleted as they are being selected to flip the state.

Another feature we have seen is that these latency
states do not seem to be affected by the finite size of
the networks that we use. We have observed these non-
monotonous states in networks between 1000 and 500000
nodes, see Figure 5.
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(a) Average of 100 realizations with a fixed threshold and degree
values, k = 15 and Th = 8.

(b) Average of 100 realizations with a fixed threshold and degree
values, k = 16 and Th = 9.

Figure 5: Representation of the fraction of the active
nodes, active nodes with up state, inactive nodes with
down state, states up, vulnerable active nodes, vulnerable
inactive nodes, vulnerable active links and the vulnerable
inactive links. For these graphs we have use a regular
degree network of N = 500000.

IV. CONCLUSIONS

The study of the dynamic threshold process in com-
plex networks with a regular degree, in particular with
a degrees k = 15 and k = 16, has allowed us to verify
that for a certain range of threshold values (Th ≈ k

2 ) the
activity of the system presents non-monotonous latency
states. We have seen how these states are neither a par-
ticular fact of the degree of the network nor an effect due
to the finite size of the network. Furthermore, we have
noticed that in every realization the end of the latency
state is preceded by a peak of vulnerable inactive nodes.

We could introduce a modification in the used model,
in order to try to control the time span of the latency
state to be able to extend it so that the system not al-
ways ends in frozen state but reached a constant dynamic
state. Finally, we would also like to apply this modified
model to scale-free complex network structures which are
more descriptive of real networks.
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