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Abstract In this paper we search for an orbital modulation of the VHE γ-ray flux in LS 5039, a
High Mass X-ray Binary that consists of a compact object in an 3.9 days orbit around a massive star.
For this purpose we apply to archive HESS data of LS 5039 two methods: Least-Squares Spectral
Analysis (LSSA) or Lomb-Scargle test, which has been proved effective in this task previously, and
Period Determination Using Phase Dispersion Minimization (PDM). We’ll see that both methods
verify this periodic modulation and that it matches the orbital period of the binary system.

I. INTRODUCTION

LS 5039 is one of the few confirmed galactic High Mass
X-ray Binaries (HMXBs) with recurrent TeV emission,
along with PSR B1259-63 or LSI+61303.

X-ray binaries are a class of binary stars that happen
to be luminous in X-rays, which are produced by matter
falling from the donor component -a star- to the accre-
tor, a compact object -usually a neutron star or a black
hole-. In particular, HMXBs have as a donor a massive
star, usually an O, B or a blue supergiant. In the case
of LS 5039 the nature of the compact object is still un-
known, nevertheless we have knowledge its companion is
a O6.5V star in a slightly eccentric (e ≈ 0.35) 3.90603 ±
0.00017 day orbit [1].

For decades, the existance of γ-ray emitting bina-
ries was speculated. The new generation of observato-
ries allowed the discovery in the mid-2000’s of HMXBs
emitting high-energy (HE, 0.1-100 GeV) or very high-
energy(VHE, >100 GeV) γ-rays [2]. Binary stars
have a specific property that distinguish them from any
other object: their physical conditions vary on a regular
timescale as the components revolve on their orbit.

In this work we look for a modulation in the emission
of VHE γ-rays in LS 5039 that matches the orbital pe-
riod of this binary system. This modulation is the result
of two phenomenons: between the apastron and the in-
ferior conjunction, pairs of very energetic positrons and
electrons, produced by the compact object, induce by in-
verse Compton the increase of the energy in the photons
that come from the star: hν+e− → hν′, with hν′ >> hν.
Therefore is in this area where we detect the maximum
in the VHE γ-ray flux. As a counterpart of this effect,
around the superior conjunction, where the stellar wind
is more intense, we have an absorption of photons that
produce pairs of positrons and electrons γ+γ → e+ +e−.
Here is where we detect the minimun in the VHE γ-rays
flux. So, though it may sound non-intuitive, when the
compact object is closer to the star we detect minimums
and when is further maximums. In Figure 7 we can ap-
preciate this clearly.

FIG. 1: Scheme of LS-5039 system. In the periastron (phase
φ = 0) the compact object and the star are at minimum dis-
tance. Superior (φ = 0.058) and inferior (φ = 0.716) con-
junctions phases correspond to the time of co-aligment along
our line-of-sight of the compact object and stellar companion.
The light blue cloud is a qualitative representation of the zones
with intense stellar wind. The maximum of VHE γ ray flux
detection lag somewhat behind the apastron epoch, aligning
better with the inferior conjunction; and the minimum flux
occurs at φ ≈ 0.2, a bit further than superior conjunction,
when the compact object aligns behind the star. The orbit is
actually inclined at an angle in the range 13◦ < i < 64◦ with
respect to the view above.

II. HESS DATA

The observations were taken with HESS (Aharonian
et al. 2006b), an array of four identical Imaging Atmo-
spheric Cherenkov Telescopes (IACT) sensitive to γ-rays
above 0.1 TeV. The total dataset comprises 160 runs (or
pointings) representing 69.2 h observations from both
2004 and 2005 and comprehend flux energies above 1
TeV.

III. PRECEDENT ANALYSIS

In this work we try to emulate the results obtained by
Aharonian et al. (2006) [3], where they managed to find
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FIG. 2: Initial disposition of data points in the runwise VHE
γ-ray flux at energies > 1 TeV. Horizontal line represents
the mean of the sample in order to appreciate the scattering
around it of the data points.

a 3.9078± 0.015 days orbital period that was consistent
with the 3.90603 ± 0.00017 days period from Casares et
al. (2005).

First, we have run a Lomb-Scargle Test, as they did
in order to replicate their result. Lomb-Scargle Test, or
Least-Squares Spectral Analysis (LSSA) is a method to
estimate a frequency spectrum through a least squares fit.
This test assumes a sinusoidal behavior, what is supposed
to be true in the case of an orbital modulation.

Let it be w our estimated period, then the flux vari-
ation would fit φ(t) = A sin(wt) + B cos(wt) for some
constants A, B. Suppose we have the pair Oi =
(xi, ti), ∀i ∈ {1, . . . , N} of the energy xi at time ti.
Our set of data would be O = ∪Oi. LSSA first finds a
time delay τ such that would make mutually orthogonal
this pair of sinusoids in φ at any time tj , and also re-
duce the effect of different powers in the basis of these
functions. This makes LSSA equivalent to Lomb’s least-
squares method applied to φ. The time delay τ is inferred
from the formula

tan(2wτ) =

N∑
j=1

sin(2wtj)

N∑
j=1

cos(2wtj)

Then the periodogram at frequency w is estimated as:

PO(w) =
1

2

([ N∑
j=1

xj cos(w(tj − τ))
]2

cos2(w(tj − τ))
+

[ N∑
j=1

xj sin(w(tj − τ))
]2

sin2(w(tj − τ))

)

If w is the period we look for, in the periodogram there
will be a big peak at this frequency. We use the LSSA
implementation from RStudio package lomb by Thomas
Ruf [4], and perform it over our 160 data points set, ob-
taining the next periodogram.

The result of our LS Test delivered a 3.914 days or-
bital period, quiet consistent with the previous result of

FIG. 3: Lomb-Scargle (LS) periodogram of the VHE runwise
flux for LS 5039 (chance probability to obtain the LS power vs.
frequency). The highest peak, with a p-value of 9.4889 · 10−13

is around the frequence 0.25549 days−1.

3.9078 ± 0.015, considering at Aharonian et al. (2006)
they made a calculation with a p-value of less than 10−15,
while ours is around 10−12.

IV. PERIOD DETERMINATION USING
PHASE DISPERSION MINIMIZATION

Our alternative method to the LS Test, which force us
to assume a sinusoidal behaviour, is the Period Determi-
nation Using Phase Dispersion Minimization (PDM) by
Stellingwerf (1978)[5].

In this methodology we consider again x our energy
values at times t, therefore the i-th observation is given
by (xi, ti), i ∈ {1, . . . , N}, with N = 160 in this case.

Let σ2 and µ be the variance and mean of x, respec-
tively

σ2 =

N∑
i=1

(xi − µ)

N − 1
(1)

For any sample of x we define s2 exactly as σ2 in (1).
Suppose we have M samples, having variances sj , j ∈
{1, . . . ,M}. Each of these samples would contain nj data
points and then, the overall variance for all samples is

s2 =

M∑
j=1

(nj − 1)s2
j

M∑
k=1

nj − 1

(2)

Our objective is to minimize the variance of the data
with respect mean light curve. Let α be our trial pe-

riod, we define the phase vector φ as: φi =
ti
α
− [

ti
α

], i ∈
{1, . . . , N}. Where [·] means the integer part of the value.
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We’ll pick our samples under the condition that all
data points of a sample j have similar φi. The variance
of these samples will give us a measure of the scatter
around the mean light curve defined by the means of the
xi in each sample, considered as a function of φ. Our
statistic value to evaluate the accuracy of the period α
will be

Θ =
s2

σ2
, (3)

where σ2 and s2 are given by equations (1) and (2) re-
spectively. If α is not the right period, then s2 ≈ σ2 →
Θ ≈ 1. When α is correct, s2 reaches a minimum and
Θ ≈ 0.

We’ll divide our phase space in Nb intervals and take
Nc covers of these Nb bins. Therefore we’ll obtain M =
NbNc bins, each of length 1

Nb
and whose midpoints will

be uniformly spaced at a distance of 1
NbNc

. We’ll denote

this bin structure by (Nb, Nc).
Next, we’ll study the character of Θ near a minimum.

In an oscillation of amplitude A, maximum variance in

x is σ2
0 = A2

12 . We introduce a noise component σ2
N , the

signal-to-noise ratio is ε = σ0

σN
and overall variance σ2 =

σ2
0 + σ2

N .
Bin variance s2 will have three components. The first

one depends on the distance from line center (δφ or δf
in period and frequency, respectively). The second one
is, as in σ2, a noise contribution. The last contribution
comes from a bin width variance.

If we take g(φ) as the mean light curve with depen-
dency on the phase φ, according to Stellingwerf, the av-
erage pendent in a sinusoidal function as ours is < g′ >≈
2A = 2

√
12σ0 = 4

√
3σ0.

Now let’s figure out the variance due to a change in
the trial period α, which would induce a scatter in the
phase over a range ∆φ = 0 → ∆α

α
T
α , where T = tn − t1

is the time base. Therefore

s2φ =
1

12

(
T

α

∆α

α

)2

< g′ >2= 4

(
T

α

∆α

α

)2

σ2
0 = 4(T∆f)2σ2

0 , (4)

as ∆α
α = ∆f

f for frequency f = α−1. Finally, we’ll have

also a variation of g across bins of width N−1
b in the form

s2
b =

1

12

(
g′

Nb

)2

= 4
σ2

0

N2
b

. (5)

Then, the total bin variance is

s2 = s2
φ + s2

b + σ2
N (6)

And we can develop the expression of Θ as

Θ =
s2
φ + s2

b + σ2
N

σ2
0 + σ2

N

=
1 + 4ε2[N−1

b + (T∆f)2]

1 + ε2
. (7)

We obtain from here that near a minimum the be-
haviour of the Θ statistic is parabolic. And looking at
the Θ = 1 level we can obtain the half-width

∆f1/2 =
1

T

√(1

4
− 1

N2
b

)
. (8)

As all our simulations use Nb ≥ 5, we can approximate
∆f1/2 = 1

2T . Also from here we can see that the half-

width in terms of the period as ∆φ1/2 ≈ φ2

2T .
An important feature of PDM techniques is that finds

all periodic components, subharmonics included -and
also periodicity in the observations, what might pro-
duce false minimums-. Of course, in the subharmonics
the mean light curve slope will be greater, according to
Stellingwerf (1978) < g′ >= 2nA for the n-th harmonic.
So the half-width in the frequency for subharmonics will
be (∆fn)1/2 = 1

2nT , this means we can distinguish sub-
harmonics for their narrow line widths. Detecting sub-
harmonics is fundamental at the time of assuring the reli-
ability in the period found by PDM; if this period induces
subharmonics it will be genuinely a periodic component
and not just the product of ’noise’ in the data.

Additionally, the statistical significance of the line will
be given by the value of Θ at ∆f = 0; if we substitute at
equation (7) we’ll have

Θ =
1 + 4ε2/N2

b

1 + ε2
(9)

As the noise components in our data is large (ε < 1.25),
according to equation (9) the minimum will be above 0.49
(for Nb = 5).

V. RESULTS

We have run various simulations with different
(Nb, Nc) distributions, changing the period in 0.001 each
time, and looking in a range 0.5-15 days, as we can see
in Figure 4.

For Nb > 10 the periodogram begins to be messy, with
a lot of noise due to the lack of enough data. This is
because the number of data points is N = 160, then for
Nb ≥ 10 the average amount of points in each bin will be
nb = 16, and therefore the number of freedom degrees is
barely enough to maintain statistically consistency. Re-
mark that despite this fact, statistics Θ minims are still
found at the right orbital period, along with its subhar-
monics.
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FIG. 4: Values of statistic Θ for different bin structures
(Nb, Nc). We search for the minims in a period range 0.5-
15 days. In red we indicate the minimun Θ which belongs to
the best fit for the period P, and in yellow we have the first
and second subharmonics, at approximately 2P and 3P.

In Table I we show in detail the results of our tests
for 5 ≤ Nb ≤ 10. We can observe that all values, ex-
cept (5, 5), belong to the interval 3.9063± 0.0017 days of
the estimated orbital period, being spot on in the cases
(8, 6) and (10, 2) with 3.906 days in both of them. Fur-
thermore, of all these results, (10, 2) happens to have the

Nb Nc Period Stimation Θ

5 2 3.908 0.5653

5 4 3.908 0.5837

5 5 3.912 0.5786

6 3 3.908 0.5636

6 4 3.908 0.5666

8 4 3.908 0.5372

8 6 3.906 0.5395

10 2 3.906 0.5134

10 5 3.907 0.5209

TABLE I: Results of our PDM tests combining different
(Nb, Nc) configurations, and being 5 ≤ Nb ≤ 10. More sta-
tistically relevant value (minimum Θ) found at (10, 2) with
a period 3.906 days; which is the exact value of the orbital
period in LS 5039.

FIG. 5: a) Frequency of the minimum at 0.256 days−1, corre-
sponding to P−1. b) First harmonic is found at 0.128 days−1,
whose inverse is 7.8125 days ≈ 2P. c) Second harmonic be-
longs to 0.0853 days−1 or 11.716 days ≈ 3P days.

smallest Θ value, what makes it the most statistically re-
liable value. We’ll use this period P = 3.906 days from
(10, 2) as our best period fit.

For the case (10, 2) we also represent the Θ vs. fre-
quency graphic in Figure 5, where we can observe clearly
the minimum in Θ at the frequency 0.256 days−1 -inverse
of period P-. We also highlight the first two subharmon-
ics, which have the second and third minimum value of
Θ. Plus, in Figure 6 we see in detail the behavior of
Θ around the minims in order to confirm the parabolic
behavior predicted in Section IV.

Finally, in Fig. 7 we plot the representation in phase
of the data points set for the period P = 3.906 days
inferred by PDM for the case (10, 2). In the graphic we
can detect, despite the big error bars, that the points
follows an almost sinusoidal distribution, as we supposed
before.
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VI. CONCLUSION

The goal of this paper was to confirm the orbital mod-
ulation in the VHE γ-ray flux of LS 5039 first detected
at Aharonian et al. (2006). We’ve been able to repli-
cate their results through our own Lomb-Scargle peri-
odogram, and we’ve also achieved these same results us-
ing a different method -PDM by Stellingwerf-. All this
makes us affirm that LS 5039 is the first binary system
with periodic emission of VHE γ-rays flux associated to
its orbital period. Also, we’ve seen that PDM method
can be a powerful tool to study emission periodicity in
other systems suspicious to have the same properties as
LS 5039.

FIG. 6: The representation of Θ behaviour around the mini-
mums show the parabolic behavior predicted in Section IV. a)
Representation of P−1 minimum, which have a width of 0.004
days−1, the widest of them all. b) Θ minimum around the first
subharmonic at (2P)−1. c) Second subharmonic minimun at
(3P)−1, it has a width similar to the first subharmonic due to
a sub-minimum. For all these graphics a quadratic regression
based on a t-test with a 95% confidence band is performed.
This test is performed by ggplot package of RStudio [6].

FIG. 7: Phase distribution of data points for orbital period
3.906; we extended it for better appreciation of the periodicity
in the γ ray’s flux. A sinusoidal regression based on a t-test
with a 95% confidence band is performed. This test is per-
formed by ggplot package of RStudio. We see how around the
superior conjunction (φ = 0.058) we detect a minimum in the
flux, and between the apastron and the inferior conjunction
(φ = 0.716) the flux reaches its maximum, as we explained in
the introduction.
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