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Abstract: We study a Heavy Hybrid Meson system, which is composed of a heavy quark-antiquark pair and a 

non-trivial contribution coming from the gluon field. The framework of the study is the strong interaction, described 

by QCD, in the special case where the mass of the quarks is heavy, and much higher than the energies of the gluonic 

field, which will let us assume a non-Relativistic case and work with the Schrödinger Equation. At leading order, the 

potential does not depend on the mass and spin of the quarks, but some corrections related to the fine and hyperfine 

structure (the study will focus on the second one), will come at 1/𝑚𝑄 order, and we will study them. Finally, we 

will use the results from the hyperfine structure to find relations between the different masses of states in the same 

spin multiplet. 

  

I. Introduction 

In Particle Physics, a Meson, is a bound system made of a 

quark-antiquark pair (𝑞 − 𝑞̅), with a certain orbital angular 

momentum between them 𝐿𝑞𝑞̅ and a coupled spin 𝑆𝑞𝑞̅ (we 

will omit the subscripts from now on), moving under a static 

potential (no dependence on time) that matches with the 

symmetries and properties of the Strong Interaction, since we 

are working with quarks (P, C, T and Total Angular 

Momentum conservation). In this context, we define the 

states of particles, or an ensemble of them, with the notation 

𝐽𝑃𝐶 , where 𝐽 is the Total Angular Momentum of the system, 

P and C are the eigenvalues of the Parity and Charge 

Conjugation, respectively. This notation is convenient due to 

the conservation rules mentioned before. Applying it to a 

fermion-antifermion system, they pick the values: 

                     
𝑃 = (−1)𝐿+1

𝐶 = (−1)𝐿+𝑆
                                  (1) 

 If we consider the pair with angular momentum 𝐿 and 

total spin 𝑆 we can create a lengthy list of states such as 0−+, 

etc…. (corresponding to 𝑆 = 0 and 𝐿=0). Nevertheless, with 

the development of QCD, many theoretical physicists thought 

that the gluon field could perturbate the spin of the system in 

a non-trivial way, that, what we call Hybrids. In this point of 

view, a certain state (𝐽𝑃𝐶)𝑔 is associated to the gluon field as 

well, considering it part of the system (in the usual Meson, 

this contribution is ignored). It is a result from QCD, that the 

intrinsic parity of the gluons is (-1). Now that we have the 

states of the Meson alone and the gluonic field, we can build 

Hybrid states combining both: 

 

(𝐽𝑃𝐶)𝑔 𝐿  𝑆 (𝐽𝑃𝐶)𝑇𝑜𝑡𝑎𝑙 

1+− 0 0 1−− 

1+− 1 1 (0,1,2,3)+− 
Table 1: Possible hybrid states when the gluon is carrying one unit of 
angular momentum. 

Looking at Table 1, we can see that the state 0+−could 

not be reached without the contribution of the gluonic field. 

Here, we see that this perturbation of the system brings new 

possible states with it. Since firstly we will work with 𝐿 and 

𝐿𝑔 (the spin of the quarks will be coupled later on), the 

Angular Momentum is defined by 𝐽 = 𝐿 + 𝐿𝑔. The total one 

is ℐ = 𝐽 + 𝑆 but, as we begin with a non-depending quark 

spin state potential, 𝐽 will be conserved for the first part.  

To describe this system, one must make use of QCD and 

Quantum Field Theory but, since the mass of the heavy 

quarks 𝑚𝑄 is much greater than the energy contribution of 

the gluons, we will be able to work on the Non-Relativistic 

frame because the gluons (the field), will respond 

immediately to the motion of 𝑞 − 𝑞̅. We can make an analogy 

between Electromagnetism and Electrodynamics in which, on 

the first one, as the energy of the particles is comparable to 

their rest mass (low speed particles) we consider the 

electromagnetic field created on a point to respond 

immediately to the motion of the source hence not existing a 

“reaction time”, in opposition to Electrodynamics, where we 

consider a time for propagation of the electromagnetic wave 

(velocity of the light c). With this approximation, the gluonic 

field will remain in a stationary state given a position of the 

sources. Furthermore, we will use the Born-Oppernheimer 

approximation, which associates to each stationary state of 

the gluon field a stationary potential 𝑉(𝑟) that, added to the 

Non-Relativistic frame, the motion will be described by 

means of the Schrödinger Equation. Since the gluon can 

contribute with an arbitrary angular momentum, we will work 

on the lowest energy levels, given by the value 𝐿𝑔 = 1, 

which is demonstrated in [3] and Figure 1. We can imagine 

this gluon field acting like a string between the components 

with a certain vibrational state N, then, as we increase this 

value, the energy contribution increases too. The stationary 

potentials with lowest energy on short distances, where we 

are focusing (the distance between 𝑞 − 𝑞̅), are 𝑉∑𝑢−  and 𝑉𝛱𝑢 as 

we can see in Figure 1.  

 
Figure 1: Low Lying Hybrids potentials in the static limit for heavy 
quarks. From [2]. 



Treball de Fi de Grau 2 Barcelona, June 2017 

Moreover, the fine correction is related with the 

interaction between the angular momentum of the quarks 𝐿, 

and the total angular momentum of the gluons. The hyperfine 

structure will consider the contribution of the coupling 

between the spin of the quarks and the spin of the gluon field. 

These elements will come at 1/𝑚𝑄 correction order, and the 

hyperfine one will force the energy to split between the 

different quantum numbers of the system; in other words, it 

will break the degeneration that we have initially because, the 

term describing this part depends on the quarks spin and it 

will make a difference between these different states.  

All these potentials, interaction and correction terms that 

will be added to the Lagrangian, as it is mentioned at the 

beginning, must fulfill the conservation of the discrete 

symmetries P, C, T (and conserve the Total Angular 

Momentum). Also, the potentials are describing the 

interactions between gluons and quarks, so they must agree 

with the postulates of QCD. The most important aspect in 

this context, is the confinement, stating that quarks cannot 

stand alone, therefore, they need to stay in groups. Because of 

this, when you have two quarks and you try to separate them, 

the energy stored in the time-space where the interaction 

takes place increases, until the energy of this gluon field is 

enough to create another pair of quarks. This statement forces 

the potentials to include lineal terms of r, because they need a 

term that increases energy with respect to r. 

The first part of the work consists on verifying the 

Schrödinger equations (6), (7) and (8) of the Lower Lying 

Hybrid states to immediately, add the fine and hyperfine 

structure to the energy of the system. We will use the 

hyperfine ones, to find relations between the mass difference 

of states in the same spin multiplet.  

II. Leading order: The Schrödinger Equation 

In this section, we verify and review the results of [2] as a 

training for the Section III. This problem can be treated as a 

two-body system with two independent Hamiltonians, one for 

the centre of mass R and one for the relative position r. We 

will begin setting the position of the centre of mass at R=0 

and focusing on the relative position r. For the Low-Lying 

Hybrids, we are dealing with the angular momentum between 

the pair and the gluonic field contribution (we will take 𝐿𝑔 =

1), it is natural then, to associate a vectorial wavefunction to 

this ensemble 𝑯(𝑹, 𝒓, 𝒕), because of having the degree of 

freedom of the gluon (its spin 1). The Hamiltonian that 

describes this situation is: 

 

 ℎ𝐻𝑖𝑗 = (−
𝛻2

𝑚𝑄
+ 𝑉∑𝑢−) 𝛿𝑖𝑗 + (𝛿𝑖𝑗 − 𝑟̂

𝑖𝑟̂𝑗)[𝑉𝛱𝑢 − 𝑉∑𝑢−]    (2) 

 

Recall that the operator ∇2=
1

𝑟
∂𝑟𝑟(𝑟 ) −

𝐿2

𝑟2
 , the 

coordinate r is between the pair, the angular momentum term 

coincides with the 𝐿 of the 𝑞 − 𝑞̅, not including the gluonic 

excitation state. The first part plays the same role as the 

central potential of the Hydrogen atom and the second one 

sets some off diagonal terms related to the gluonic field; also, 

this Hamiltonian does not depend on the spin of the quarks 

and will be invariant under spin transformations carrying, 

because of this, the degeneration mentioned in the 

Introduction, 4 for ℐ ≠ 0 and 2 for ℐ = 0. If we express 𝑯 

using a basis of eigenfunctions of the Hamiltonian, following 

the notation [1], we have: 

 

𝑯 =
1

𝑟
[𝑃0
+(𝑟)𝓨00

+ +∑ ∑ ∑ 𝑃𝐽
𝐿(𝑟)𝓨𝐽𝑀

𝐿

𝐽+1

𝐿=𝐽−1

]       (3)

𝐽

𝑀=−𝐽

∞

𝐽=1

 

 

Where we are using the notation 𝐿 = 0,+,− in reference 

with the possible values of 𝐿 = 𝐽, 𝐽 + 1, 𝐽 − 1; 𝓨𝐽𝑀
𝐿  , the 

vector spherical harmonics (see Appendix A), fulfils: 

 

            
𝐽2𝓨𝐽𝑀

𝐿 = 𝐽(𝐽 + 1)𝓨𝐽𝑀
𝐿 𝐿𝑔

2𝓨𝐽𝑀
𝐿 = 2𝓨𝐽𝑀

𝐿

𝐿2𝓨𝐽𝑀
𝐿 = 𝐿(𝐿 + 1)𝓨𝐽𝑀

𝐿 𝐽3𝓨𝐽𝑀
𝐿 = 𝑀𝓨𝐽𝑀

𝐿
  (4) 

 

And transforms under the discrete symmetries like: 

 

    

 𝑃: 𝑯(𝑹, 𝒓, 𝑡)
𝑦𝑖𝑒𝑙𝑑𝑠
→   −𝑯(−𝑹,−𝒓, 𝑡)

         𝐶: 𝑯(𝑹, 𝒓, 𝑡)
𝑦𝑖𝑒𝑙𝑑𝑠
→   −𝜎2𝑯𝑇(𝑹,−𝒓, 𝑡)𝜎2

        𝑇: 𝑯(𝑹, 𝒓, 𝑡)
𝑦𝑖𝑒𝑙𝑑𝑠
→   − 𝜎2𝑯(𝑹, 𝒓,−𝑡)𝜎2

         (5)      

 

Now, the action of the Hamiltonian onto this 

wavefunction, using the relations (B1) and 𝓨𝐽𝑀
𝐿  with 𝐿 =

0,± as the vector basis, the results are:  

 

For 𝐽=0: 

 

  (−
1

𝑚𝑄
∂𝑟𝑟 +

2

𝑟2𝑚𝑄
+ 𝑉∑𝑢−)𝑃0

+ = 𝐸𝑃0
+              (6) 

 
Because of the coupling, the result 𝐽 = 0 requires the 

value 𝐿 = 1
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝐿(𝐿 + 1) = 2. 

 

For 𝐽 ≠ 0 we have two decoupled solutions: 

 

(

 
 
−

1

𝑚𝑄
∂𝑟𝑟 + (

𝐽(𝐽−1)

𝑟2𝑚𝑄
0

0
(𝐽+1)(𝐽+2)

𝑟2𝑚𝑄

) + 𝑉𝛴𝑢− +

      +𝑉𝑞 (

𝐽+1

2𝐽+1

√𝐽(𝐽+1)

2𝐽+1

√𝐽(𝐽+1)

2𝐽+1

𝐽

2𝐽+1

)(
𝑃𝐽
−

𝑃𝐽
+)

)

 
 
= 𝐸 (

𝑃𝐽
−

𝑃𝐽
+)           (7)  

 

 

(−
1

𝑚𝑄
∂𝑟𝑟 +

𝐽(𝐽 + 1)

𝑟2𝑚𝑄
+ 𝑉𝛱𝑢)𝑃𝐽

0 = 𝐸𝑃𝐽
0          (8) 

 

The notation used for 𝐿 = 0,+,− is related to the 

possible values of the angular momentum 𝐿 = 0, 𝐿 = 𝐽 +
1, 𝐿 = 𝐽 − 1 respectively, and Vq is the difference between 

the Hybrid potentials, the term V𝑞 = 𝑉𝛱𝑢 − 𝑉∑𝑢−.  
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III. 
𝟏

𝒎𝑸
 Corrections: Fine and Hyperfine Structure 

The next step is the computation of the fine and hyperfine 

structures that appears at 1/𝑚𝑄 order. To address this step, 

because we are adding another degree of freedom (the spin of 

the quarks), we will be needing a geometrical object able to 

define at the same time the spin of the gluon field, the spin of 

the quarks and the relative angular momentum. The only 

candidate in this case are the Tensorial Spherical Harmonics 

(see Appendix A). Now, the definition of the wave function 

will be as follows: 

 

                

𝐻𝑗 =
1

√2
(𝐻0

𝑗
+ 𝜎𝑖𝐻1

𝑗𝑖
)

𝐻1
𝑖𝑗
= ∑ 𝑃1  ℐℳ

𝐿𝐽 (𝑟)𝑌ℐℳ
𝑖𝑗 𝐿𝐽
(𝒓̂)

𝑀,𝐿,𝐽,ℐ,ℳ

               (9) 

 

Coupling two spins ½ will result in 
1

2
⊗

1

2
= 1⊕ 0 for the 

total spin S, which are the labels of the sub scripts,  ℐ = 𝐽 + 𝑆 

is the Total Angular Momentum, including the spin of the 

quarks, and ℳ its third component. Now that we have the 

objects to work with, we need to know if the candidates for 

the Spectrum splitting agree with the discrete symmetries (5). 

The only energy contributions to the Lagrangian density, 

which we verified that satisfy the discrete symmetries, from 

[2] are: 

 

                   
𝑖𝜀𝑖𝑗𝑘𝑉𝑆(𝑟)𝑡𝑟(𝐻𝑖

†
[𝜎𝑘, 𝐻𝑗])

𝑖𝜀𝑖𝑗𝑘𝑉𝐿(𝑟)𝑡𝑟(𝐻𝑖
†
𝐿𝑘𝐻𝑗)

                       (10) 

 
We ought to remember that these are not the leading 

terms, they come with a 1/𝑚𝑄 factor (the correction order) 

that attenuates them. We will begin with the hyperfine term, 

the one working with the interactions between the spins of 

the gluon and quark. If we develop the product using (9) we 

get: 

 

𝑖𝜀𝑖𝑗𝑘𝑉𝑆(𝑟)𝑡𝑟(𝐻𝑖
†
[𝜎𝑘, 𝐻𝑗])

= −2𝜀𝑖𝑗𝑘𝑉𝑆(𝑟) [𝐻1
𝑖𝑙†𝐻1

𝑗𝑟
𝜀𝑙𝑘𝑟]    (11) 

 

 
We can contract the Levi-Civitta symbol to get: 

 

                   𝜀𝑖𝑗𝑘𝜀𝑙𝑘𝑟 = −(𝛿𝑙
𝑖𝛿𝑟
𝑗
− 𝛿𝑙

𝑗
𝛿𝑟
𝑖)                          (12) 

 

And now we get two terms into the Lagrangian density to 

integrate: 

                 ℒ = 2𝑉𝑆(𝑟) [𝐻1
𝑖𝑖†𝐻1

𝑗𝑗
−𝐻1

𝑖𝑗†
𝐻1
𝑗𝑖
]                  (13) 

 

The development of this two terms is, respectively: 

 

∫𝐻1
𝑖𝑖†𝐻1

𝑗𝑗
𝑑𝛺 =

∫𝑑𝛺∑ (𝑃
1  ℐℳ′
𝐿′𝐽′

𝑌
𝐿′
𝑀′−𝜇′

)†𝑃1  ℐℳ
𝐿𝐽 𝑌𝐿

𝑀−𝜇
𝐿,𝐿′,𝐽,𝐽′,𝑀,𝑀′ ,ℐ,ℳ,ℳ′

𝜇,𝜇′,𝜈,𝜈′

𝐶(𝐿′1𝐽′; 𝑀′ − 𝜇′, 𝜇′)𝐶(𝐽′1ℐ;ℳ′ − 𝜈′, 𝜈′)                 

𝐶(𝐿1𝐽;𝑀 − 𝜇, 𝜇)𝐶(𝐽1ℐ;ℳ − 𝜈, 𝜈)χ𝜇′
𝑖∗χ𝜈′

𝑖∗χ𝜇
𝑗χ𝜈

𝑗

   (14)  

 

These 𝐶(𝐽1, 𝐽2, 𝐽3; 𝑀1𝑀2) are the Clebsch-Gordan 

coefficient defined on Appendix A and following the notation 

of [1]. This one will be easier to calculate, because the labels 

of each wavefunction are contracted, meaning that it is a 

scalar and the relative angular momentum will fulfil 𝐿 = ℐ
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝐿 = +⇒ 𝐽 = − (the notation for 𝐽 is the same we used 

for 𝐿). The other: 

 

∫𝐻1
𝑖𝑗†
𝐻1
𝑗𝑖
𝑑𝛺 =

∫𝑑𝛺∑ (𝑃
1  ℐℳ′
𝐿′𝐽′

𝑌
𝐿′
𝑀′−𝜇′

)†𝑃1  ℐℳ
𝐿𝐽 𝑌𝐿

𝑀−𝜇
 𝐿,𝐿′,𝐽,𝐽′,𝑀,𝑀′ ,ℐ,ℳ,ℳ′

𝜇,𝜇′,𝜈,𝜈′

𝐶(𝐿′1𝐽′; 𝑀′ − 𝜇′, 𝜇′)𝐶(𝐽′1ℐ;ℳ′ − 𝜈′, 𝜈′)                  

𝐶(𝐿1𝐽;𝑀 − 𝜇, 𝜇)𝐶(𝐽1ℐ;ℳ − 𝜈, 𝜈)χ𝜇′
𝑖∗χ𝜈′

𝑗∗χ𝜇
𝑗χ𝜈

𝑖

(15)  

 

Both calculations were so complicated that we had to use 

the application Mathematica to compute them. If we express 

this results in matrix representation: 

 

 

 

_______________________________________________ 

 

 

(

 
 
 
 
 
 

𝑉+++ 0 0 0 0 0 0 0 0
0 𝑉+00 0 𝑉0+0 0 0 0 0 0
0 0 𝑉′+−− + 𝑉+−− 0 𝑉′00− + 𝑉00− 0 𝑉′−+− + 𝑉−+− 0 0
0 𝑉+0+ 0 𝑉0++ 0 0 0 0 0
0 0 𝑉′+−0 + 𝑉+−0 0 𝑉000 + 𝑉′000 0 𝑉−+0 0 0
0 0 0 0 0 𝑉0−− 0 𝑉−0− 0
0 0 𝑉′+−+ + 𝑉+−+ 0 𝑉00+ 0 𝑉′−++ + 𝑉−++ 0 0
0 0 0 0 0 𝑉0−0 0 𝑉−00 0
0 0 0 0 0 0 0 0 𝑉−−−)

 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

𝑃1  ℐℳ
++

𝑃1  ℐℳ
+0

𝑃1  ℐℳ
+−

𝑃1  ℐℳ
0+

𝑃1  ℐℳ
00

𝑃1  ℐℳ
0−

𝑃1  ℐℳ
−+

𝑃1  ℐℳ
−0

𝑃1  ℐℳ
−− )

 
 
 
 
 
 
 
 

= 𝐻𝐻𝐹

(

 
 
 
 
 
 
 
 

𝑃1  ℐℳ
++

𝑃1  ℐℳ
+0

𝑃1  ℐℳ
+−

𝑃1  ℐℳ
0+

𝑃1  ℐℳ
00

𝑃1  ℐℳ
0−

𝑃1  ℐℳ
−+

𝑃1  ℐℳ
−0

𝑃1  ℐℳ
−− )

 
 
 
 
 
 
 
 

   (16)
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Where, 

 

𝑉−++ = −2𝑉𝑆
1

(ℐ+1)(2ℐ+1)
𝑉−00 = 2𝑉𝑆

1

ℐ

𝑉+++ = −2𝑉𝑆 𝑉−−− = −2𝑉𝑆

𝑉+00 = −2𝑉𝑆(
1

ℐ+1
) 𝑉+0+ = 𝑉0+0 = −2𝑉𝑆(

√ℐ(ℐ+2)

ℐ+1
)

𝑉+−− = −2𝑉𝑆(
1

ℐ(2ℐ+1)
) 𝑉00+ = 𝑉−+0 = 2𝑉𝑆(

(2ℐ+3)

(ℐ+1)√4ℐ(ℐ+2)+3
)

𝑉000 = −2𝑉𝑆(1 −
1

ℐ
+

1

ℐ+1
) 𝑉+−+ = 𝑉−+− = −2𝑉𝑆(

√4ℐ(ℐ+1)−3

2ℐ+1
)

𝑉0++ = 2𝑉𝑆(
1

ℐ+1
) 𝑉+−0 = 𝑉00− = −2𝑉𝑆(

1

ℐ
√
2ℐ−1

2ℐ+1
)

𝑉0−− = 2𝑉𝑆
1

ℐ
𝑉0−0 = 𝑉−0− = −2𝑉𝑆(

√ℐ2−1

ℐ
)

  

 

In this Matrix of the Hyperfine Structure, we can observe 

the splitting of the spectrum because of the quark spin 

coupling.  

For the Fine Structure, which is also a correction on (7) 

and (8), we can make some physical observations. To begin 

with, we can see that the operator does not act on the quark 

spin state, it means, that this term cannot connect states with 

different values of it and, as a consequence, the energy 

contribution of the integral will be independent from the 

coupling state. Using (9) and the Pauli’s trace properties we 

get: 

 

𝑖𝜀𝑖𝑗𝑘𝑉𝐿(𝑟)𝑡𝑟 (𝐻𝑖
†
𝐿𝑘𝐻𝑗) = 2𝑖𝜀𝑖𝑗𝑘𝑉𝐿(𝑟) [𝐻0

𝑖 †𝐿𝑘𝐻0
𝑗
+

𝐻1
𝑖𝑙†𝐿𝑘𝐻1

𝑗𝑙
]                                                                       (18)  

 
Working with the notation (3) because of the 

independence on 𝑆, we have: 

 

𝜀𝑖𝑗𝑘 ∫𝐻0
𝑖 †𝐿𝑘𝐻0

𝑗
𝑑𝛺 =

𝜀𝑖𝑗𝑘 ∑ 𝑃0 𝐽𝑀
𝐿 †

𝑃0 𝐽𝑀
𝐿 ∫𝑑𝛺 𝒴𝐽′ 𝑀′

𝐿′ 𝑖†
𝐿𝑘𝒴𝐽 𝑀

𝐿 𝑗
𝐽,𝐽′,𝐿,𝐿′,𝑀,𝑀′               

                                                                                                (19) 
                                    

With the relations on Appendix A and B and computing it 

with  Mathematica we get: 

 

(

−2𝑉𝐿(𝐽 + 2) 0 0

0 −2𝑉𝐿 0
0 0 −2𝑉𝐿(𝐽 − 1)

)(

𝑃0 𝐽𝑀
+

𝑃0 𝐽𝑀
0

𝑃0 𝐽𝑀
−

) = 𝐻𝐹 (

𝑃0 𝐽𝑀
+

𝑃0 𝐽𝑀
0

𝑃0 𝐽𝑀
−

)  

                                                                                  (20) 
 

This element is not as interesting as the hyperfine one 

because as we can see, it keeps the degeneration due to the 

quark spin state because it’s Hamiltonian does not depend on 

them. It just shifts the states on the diagonal.  

 

𝑉′+−− = 2𝑉𝑆 (1 −
2

2ℐ + 1
)

𝑉′000 = 2𝑉𝑆

𝑉′−++ = 2𝑉𝑆 (1 +
2

2ℐ + 1
)

𝑉′00− = 𝑉′+−0 = −2𝑉𝑆√
2ℐ − 1

2ℐ + 1

𝑉′−+− = 𝑉′+−+ = 2𝑉𝑆 (
√4ℐ(ℐ + 1) − 3

2ℐ + 1
)

𝑉′−+0 = 𝑉′00+ = 2𝑉𝑆 (
−(2ℐ + 3)

√4ℐ(ℐ + 2) + 3
)

(17) 

IV. Mass predictions of the Hyperfine term: 

Finally, we can use the hyperfine splitting for one more 

thing. In particle physics, there are Mesons for example, that 

even being constituted by the same particles, they differ on 

their mass. Physicists, being aware that the Strong Interaction 

has a dependence on the spin, associated this difference on 

the mass to the coupling state of the spin i.e. that states on the 

same multiplet (for 𝑆 = 1 ⇒ 𝑀𝑆 = −1,0,1 the triplet) will 

have different masses. The way to construct this is, at leading 

order without corrections (7) and (8) tells us that the states 

with 𝐿 = 𝐽 does not mix with other values of it, but 𝐿 = 𝐽 ± 1 

do. We have: 

 

𝑀1  𝐽 −𝑀0  𝐽 = (𝐻𝐻𝐹(ℐ))𝐽 𝐽𝐴

𝑀1  𝐽 −𝑀0  𝐽 = (𝐻𝐻𝐹(ℐ))𝐽+1 𝐽𝐵 + (𝐻𝐻𝐹
(ℐ))

𝐽−1 𝐽
𝐶
  (21) 

 

The first expression will be useful for 𝐿 = 𝐽, since it has 

just 1 structure constant because of being decoupled as we 

mentioned before; the second one has two because of the 

mixing between the terms 𝐿 = 𝐽 ± 1 on the Schrödinger 

Equation (the structure constants holds for the same 

multiplet). The term (𝐻𝐻𝐹(ℐ))𝐿𝐽are the elements of the 

hyperfine matrix and,  𝑀1  ℐℳ
𝐽 −𝑀0  𝐽𝑀 is the difference 

between the masses mentioned above. Now, we are ready to 

solve the system (each matrix component is divided by 𝑉𝑆): 
 

             {

𝑀1  𝐽−1 −𝑀0  𝐽 = 𝑉
0++𝐴

𝑀1  𝐽+1 −𝑀0  𝐽 = 𝑉
0−−𝐴

𝑀1  𝐽 −𝑀0  𝐽 = (𝑉
000 + 𝑉′000)𝐴

}                  (22) 

 

 {

𝑀1  𝐽−1 −𝑀0  𝐽 = 𝑉
+++𝐵 + (𝑉′−++ + 𝑉

−++
)𝐶

𝑀1  𝐽+1 −𝑀0  𝐽 = (𝑉
′+−− + 𝑉+−−)𝐵 + 𝑉−−−𝐶

𝑀1  𝐽 −𝑀0  𝐽 = 𝑉
+00𝐵 + 𝑉−00𝐶

}        (23) 

 

And the relations we get respectively are: 
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{
 
 

 
 

𝑀1  𝐽−1 −𝑀0  𝐽

𝑀1  𝐽+1 −𝑀0  𝐽
=
(𝐽 + 1)

𝐽

𝑀1  𝐽−1 −𝑀0  𝐽

𝑀1  𝐽 −𝑀0  𝐽
=

𝐽(𝐽 + 1)

(2𝐽(𝐽 + 1) − 1)𝐽

 

}
 
 

 
 

     (24) 

 

 

                

{
 
 

 
 
𝑀1  𝐽−1 −𝑀0  𝐽

𝑀1  𝐽 −𝑀0  𝐽
= (𝐽 + 1)

𝑀1  𝐽+1 −𝑀0  𝐽

𝑀1  𝐽 −𝑀0  𝐽
= −𝐽

}
 
 

 
 

                   (25) 

 

Here we have the relations between the masses of the 

different states as a function of the Total Angular 

Momentum. We must mention that the parameter that marks 

the multiplet we are is 𝐽 not ℐ, because the spin quark 

coupling is on 𝐽. 

V. Conclusions 

First, we have seen that if we want to describe Mesons in 

a more general context, it is necessary to include the degree 

of freedom of the gluonic field. At leading order, the values 

of the Hamiltonian are mixed between the states 𝐿 = 𝐽 ± 1, 

but decouple for 𝐿 = 𝐽. It carries a degeneration coming from 

both quark spin,𝑆, and rotation symmetry, 𝑀𝐽. This 

degeneration, holds for the fine correction, which shifts the 

energy states of 𝐿 = 𝐽 and 𝐿 = 𝐽 ± 1 but, the hyperfine term 

breaks it (the quark spin part). The hyperfine matrix, tells us 

that the perturbation comes in groups of 1 (upper left and 

lower right boxes) and a group of 7 (the middle one). We 

conclude, that the shifted states are the ones on the corners, 

plus 7 combinations coming from the middle box . Since ℐ ≥
0, the sign of 𝑉𝑆 will mark if these states are going to be 

shifted by a positive or negative amount of energy. If the 

states with higher ℐ are shifted positively, it will mean that 

we have a normal coupling; if they are shifted negatively as ℐ 
increases, we are in front a reverse one. 

For the differences of the mass of states in the same spin 

multiplet, we see from (24) and (25) that they must follow a 

relation between them, like the Coupling 𝐿⃗ 𝑆  follows the 

Landé formula. 

VI. Appendix 

A.  Tensor Spherical Harmonics 

The notation used during all the development follows [1] 

and the definitions are, for the spin vector basis: 

                       𝛘±1 =
1

√2
(
∓1
−𝑖
0

) 𝛘0 = (
0
0
1
)                  (𝐴1) 

 

     

𝐶(𝐽1, 𝐽2, 𝐽3; 𝑀1𝑀2)

𝑌ℐℳ
𝑖𝑗 𝐿𝐽

= ∑ 𝐶(𝐽1ℐ;ℳ − 𝜈, 𝜈)𝒴ℐ ℳ−𝜈
𝐿 𝑖

χ𝜈
𝑗

1

𝜈=−1

𝒴𝐽 𝑀
𝐿 𝑖

= ∑ 𝐶(𝐿1𝐽;𝑀 − 𝜇, 𝜇)𝑌𝐿
𝑀−𝜇

1

𝜇=−1

χ𝜇
𝑖

       (𝐴2) 

The order in the Clebsch-Gordan coefficients is as 

follows, the two first angular momentums coupled to give the 

third one.  

B. Relations between elements and operators 

Here we present a large list of relations that will be useful 

during the essay from [1]: 

 

              {

𝒓̂𝓨𝐽𝑀
𝐿 = −𝐶(𝐽1𝐿; 000)𝑌𝐿

𝑀−𝜇

    𝒓̂𝑌𝐿
𝑀 = −∑𝐶(𝐿1𝐿′; 00)𝓨𝐿𝑀

𝐿′

𝐿′

}               (𝐵1) 

                {

𝛘𝝁
†𝛘𝝂 = δ𝜇𝜈

𝛘𝝁⋀𝛘𝝂 = 𝑖√2𝐶(111; 𝜇𝜈)𝛘𝝁+𝝂
𝛘𝝁𝛘𝝂 = −δ𝜇

−𝜈

}                  (𝐵2) 

 

            𝜀𝑖𝑗𝑘 (χ𝜇
𝑖†χ𝜈

𝑗χ𝜎
𝑘) = 𝑖√2𝐶(111; 𝜈𝜎)𝛿𝜈+𝜎

𝜇
       (𝐵3) 

 

Where the sub index is related to the 3 Pauli’s matrixes, 

not the components. A relation between 𝐿 ⇿ 𝜎: 

 

𝐿𝑘 = ∑ (−1)𝜌
1

𝜌=−1

χ−𝜌
𝑘𝐿𝜌

𝐿± |𝑳𝑴 > = ∓√
1

2
[𝐿(𝐿 + 1) − 𝑀(𝑀 ± 1)] |𝑳𝑴 ± 𝟏 >

(𝐵4) 
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