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Abstract

A static comparative study on set-solutions for cooperative TU games is carried out.
The analysis focuses on studying the compatibility between two classical and reasonable
properties introduced by Young (1985) in the context of single valued solutions, namely
core-selection and coalitional monotonicity. As the main result, it is showed that coali-
tional monotonicity is not only incompatible with the core-selection property but also
with the bargaining-selection property. This new impossibility result reinforces the trade-
off between these kinds of interesting and intuitive economic properties. Positive results
about compatibility between desirable economic properties are given replacing the core-
selection requirement by the core-extension property.

Resum

En aquest article es realitza un estudi comparatiu de solucions conjuntistes per a
jocs cooperatius d’utilitat transferible. L’anàlisi es centra en la compatibilitat entre dues
propietats introduides per Young (1985) en el contexte de solucions puntuals: monotonia
coalicional i selecció dins el nucli del joc. Com a principal resultat, es mostra que la
monotonia coalicional no és només incompatible amb què es seleccionin solucions dins el
nucli sinò que també és incompatible amb la selecció dins el conjunt de negociació. Aquest
nou resultat d’incompatibilitat reforça la confrontació entre aquesta mena de propietats
econòmiques que són interessants i també molt intüıtives. En l’article també es donen
resultats positius respecte a la compatibilitat entre propietats, si es canvia l’exigència de
seleccionar solucions dins el nucli per la selecció de solucions que continguin el nucli

Key words: set-solution, coalitional monotonicity, core-selection, bargaining-selection,
core-extension.
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1 Introduction

Referring to cooperative games of transferable utility, Young (1985) proved that, for
general games with at least five players, no core allocation is coalitionally monotonic.
Coalitional monotonicity assumes that if the worth of a given coalition increases while
the worth of all other coalitions remains the same then the payoff of every member of that
coalition does not decrease. This is the known as Young’s impossibility theorem. From
an economic point of view, this is surprising and interesting as it shows that there is a
trade-off between two important and intuitive properties: core selection and coalitional
monotonicity. Maschler2 pointed out the importance of this fact:

“... if you want a unique point outcome in the core
you must face some undesirable non-monotonicity conse-
quences. On the other hand, if you feel that monotonicity
is essential, say, because it “provides incentives” if imposed
on a society then you should sometimes discard the core,
and the nucleolus is not a solution concept that you should
recommend”.

Housman and Clark (1998) analyze and prove the above single point impossibility
result for the case of four-player games. Furthermore, they show there exists an infinite
class of core allocations which are coalitionally monotonic for three-player games.

As a first result of the present paper we will extend Young’s impossibility result to a
set-solution framework and find that, for n ≥ 4, no core-selection (single or multiple) is
coalitionally monotonic (Theorem 1). Coalitional monotonicity for set-solution concepts
requires: that for any selected allocation in the solution set, if the worth of a coalition
increases while the worth of all other coalition remains the same, then there exists an
allocation in the new solution set where the payoff of every member of that coalition does
not decrease.

The core is an important set-solution concept supported by a wide range of applica-
tions. An alternative to the core is the bargaining set à la Davis and Maschler (1963,
1967). It is remarkable that this bargaining set is always non-empty and includes any core
element. In some situations, the bargaining set makes more sense than the core itself, as
Maschler (1976) pointed out in an economic example of a game with a non-empty core.

2See Maschler (1992), p. 614. The boldface in the quoted paragraph is due to the authors.
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Section 2 analyzes whether the new set-version of Young’s impossibility result still
holds if we consider the bargaining set instead of the core. Our main result in this section
is that for n ≥ 4 no selection (single or multiple) in the Davis-Maschler bargaining set is
coalitionally monotonic (Theorem 2 ). It is important to point out that there does not
exist any logic dependence between these two new theorems.

The bargaining impossibility result has a connection with the first and seminal paper
of Meggido (1974) showing an undesirable non-monotonicity property for the nucleolus,
the kernel and the bargaining set. Meggido showed there is a nine-player cooperative
game where the above set or point solution concepts are not aggregate-monotonic. Re-
cently Hokari (2000) has shown that the nucleolus is not aggregate-monotonic for n ≥ 4
in the domain of convex games. We have extended this result to n ≥ 4 for any non-empty
subset of the bargaining set but imposing coalitional monotonicity instead of aggregate
monotonicity, which is the coalitional monotonicity property but only for the grand coali-
tion.

In this section we also show that the bargaining set à la Mas-Colell (Mas-Colell,1989)
does not satisfy the coalitional monotonicity property for n ≥ 4.

The above bargaining sets are core catchers. Hence, we examine wheter there is any
source of incompatibility for a non-empty set-solution between being a core-extension
and satisfying the coalitional monotonicity property. In Section 3 we look for some set-
solutions that simultaneously meet both properties. In particular, we show that the Weber
set and the Weber set of order k are examples of this type. As a consequence we obtain
a new interpretation for the core. The core, in spite of not being coalitionally monotonic,
it is always the intersection of all its coalitionally monotonic extensions.

Due to the importance of the core as a set-solution, the last part of the paper is
devoted to analyzing the restrictions or conditions under which the core keeps the desired
monotonicity property. We will show that under some restrictions on the incremented
game, the core would meet the coalitional monotonicity property. Two important classes
of games are analyzed: the class of convex games and the class of average monotonic
games.

An n-player cooperative game is a real-valued function v defined on all coalitions
S ⊆ N = {1, . . . , n} such that v(∅) = 0. The set of all cooperative games will be denoted
by GN . A preimputation for a game v is an allocation vector of the worth of the grand
coalition, i.e. x = (x1, . . . , xn) ∈ RN such that

∑n
i=1 xi = v(N). This latter condition is

called efficiency and x is said to be an efficient vector. The set of all efficient vectors will
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be denoted by I∗(v). Adding individual rationality, i.e. xi ≥ v({i}), for all i ∈ N , we
obtain the imputation set of the game v denoted by

I(v) = {x ∈ I∗(v) | xi ≥ v({i}), for all i = 1, 2, . . . , n}.

We will denote by xS the restriction of the vector x ∈ RN to the coalition S ⊆ N .
A game with a non-empty imputation set is called essential (recall that v is essential if
and only if

∑

i∈N v({i}) ≤ v(N)). The core of a game, denoted by C(v) is the set of
those efficient vectors satisfying coalitional rationality, x(S) =

∑

i∈S xi ≥ v(S), for all
∅ 6= S ⊆ N . Notice that C(v) ⊆ I(v) for any v ∈ GN . A balanced game v ∈ BN

is a game with a non-empty core. The core of a cooperative game satisfies the dummy
player property, which means that if i ∈ N is a dummy player of v then xi = v(i)
for all x ∈ C(v). A dummy player i ∈ N of a game v ∈ GN is a player such that
all his marginal contributions to any coalition are equal to his individual worth, i.e.
v(S ∪ {i})− v(S) = v(i), for all S ⊆ N \ {i}.

A set-solution concept is a rule α that assigns to any cooperative game v ∈ GN a
subset of its preimputation set, α(v) ⊆ I∗(v). If α(v) is a singleton, α(v) = {x}, for
any v ∈ GN , we say α is a one-point solution or single-valued solution. A set solution is
non-empty, if for any v ∈ GN , we have α(v) 6= ∅.

A set-solution α is a core-selection if for any balanced game v ∈ BN (i.e. C(v) 6= ∅)
we have α(v) ⊆ C(v).

A set-solution α is coalitionally monotonic if for any two games v, v′ ∈ GN such
that, for some coalition ∅ 6= S ⊆ N , v(S) ≤ v′(S) and v(T ) = v′(T ), for any T 6= S (we
will denote this by v ≤S v′), it holds that for any x ∈ α(v) there exists a vector x′ ∈ α(v′)
satisfying xi ≤ x′i for all players i ∈ S. This coalitional monotonicity property is the
natural extension to set-solution rules of the one defined in Young (1985).

We can now state and prove the first impossibility result, which can be viewed as an
extension of the Young’s classical result to the class of set-solution concepts. The proof
is not just a counterexample showing that the core of a carefully selected game shrinks
into one single point(this leading to a contradiction) but it is a counterexample based on
a parametric family of assignment games with relatively large cores.

Theorem 1 For n ≥ 4, non-emptiness, core-selection, and coalitional monotonicity are
incompatible.

Proof Let α be a non-empty set-solution rule which is a core-selection and coalitionally
monotonic. Let N = {1, . . . , n} be the set of and let (N, v) be the assignment game
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(Shapley and Shubik, 1972) associated to the matrix

3 4 5 6 . . . n

1
2

(

a b 0 0 . . . 0
c a 0 0 . . . 0

)

where a ≥ b > 0, a ≥ c > 0 and a < b + c.
Notice that for all S ⊆ N , we have v(S) = v(S∩N1) where N1 = {1, 2, 3, 4}. It follows

that all players in N2 = N \N1 are dummy players. As the core meets the dummy player
property and α is a core-selection, we know that for any x ∈ α(v)

xj = 0, for any j ∈ N2. (1)

.
In fact, the four-player subgame3 (N1, vN1) where

v(1) = 0 v(12) = 0 v(123) = a
v(2) = 0 v(13) = a v(124) = a
v(3) = 0 v(14) = b v(134) = a
v(4) = 0 v(23) = c v(234) = a

v(24) = a
v(34) = 0 v(N1) = 2a,

fully determines the core of v, i.e. C(v) = {(x,0N2) | x ∈ C(vN1)}.
Now, let v1 be the same game as v but increasing the worth of the coalition S = {1, 2, 3}

to v1(123) = 2a. It is easy to check that the core of the game v1 is non-empty and is equal
to

C(v1) = {(a− x3, a, x3, 0,0N2) | 0 ≤ x3 ≤ a− b}.

Hence, by coalitional monotonicity it holds that for all x ∈ α(v) there exists x′ ∈
α(v1) ⊆ C(v1) such that

x3 ≤ x′3 ≤ a− b. (2)

Repeating the same argument, step by step, for coalitions {1, 2, 4}, {1, 3, 4}, and
{2, 3, 4} we obtain respectively, that for any x ∈ α(v),

3We will omit commas and curly brackets and write, for instance, v(123) instead of v({1, 2, 3}).
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x4 ≤ a− c
x1 ≤ a− c
x2 ≤ a− b.

(3)

Adding (1), (2), and (3) we get x(N) ≤ 4a − 2b − 2c. Furthermore, by efficiency, it
holds that x(N) = v(N) = 2a, and so b + c ≤ a which contradicts the initial hypothesis
on the parameters a,b, and c. 2

As the reader may guess, the Young’s classical result is now a direct consequence of the
above theorem, simply applied to point-solution rules. What is more important, the above
result states that, coalitionally monotonic solutions can only be found if we discard the
core and any of its non-empty subsets. Hence, what we have just proved allows us to drop
the word “unique” in the comment by Maschler quoted in our introduction. Consequently,
some well-known non-empty core-selections as the nucleolus, the prenucleolus, and the
least-core (for definitions see Driessen, 1988) will not be coalitionally monotonic.

Corollary 1 For n ≥ 4, the prenucleolus η∗(v), the nucleolus η(v), and the least-core
LC(v) are not coalitionally monotonic.

The negative result stated in Theorem 1 leads to search for alternatives. A first
alternative to the core is the bargaining set and so we analyze whether we could escape
the impossibility result replacing the core-selection property by looking for selections in
the bargaining set. This work is presented in the next section. A second alternative is
to analyze under which conditions the core itself preserves the coalitional monotonicity
property. This work is shown in the last section of the paper.

2 The Bargaining set impossibility theorems

The main purpose of this section is to prove that for n ≥ 4, no solution in the bargaining
set is coalitionally monotonic. We will analyze two definitions of a bargaining set: one by
Davis and Maschler (1963, 1967) and the other by Mas-Colell (1989).

Let us start with the Davis and Maschler definition. Let v be an essential cooperative
game. Let x be an imputation and i 6= j ∈ N . We say that a pair (S,y) is an objection of
player i against player j at x if S ∈ Γij = {R ⊆ N | i ∈ R, j 6∈ R}, y ∈ RS, y(S) = v(S)
and yk > xk, for all k ∈ S. A counterobjection of player j to the objection (S,y) of player
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i at x is a pair (T, z) where T ∈ Γji, z ∈ RT , z(T ) = v(T ), zk ≥ yk, for all k ∈ T ∩S, and
zk ≥ xk, for all k ∈ T \ S.

The bargaining set (for the grand coalition) M(v) is defined as the set of all imputa-
tions of v at which every objection can be countered. The bargaining set is non-empty
for any essential game and contains the core.

A bargaining-selection will be a set-solution α such that for any essential game, i.e.
I(v) 6= ∅, it assigns a subset of the bargaining set, α(v) ⊆M(v).

The proof of incompatibility between bargaining selection and coalitional monotonicity
is done by first checking the impossibility result for four-player games and extending it
to the general case, n > 4. Refering to this second part, it is interesting to point out
that we have not used the standard dummy player technique as, in general, the Davis-
Maschler bargaining set does not satisfy the dummy player property (see Granot and
Maschler, 1997). Hence, we have had to prove and use an alternative extension method
to obtain the general result (Lemma 1 ). Roughly speaking, it says that adding players to
a 0-normalized game and giving zero worth to the new emerging coalitions basically does
not affect the bargaining set. Later on we will use this result to extend the impossibility
theorem from n = 4 to an arbitrary number of players. It is important to point out that
in the extended game new players are not dummies and the game does not need to be
superadditive. Nevertheless, new players will obtain zero payoff in any allocation in the
bargaining set, which is crucial for our purpose.

Lemma 1 Let N = N1 ∪N2 = {1, 2, . . . , n1} ∪ {n1 + 1, . . . , n} be the set of players and
let v ∈ GN1 be an essential 0-normalized game (i.e. v({i}) = 0, ∀i ∈ N1 and v(N1) ≥ 0).
Then,

M(v̂) = {(x,0N2) | x ∈M(v)},

where v̂(S) = v(S), for all S ⊆ N1, v̂(N) = v(N1), otherwise, v̂(S) = 0.

Proof ⊆). Let x̂ ∈ M(v̂). First, we shall prove that for any j ∈ N2, x̂j = 0. If
x̂j > 0 for some j ∈ N2 then x̂(N1) < x̂(N) = v̂(N) = v(N1). Hence any player i ∈ N1

can make an objection against the player j ∈ N2 by using coalition S = N1. But then
player j ∈ N2 could not counter-object as for any coalition T ∈ Γji - the ones available
for counter-objecting - it holds that T ∩N2 6= ∅ and so v̂(T ) = 0. Hence, since xj > 0, for
any eventual counter-objection (z, T ) we would find that z(T ) ≥ x(T ) > 0 = v̂(T ) which
is not allowed in any valid counter-objection. Therefore we conclude that x̂ = (x,0N2).
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Now, it remains to be proved that x ∈ M(v). Notice first that x(N1) = x̂(N) =
v̂(N) = v(N1) and so x is efficient and, therefore, an imputation of v, x ∈ I(v). Let us
suppose that x 6∈ M(v). This means that there is an objection (S,y) of player i against
player j (i 6= j, S ⊆ N1, i ∈ S, and j ∈ N1 \ S) without counter-objection using any
subcoalition in N1. Notice that xj should be strictly positive, xj > 0; otherwise, since the
game is zero-normalized, player j could counter-object using the coalition {j}. But in
this case the same pair (S,y) could also be used as a justified objection of player i against
player j at x̂ = (x,0N2) in the game v̂. On the other hand, as xj > 0, for any coalition
S ⊆ N such that S ∩N2 6= ∅ and j ∈ S, we have v̂(S) = 0 and this invalidates coalitions
of this type for making counter-objections. Hence, any counter-objection may be made
only via a coalition in N1 and this is not possible by hypothesis. Therefore we conclude
that if x 6∈ M(v), then x̂ = (x,0N2) 6∈ M(v̂), which leads to a contradiction.

⊇). Let x ∈M(v) and define x̂ = (x,0N2). We shall prove that x̂ ∈M(v̂). Let (S,y)
be an arbitrary objection from player i to j, i 6= j at x̂ in the game v̂. Therefore, S ∈ Γij,
yk > x̂k, for all k ∈ S and y(S) = v̂(S). First notice that S ⊆ N1; otherwise v̂(S) = 0
and therefore

∑

k∈S x̂k < 0 which involves a contradiction as x̂ ∈ I(v̂). As a consequence,
i ∈ N1. At this point, we have to analyze two cases.
Case 1: j ∈ N2. In this case player j can counter-object using the single coalition
({j}, zj = 0) as zj = v̂(j) = 0 ≥ x̂j = 0.
Case 2: j ∈ N1. As S ⊆ N1, i 6= j ∈ N1 we can see (S,y) as an objection from player i to
j at x in v. Moreover, since x ∈M(v), this objection can be countered and this counter-
objection can be used to make a counterobjection in the original game v̂. Therefore,
x̂ = (x,0N2) ∈M(v̂), for all x ∈M(v). 2

Theorem 2 For n ≥ 4, non-emptiness, bargaining-selection, and coalitional monotoni-
city are incompatible.

Proof For n = 4 take N = {1, 2, 3, 4} and v the assignment game associated to the matrix
3 4

1
2

(

a b
c a

)

where a ≥ b > 0, a ≥ c > 0 and a < b+c. The description of the characteristic function
was given in the proof of Theorem 1. Similarly, let us define the game v1 identical to v but
increasing the worth of coalition S = {1, 2, 3} to v1(123) = 2a. The four-player game v1 is
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balanced and superadditive (i.e. for any S ∩ T = ∅, v(S) + v(T ) ≤ v(S ∪ T )). Therefore,
from Solymosi (1999), we know that

M(v1) = C(v1) = {(a− x3, a, x3, 0) | 0 ≤ x3 ≤ a− b}.

Now, by following the same argument as that presented in Theorem 1 we obtain the
desired incompatibility.

For |N | ≥ 5, let us denote by v̂ and v̂1 the extensions of the previous games in the
sense of Lemma 1. In particular, denoting by N = N1 ∪ N2 = {1, 2, 3, 4} ∪ {5, 6, . . . , n}
we have

v̂1(S) :=











v1(S) if S ⊆ N1

v1(N1) if S = N
0 otherwise.

By Lemma 1 we obtain that

M(v̂1) = M(v1)× {0N2} = {(a− x3, a, x3, 0,0N2) | 0 ≤ x3 ≤ a− b}.

and the desired incompatibility is now straightforward just increasing the worth of
three-person coalitions to the value 2a. 2

From now, coalitionally monotonic solutions can only be found if we discard the bar-
gaining set and any subset of it, as it is the kernel and also the reactive bargaining set
(Granot and Maschler, 1997).

With respect to Mas-Colell’s bargaining set, we state a partial result: we only prove the
incompatiblity of the Mas-Colell bargaining set MMC , and the monotonicity property.
Whether there are point or set-selections in this bargaining set that are coalitionally
monotonic remains to be determined.

For Mas-Colell, an objection to a given preimputation x ∈ I∗(v) is a pair (S, y), S ⊆
N , S 6= N , y ∈ RS such that: i) yi ≥ xi for all i ∈ S, and ii) x(S) < y(S) ≤ v(S). On
the other hand, a counter-objection with respect to (S, y) is a pair (T, z), T ⊆ N ,T 6= N ,
z ∈ RT such that: i) zi ≥ xi for all i ∈ T \ S, zi ≥ yi for all i ∈ T ∩ S, and ii)
x(T \ S) + y(T ∩ S) < z(T ) ≤ v(T ). Notice that objections and counterobjection can
only be made via coalitions with strictly positive excess, i.e. ev(R,x) = v(R)− x(R) > 0
where ev(R,x) is the excess of coalition R ⊂ N at x in the game v.

Theorem 3 For n ≥ 4, the Mas-Colell bargaining set is not coalitionally monotonic.

8



Proof We prove the result showing a generic game with an arbitrary number of players
n ≥ 4, where the Mas-Colell bargaining set is not coalitionally monotonic.

Let N = {1, 2, 3, 4, 5, ...} be the set of potential players, let N1 = {1, 2, 3, 4} and let
N2 ⊆ N \N1. Then, we define the game (N1 ∪N2, v) as

v(1) = 0 v(12) = 0 v(123) = 2
v(2) = 0 v(13) = 1 v(124) = 1
v(3) = 0 v(14) = 1 v(134) = 1
v(4) = 0 v(23) = 1 v(234) = 1

v(24) = 1
v(34) = 0 v(1234) = 2

otherwise, v(S) = v(S ∩ N1). The core of this game consists on a single element p,
where p1 = p2 = 1, otherwise, pi = 0. Nevertheless, the bargaining set of Mas-Colell
contains other elements. For instance, take x ∈ I∗(v) such that x1 = x2 = 1

2 , x3 = 3
4 ,

x4 = 1
4 and xi = 0 for all i ∈ N2. For this preimputation, the only coalitions with positive

excesses are {1, 2, 3} ∪D, {1, 4} ∪D and {2, 4} ∪D for all D ⊆ N2. In particular,

ev({1, 2, 3} ∪D,x) = 1
4 ,

ev({1, 4} ∪D,x) = ev({2, 4} ∪D,y) = 1
4 ,

To check that x ∈MMC(v) we must prove that for any objection there exists a counter-
objection. In general, we will denote an objection by (S,y) and a counter-objection by
(T, z). As objections and counter-objections can only be made via coalitions with positive
excess, we will analyze the three types of coalitions described above.

[Case 1: S = {1, 2, 3} ∪D] A general objection via this coalition is

y1 = 1
2 + ε1

y2 = 1
2 + ε2

y3 = 3
4 + ε3

yi = εi, for any i ∈ D

where ε1, ε2, ε3, εi ≥ 0 and ε1 + ε2 + ε3 +
∑

i∈N2
εi ≤ 1

4 . Then we can built a counter-
objection depending on whether ε1 > 0 or ε1 = 0. If ε1 > 0 then ε2 < 1

4 , and so we can
define a counterobjection (z, {2, 4}) as

9



z2 = 3
4

z4 = 1
4

where z2 > y2 and z4 = x4 and z2 + z4 = v(24) = 1. If ε1 = 0 we will make the
counter-objection via coalition {1, 4} and

z1 = 3
4

z4 = 1
4

[Case 2: S = {1, 4} ∪D] A general objection via this coalition is

y1 = 1
2 + ε1

y4 = 1
4 + ε4

yi = εi, for any i ∈ D

where ε1, ε4, εi ≥ 0 and ε1 + ε4 +
∑

i∈N2
εi ≤ 1

4 . Then we can construct a counter-objection
also depending on whether ε1 > 0 or ε1 = 0. If ε1 > 0 then ε4 < 1

4 , and so we can define
a counterobjection (z, {2, 4}) as

z2 = 1
2

z4 = 1
2

where z2 = x2 and z4 > y4 and z2 + z4 = v(24) = 1. If ε1 = 0, we will made the
counterobjection via coalition {1, 2, 3} and

z1 = 1
2

z2 = 1
2

z3 = 1

where z1 = y1, z2 = x2, z3 > x3 and z1 + z2 + z3 = v(123) = 1.

[Case 3: S = {2, 4} ∪D] It is symmetric to Case 2, exchanging player 1 by player 2.
Therefore x ∈ MMC(v). Now, take the game (N1 ∪ N2, v′) defined as v′(124) = 2

(> v(124) = 1), otherwise, v′(S) = v(S). This game is an average monotonic game with
respect to p = (1, 1, 0, . . . , 0). Average monotonic games is a class of cooperative TU
games introduced by Izquierdo and Rafels (2001). They are totally balanced and the core
coincides with both the bargaining set à la Davis-Maschler and the bargaining set à la Mas-
Colell. The definition of this class of games and the definition of an intuitive core allocation
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are also introduced in the next section of this paper (definition 3). Hence, C(v′) =
MMC(v′). If the bargaining set of Mas-Colell would meet the coalitional monotonicity
property we should be able to take a vector x′ ∈ C(v′) such that x′1 ≥ x1 = 1/2, x′2 ≥
x2 = 1/2 and x′4 ≥ x4 = 1/4. But the core (and so the bargaining set) of v′ contains a
unique element x′ = (1, 1, 0, 0, ..., 0), and therefore x′4 = 0 < x4 = 1

4 . These statements
prove the non-monotonicity of the Mas-Colell bargaining set. 2

3 Core-extensions and coalitional monotonicity

The bargaining sets studied in the previous section are not coalitional monotonic. In
spite of being core-extensions, that is, non-empty set solutions which include the core,
we have not been able to escape the impossibility result; in some sense they are still
too restrictive. The question whether there exists coalitional monotonic core-extensions
becomes now relevant. The answer to this question is affirmative and in this section we
present some examples of it (the Weber set, the Weber set of order k,...). Furthermore,
from this study we can state a new interpretation of the core of a cooperative TU game:
the core, not being coalitionally monotonic, is the intersection of all its extensions which
are coalitionally monotonic. Due to the importance of the core and to end this section,
we will focus on relaxing the monotonicity axiom and analyzing restricted coalitional
monotonicity properties. Let us start analyzing some core-extensions.

A well-known core catcher is the Weber set. For each permutation θ = (i1, i2, . . . , in)
on the player set N the corresponding marginal worth vector mv

θ ∈ RN is defined as

mv
θ(i1) = v(i1)

mv
θ(i2) = v(i1 i2)− v(i1)

...
mv

θ(in) = v(i1 i2 . . . in)− v(i1 i2 . . . in−1).

The Weber set, W (v), is the convex hull of all these efficient vectors.

W (v) := conv{mv
θ}θ∈Sn ,

where Sn denotes the set of all permutations over N . Originally, the Weber set was
introduced by Weber (1988) who proved it was a core catcher. Later on, Derks (1992)
gave a short proof of this result by using classical real convex analysis. Other properties
on this set can be observed in Shapley (1971), Ichiishi (1981), Rafels and Ybern (1995),
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Rafels and Tijs (1997) and Mart́ınez-de-Albéniz and Rafels (2001). The Weber set will
be the first non-empty set solution satisfying the desired monotonicity property.

Proposition 1 The Weber set, W (v), is a non-empty core-extension which satisfies coali-
tional monotonicity.

Proof Let x ∈ W (v) be an arbitrary element of the Weber set and let us suppose v ≤S v′.
From the definition of the Weber set, x =

∑

θ∈Sn
λθ · mv

θ, λθ ≥ 0 for all θ ∈ Sn and
∑

θ∈Sn
λθ = 1. Take now x′ =

∑

θ∈Sn
λθ ·mv′

θ . Obviously x′ ∈ W (v′) and for any i ∈ S
we have mv

θ(i) ≤ mv′
θ (i) since mv

θ(i) = v(Pθ,i ∪ {i}) − v(Pθ,i) where Pθ,i is the set of
predecessors of player i in the ordering θ (excluding player i). Since i 6∈ Pθ,i we have
Pθ,i 6= S and then, for any i ∈ S we have,

xi =
∑

θ∈Sn

λθ ·mv
θ(i) ≤

∑

θ∈Sn

λθ ·mv′
θ (i) = x′i

and the proof is done. 2

The above proof has a direct consequence which is to show that coalitional monotoni-
city condition is preserved by some algebraic operations as the union, the convex hull of
a set – which will be denote by conv(α(v)) – and the convex combination of set-solutions.

Corollary 2 Let {αi}i∈I be an arbitrary family of coalitional monotonic solutions on GN ,
then

1. β1(v) = conv(αi(v)), i ∈ I is coalitionally monotonic.

2. β2(v) = ∪i∈Iαi(v) is coalitionally monotonic.

3. β3(v) =
∑

i∈I λi · αi(v), λi ≥ 0, i ∈ I and
∑

i∈S λi = 1 is coalitionally monotonic if
I is finite.

We can generalize proposition 1 to obtain new non-empty core-extensions satisfying the
coalitional monotonicity property. We only have to take the Weber set of an appropriate
associated game.

Let v be an arbitrary cooperative TU game on N = {1, 2, . . . , n} and let k ∈ {1, 2, . . . , n−
1}. We associate a new game denoted by vk as
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vk(S) :=











∑

i∈S v(i) if |S| < k

v(S) if |S| ≥ k.

The game vk can be interpreted as a game where for some exogenous reasons (partial
information, costly valuations) changes the true valuations of the coalitions of sizes smaller
than k by the aggregate worth of its individuals. Notice that for k = 1 we obtain v1 = v.
Let us define a set-solution concept on the class of all cooperative games as the Weber
set of vk. Formally,

αk(v) := W (vk).

We will name this solution as the Weber set of order k ∈ {1, 2, . . . , n − 1} and we
denote it by Wk(v). It is interesting to notice that by definition Wk(v) 6= ∅, for all
k = 1, 2, . . . , n − 1 and for all v ∈ GN . Moreover, if the initial game v is essential, then
Wn−1(v) = I(v). This solution concept is analyzed deeply by Mart́ınez-de-Albéniz and
Rafels (2001).

Proposition 2 For any k ∈ {1, . . . , n−1} the Weber set of order k, Wk(v) is a non-empty
core-extension which satisfies coalitional monotonicity.

Proof The Weber set of order k ∈ {1, . . . , n− 1} is the convex hull of the marginal worth
vectors of the game vk. Therefore, Wk(v) := conv{mvk

θ }θ∈Sn where for each permutation
θ = (i1, . . . , ik−1, ik, ik+1, . . . , in) we have

mvk
θ (i1) = v(i1)

mvk
θ (i2) = v(i2)

...
mvk

θ (ik−1) = v(ik−1)
mvk

θ (ik) = v(i1 i2 . . . ik)− (v(i1) + v(i2) + . . . + v(ik−1))
mvk

θ (ik+1) = v(i1 i2 . . . ik, ik+1)− v(i1 i2 . . . ik)
...
mvk

θ (in) = v(N)− v(i1 i2 . . . in−1).

It is straightforward to see that all of these vectors are coalitionally monotonic solutions
and so is their convex hull. Moreover, the Weber set of order k ∈ {1, . . . , n− 1} is a core-
extension since C(v) ⊆ C(vk) ⊆ W (vk). 2
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We have just illustrated and proved the existence of set-solutions which are non-
empty, core-extensions and coalitionally monotonic. It is interesting to observe that the
intersection of these kinds of set-solutions may lose the coalitional monotonicity property.
In fact the core itself, which is not a coalitionally monotonic solution, is the intersection
of all of its non-empty extensions which are coalitionally monotonic. For this purpose,
we introduce what we call the individual core. This is the set of those preimputations
satisfying the inequalities of the core, but only for those coalitions containing a fixed
individual.

Definition 1 Given a cooperative game (N, v), the individual core associated to player
i ∈ N is defined as

Ci(v) := {x ∈ I∗(v) | x(S) ≥ v(S), for all S ⊆ N, such that i ∈ S}.

It is interesting to note that the individual core Ci(v) is always non-empty for any
game v ∈ GN . Obviously, it extends the core of the game and the intersection of all
individual cores is the core of the original game. Moreover, the individual cores satisfy
the coalitional monotonicity property (the proof is left to the reader). As a consequence
the core is the intersection of a finite family of non-empty core-extensions which are
coalitionally monotonic . In a more general context, if we denote by ξ the set of non-
empty set-solutions which are core-extension and coalitionally monotonic, we can state
the following proposition.

Proposition 3 The core is the intersection of the family of all its non-empty extensions
which are coalitionally monotonic. Formally,

C(v) =
⋂

β∈ξ

β(v), for all v ∈ GN .

Due to the fact that the core of a cooperative TU game is an important solution
concept, we will analyze some special cases where the core has the monotonicity property.
Actually, we will require the classical monotonicity only if the incremented game belongs
to a fixed class of cooperative games.

Definition 2 Given a class of cooperative games A ⊆ GN , we say that a set-solution
satisfies A-coalitional monotonicity if for any v ∈ GN and any ∅ 6= S ⊆ N if v ≤S v′

and v′ ∈ A then for each x ∈ α(v) there exists x′ ∈ α(v′) such that xi ≤ x′i, for all i ∈ S.
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The interpretation of this property is as follows: if the worth of a coalition grows (all
the others remaining unchanged, v ≤S v′), and the new game belongs to a certain class
of games A, then the set-solution analyzed satisfies the classic coalitional monotonicity
property. We are making restrictions on the classical property and this will enable us to
escape the impossiblity theorem for the core. Notice that if we take A = GN we obtain
the original monotonicity property. In this sense, two important classes of games will be
analyzed: convex games (Shapley, 1971) and average monotonic games (Izquierdo and
Rafels, 2001).

A TU cooperative game v ∈ GN is convex if for any S, T ∈ 2N it satisfies v(S)+v(T ) ≤
v(S ∪ T ) + v(S ∩ T ). A remarkable characterization of convex games is that a game is
convex if and only if the core and the Weber set coincide (Shapley, 1971, and Ichiishi,
1981). Hence, it is easy to show that the core is convex-coalitionally monotonic by using
the result stated in Proposition 1. To see this, take v and v′, being this latest game a
convex game, such that v ≤S v′. Then, by Proposition 1, for any allocation x in the core
of v, as well as in the Weber set of v, there exists a vector x′ in the Weber set of v′ such
that xi ≤ x′i, for all i ∈ S. Nevertheless, as v′ is a convex game, x′ will be in the core of
v′. This result is formally stated as follows.

Proposition 4 The core of a cooperative TU game satisfies the convex-coalitional
monotonicity property.

We also prove this restricted monotonicity property for the class of
average monotonic games.

Definition 3 A game (N, v) is average monotonic if and only if

i) v(S) ≥ 0 for all S ⊆ N , and

ii) there exists a vector α ∈ RN
+ \ {0} such that, for all S ⊆ T ⊆ N ,

α(T ) · v(S) ≤ α(S) · v(T ) (4)

where α(S) =
∑

i∈S αi and α(T ) =
∑

i∈T αi.

If conditions i) and ii) hold we will say that (N, v) is an average monotonic game with
respect to the vector α. To give an interpretation to these games, notice that if αi > 0 for
all i ∈ N we have v(S)

α(S) ≤
v(T )
α(T ) , for all S ⊂ T ⊆ N , which means that the average worth

of coalitions with respect to some exogenous and fixed vector (α1, α2, . . . , αn) grows as
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players are added to a coalition. For instance, an application of this class of games is
the single-input, increasing returns production function (Mas-Colell et al., 1996) where it
is analyzed the case of a one input-one output joint production situation. Each player
owns a positive amount ωi of input. The corresponding characteristic function is defined
as v(S) := f(

∑

i∈S ωi) where f is the production function, f(0) = 0, and f(z)/z is
nondecreasing in R+\{0}. The game is then average monotonic with respect to ω. Other
applications are bankruptcy games (O’Neill, 1982), financial cooperative games (Izquierdo,
1996) or veto rich games (Arin and Feltkamp, 1997). These games are always totally
balanced and it is easy to check that the proportional distribution with respect to the
vector α is a distinguished core element.

Definition 4 Let (N, v) be an average monotonic game with respect to 0 6= α ∈ RN
+ . We

define the proportional distribution p(v) = (pi(v))i∈N as

pi(v) := αi · v(N)
α(N) for all i ∈ N.

The proof that shows that the core is average monotonic-coalitionally monotonic
is not so straighforward. We will use as a tool the so called reduced games. Given a game
v ∈ GN , a preimputation x ∈ I∗(v) and a coalition S ⊆ N , the reduced game on x at S,
(S, vS

x ), is defined (Davis and Maschler, 1965) as

vS
x (∅) := 0,

vS
x (T ) := max∅⊆Q⊆N\S{v(T ∪Q)− x(Q)} for all ∅ 6= T ⊆ S, T 6= S

vS
x (S) := v(N)− x(N \ S).

Given a preimputation x and a coalition S ⊆ N the reduced game aims to evaluate
the worth of coalitions in S taking into account that the payoff to players in N \S is fixed
and cannot be modified in order to revise the payoff of players in S. Hence, the worth
of a coalition S is the maximum worth that this coalition could attain by adding players
from outside S and rewarding them by the payoff fixed by x. Notice that vN

x = v and for
all S2 ⊂ S1 ⊆ N ,

vS2
x =

[

vS1
x

]S2

xS1
(5)

Theorem 4 Let v be an arbitrary game and let v′ be an average monotonic game such
that for a certain non-empty coalition S ⊆ N we have that v ≤S v′. Then, for any
x ∈ C(v) there exists a vector x′ ∈ C(v′) such that xi ≤ x′i for all i ∈ S.
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Proof
If S = N then we can define x′ as x′i = xi + v′(N)−v(N)

n and so xi < x′i for all i ∈ N .
If ∅ 6= S ⊆ N , S 6= N , let us define DS as

DS :=

{

T ⊆ N such that
(i) N \ S ⊆ T, N \ S 6= T and
(ii) v′Tx is an average monotonic game

}

(6)

Notice that this set is always non-empty as N ∈ DS. Let T ∗ be a minimal coalition with
respect to the inclusion in DS. Since N \ S ⊆ T ∗ and T ∗ 6= N \ S we know S ∩ T ∗ 6= ∅.
Hence, we will study two cases: (i) xi < pi(v

′T ∗
x ) for all i ∈ S ∩ T ∗, or (ii) there exists a

player i∗ ∈ S ∩ T ∗ such that xi∗ ≥ pi∗(v
′T ∗
x ).

In case (i) we can define x′ as x′i = xi for all i ∈ N \ T ∗ and x′i = pi(v
′T ∗
x ) for

all i ∈ T ∗, where pi(v
′T ∗
x ) is the proportional payoff to player i in the game v′T ∗x . No-

tice that x′i ≥ xi for all i ∈ S. Moreover, the vector x′ is in the core of the game
v′ as, for all R ⊆ N \ T ∗, x′(R) = x(R) ≥ v(R) = v′(R) and for all R such that
R ∩ T ∗ 6= ∅, x′(R) = x′(R ∩ T ∗) + x′(R \ T ∗) = p(v′T ∗x )(R ∩ T ∗) + x(R \ T ∗) ≥
v′T ∗x (R ∩ T ∗) + x(R \ T ∗) = max∅⊆Q⊆N\T ∗{v((R ∩ T ∗) ∪ Q) − x(Q)} + x(R \ T ∗) ≥
(Q = R \ T ∗) ≥ v(R) − x(R \ T ∗) + x(R \ T ∗) = v(R). Furthermore, notice that
v′T ∗x (T ∗) = v′(N)− x(N \ T ∗) = v(N)− x(N \ T ∗) = x(T ∗). Hence it trivially holds that
x′(N) = x′(T ∗) + x(N \ T ∗) = v′T ∗x (T ∗) + x(N \ T ∗) = v(N)− x(N \ T ∗) + x(N \ T ∗) =
v(N) = v′(N).

In case (ii), let us see that S ∩ T ∗ = {i∗} since T ∗ is a minimal coalition in DS. If
the contrary holds, that is, if |S ∩ T ∗| ≥ 2, since v′T ∗x is an average monotonic game with
respect to a vector α ∈ RT ∗

+ \ {0}, we will prove that v
′T ∗\{i∗}
x , where i∗ ∈ S ∩ T ∗ will be

also an average monotonic game, contradicting the minimality of T ∗ in DS.
From the definition of the reduced game and using property (5), we have

v
′T ∗\{i∗}
x (R) = max{v′T ∗x (R), v′T ∗x (R ∪ {i∗})− xi∗}

for all ∅ 6= R ⊆ T ∗ \ {i∗}, R 6= T ∗ \ {i∗}

v
′T ∗\{i∗}
x (T ∗ \ {i∗}) = x(T ∗ \ {i∗}).

Since v′T ∗x is an average monotonic game, we know its positiveness, and so, v
′T ∗\{i∗}
x (R)

for all ∅ 6= R ⊆ T ∗ \ {i∗}, R 6= T ∗ \ {i∗}. Let us see the positiveness of the worth of the
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grand coalition. First of all, since x ∈ C(v) we know v
′T ∗\{i∗}
x (T ∗ \ {i∗}) = x(T ∗ \ {i∗}) ≥

v(T ∗\{i∗}). Secondly, since T 6= T ∗\{i∗} and v ≤S v′ we know v(T ∗\{i∗}) = v′(T ∗\{i∗}).
Finally, since v′ is an average monotonic game we have v′ ≥ 0, which implies that

v
′T ∗\{i∗}
x (T ∗ \ {i∗}) = x(T ∗ \ {i∗}) ≥ v(T ∗ \ {i∗}) ≥ 0.

Therefore positiviness of v
′T ∗\{i∗}
x is proved.

To prove condition ii) in the definition of average monotonic game, let S1 ⊆ S2 ⊆
T ∗ \ {i∗}, where S1 6= S2. Notice first that if α|T ∗\{i∗} = 0 then v′T ∗x (R) = 0 for all
∅ 6= R ⊆ T ∗ \ {i∗} and v

′T ∗\{i∗}
x (T ∗ \ {i∗}) = x(T ∗ \ {i∗}) ≥ 0. Hence, v

′T ∗\{i∗}
x will be an

average monotonic game. Otherwise, i.e. α|T ∗\{i∗} 6= 0 we will study two cases.
Case 1: α(S1) = 0.

Since v′T ∗x is an average monotonic game w.r.t. α ∈ RT ∗
+ \ {0} we know

0 ≤ α(T ∗) · v′T ∗x (S1) ≤ α(S1) · v
′T ∗
x (T ∗), and then v

′T ∗
x (S1) = 0

Moreover, by hypothesis of the theorem,

xi∗ ≥ pi∗(v
′T ∗
x ) = αi∗ ·

v
′T∗
x (T ∗)
α(T ∗) = (α(S1) = 0)

= α(S1 ∪ {i∗}) · v
′T∗
x (T ∗)
α(T ∗) ≥ (v′T ∗x is average monotonic )

≥ v′T ∗x (S1 ∪ {i∗}).

Therefore,

v
′T ∗\{i∗}
x (S1) = max{v′T ∗x (S1), v

′T ∗
x (S1 ∪ {i∗})− xi∗}

= max{0, v′T ∗x (S1 ∪ {i∗})− xi∗} = 0

which implies that

0 = α(S2) · v
′T ∗\{i∗}
x (S1) ≤ α(S1) · v

′T ∗\{i∗}
x (S2) = 0.

Case 1: α(S1) > 0.

In this case we have to prove v
′T∗\{i∗}
x (S1)

α(S1) ≤ v
′T∗\{i∗}
x (S2)

α(S2)
. We know, since v′T ∗x is average

monotonic with respect to α,
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v′T ∗x (S1)
α(S1)

≤ v′T ∗x (S2)
α(S2)

(7)

Let us prove that

v′T ∗x (S1 ∪ {i∗})− xi∗

α(S1)
≤ v′T ∗x (S2 ∪ {i∗})− xi∗

α(S2)
(8)

Notice that

v′T ∗x (S1 ∪ {i∗})− xi∗

α(S1)
=

v′T ∗x (S1 ∪ {i∗})
α(S1 ∪ {i∗})

+
v
′T∗
x (S1∪{i∗})
α(S1∪{i∗}) · αi∗ − xi∗

α(S1)

≤ (since v′T ∗x is average monotonic w.r.t. α)

≤ v′T ∗x (S2 ∪ {i∗})
α(S2 ∪ {i∗})

+
v
′T∗
x (S2∪{i∗})
α(S2∪{i∗}) · αi∗ − xi∗

α(S1)

≤ (since 0 < α(S1) ≤ α(S2) and

v
′T∗
x (S2∪{i∗})
α(S2∪{i∗}) · αi∗ ≤ pi∗(v

′T ∗
x ) ≤ xi∗)

≤ v′T ∗x (S2 ∪ {i∗})
α(S2 ∪ {i∗})

+
v
′T∗
x (S2∪{i∗})
α(S2∪{i∗}) · αi∗ − xi∗

α(S2)

=
v′T ∗x (S2 ∪ {i∗})− xi∗

α(S2)

From (7) and (8) we obtain,

v
′T ∗\{i∗}
x (S1)

α(S1)
≤ v

′T ∗\{i∗}
x (S2)

α(S2)

and so we conclude that v
′T ∗\{i∗}
x is an average monotonic game, contradicting the

minimality of T ∗ in DS. Therefore, in case (ii) it holds that |S ∩ T ∗| = 1 or equivalently
S ∩ T ∗ = {i∗}.

To finish the proof of the theorem we have to check x′ ∈ C(v′) where xi ≤ x′i, for
all i ∈ S (recall that v ≤S v′ and v′ is average monotonic). As S ∩ T ∗ = {i∗} and,
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by hypothesis of the case (ii), xi∗ ≥ pi∗(v
′T ∗
x ) ≥ v′T ∗x (i∗) = max∅⊆Q⊆N\T ∗{v′({i∗} ∪ Q) −

x(Q)} ≥ (Q = S \ {i∗}) ≥ v′(S) − x(S \ {i∗}) and so x(S) ≥ v′(S). Therefore we have
deduced that x′ = x is one of the desired vectors.2

This latest result has an interesting application in order to study monotonicity pro-
perties in applied models. For instance, consider the one input-one output joint production
situation described by Mas-Colell et al. (1996) that coud be defined by the pair (ω, f)
where ω ∈ Rn

++ is the vector of inputs and f is the production function, f(0) = 0, and
f(z)/z is nondecreasing in R+ \ {0}, i.e. if 0 < z1 ≤ z2 then f(z1)

z1
≤ f(z2)

z2
. As we have

seen before we can associate a cooperative game v(S) := f(
∑

j∈S ωj). The core of this
game is nonempty. Take now an element of the core and suppose that a player i∗ decides
to increase his input contribution, that is ω′i∗ > ωi∗ being the rest of inputs fixed ω′i = ωi,
for all i 6= i∗ (we denote this fact by ω′ >i∗ ω). The natural question is whether there
exist a core allocation x′ in the new game v′(S) := f(

∑

j∈S ω′j) such that x′i∗ > xi∗ . The
answer is yes and this result is proved in the next proposition.

Proposition 5 Let (ω, f) and (ω′, f) be two one input-one output joint production pro-
blems such that ω′ >i∗ ω, and let v and v′ the respective associated games. Then, for any
x ∈ C(v) there exists x′ ∈ C(v′) such that x′i∗ > xi∗.

Proof As ω′i∗ > ωi∗ and ω′i = ωi for all i 6= i∗, we have to study two cases depending whether
some coalitions have increased their average worth or not. Let S be the set of coalitions
that have increased their average worth. Formally, S = {S ⊆ N such that f(ω′(S))

ω′(S) >
f(ω(S))

ω(S) }. Notice that the set S is finite, |S| = m, and i∗ ∈ S, for any S ∈ S.

Case 1 S = ∅.
In that case v′(S) = ω′(S) · f(ω(S))

ω(S) since, for any S ⊆ N , f(ω′(S))
ω′(S) = f(ω(S))

ω(S) .
Hence, let us define x′ ∈ Rn

x′i :=











xi, for all i 6= i∗,

xi∗ + (ω′i∗ − ωi∗) ·
f(ω(N))

ω(N) , if i = i∗

First notice that x′i∗ > xi∗ . Moreover, the vector x′ ∈ C(v′) since x′(N) = x(N) +
(ω′i∗ − ωi∗)

f(ω(N))
ω(N) = f(ω(N))

ω(N) · (ω(N \ {i∗}) + ω′i∗) = f(ω′(N))
ω′(N) · ω′(N) = f(ω′(N)) = v′(N)

and, for any S ⊆ N , if i∗ 6∈ S then x′(S) = x(S) ≥ v(S) = v′(S) and, if i∗ ∈ S,
x′(S) = x(S) + (ω′i∗ − ωi∗) ·

f(ω(N))
ω(N) ≥ v(S) + (ω′i∗ − ωi∗) ·

f(ω(N))
ω(N) = ω(S) · f(ω(S))

ω(S) +
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(ω′i∗ − ωi∗) ·
f(ω(N))

ω(N) ≥ ω(S) · f(ω(S))
ω(S) + (ω′i∗ − ωi∗) ·

f(ω(S))
ω(S) ≥ (ω(S \ {i∗}) + ω′i∗) ·

f(ω(S))
ω(S) =

ω′(S) · f(ω′(S))
ω′(S) = f(ω′(S)) = v′(S).

Case 2 S 6= ∅.
Let us denote S = {S1, S2, . . . , Sm} where

f(ω′(S1))
ω′(S1)

≤ f(ω′(S2))
ω′(S2)

≤ . . . ≤ f(ω′(Sm))
ω′(Sm)

.

We have ordered in an average increasing way the coalitions of S. Notice that player
i∗ belongs to all these coalitions, that is, i∗ ∈ S1 ∩ S2 ∩ . . .∩ Sm−1 ∩ Sm. Furthermore, let
us define the game v0 and the vector x0 ∈ Rn as

v0(S) = ω′(S) · f(ω(S))
ω(S) , for all S ⊆ N ,

x0,i :=











xi for all i 6= i∗,

xi∗ + (ω′i∗ − ωi∗) ·
f(ω(N))

ω(N) if i = i∗

Following the same reasoning that in the first case, we can prove x0 ∈ C(v0) and
x0,i∗ > xi∗ . Let us now consider a increasing finite sequence v1, v2, . . . , vm (m = |S|) of
average monotonic games with respect to the vector ω′ ∈ Rn

++ defined as follows:

v1(S) =

{

v0(S) S 6= S1

v′(S1) S = S1

v2(S) =

{

v1(S) S 6= S2

v′(S2) S = S2

...

vm(S) =

{

vm−1(S) S 6= Sm

v′(Sm) S = Sm

Notice first that v0 ≤S1 v1 ≤S2 v2 ≤ . . . ≤Sm vm (recall that v ≤S v′ means that only
the worth of coalition S has increased and so, only one coalition has increased its worth
in each step). Moreover, vm = v′ since vm(S) = v0(S) = ω′(S)f(ω(S))

ω(S) = f(ω′(S)) = v′(S),
for all S 6∈ S, and vm(Sk) = vk(Sk) = v′(Sk), for all Sk ∈ S.

It is straightforward to see that all the games of the sequence vk, k = 1, 2, . . . , m are
average monotonic w.r.t. ω′ ∈ Rn

++. This is due to the fact that v0 is an average monotonic
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game with respect to ω′ and the way we have ordered coalitions in S. Therefore, the
situation is

v0 ≤S1 v1 ≤S2 v2 ≤ . . . ≤Sm vm = v′

and x0 ∈ C(v0) where xi∗ < x0,i∗ . Applying reiteratively theorem 4 we obtain there exists
a sequence of vectors x1,x2, . . . ,xm such that x1 ∈ C(v1),x2 ∈ C(v2), . . . ,xm ∈ C(vm)
and xk−1,i ≤ xk,i for all i ∈ Sk, k = 1, 2, . . . ,m. Since i∗ ∈ S1 ∩ S2 ∩ . . . Sm−1 ∩ Sm we
obtain

xi∗ < x0,i∗ ≤ x1,i∗ ≤ . . . ≤ xm,i∗

and xm ∈ C(vm) = C(v′). Hence, the proof is finished. 2

At first sight, it seems not difficult and natural to extend this result to the case of
two or more players increasing their contribution at the same time. Surprisingly, next
example shows the contrary.

Example 1 Let ω = (1, 2, 3) and f(x) :=

{

x 0 ≤ x < 5
1.5 · x 5 ≤ x

. The associated game

is
v(1) = 1, v(2) = 2, v(3) = 3, v(12) = 3, v(13) = 4, v(23) = 7.5, v(N) = 9

Let us take the point x = (1, 5, 3) in the core of the game v and suppose that players 1
and 2 increase their initial contribution in one unit, that is ω′ = (1+1, 2+1, 3) = (2, 3, 3).
The new associated game is

v′(1) = 2, v′(2) = 3, v′(3) = 3, v′(12) = v′(13) = 7.5, v′(23) = 9, v′(N) = 12

Notice that for any core element x′ of v′ we know x′2 ≤ v′(N) − v′({13}) = 4.5.
Therefore it will be not possible to find a core element x′ of v′ such that x′1 ≥ x1 and
x′2 ≥ x2 = 5.
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