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The BOSS–WiggleZ overlap region – I. Baryon acoustic oscillations
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ABSTRACT
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation
Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We
calculate the auto-correlation and cross-correlation functions in the overlap region of the two
data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO
measurement from the cross-correlation function represents the first such detection between
two different galaxy surveys. After applying density-field reconstruction we report distance-
scale measurements DV rfid

s /rs = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS,
the cross-correlation and WiggleZ, respectively. The distance scales derived from the two
data sets are consistent, and are also robust against switching the displacement fields used
for reconstruction between the two surveys. We use correlated mock realizations to calculate
the covariance between the three BAO constraints. This approach can be used to construct a
correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS
BAO measurements. Using a volume-scaling technique, our result can also be used to combine
WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect,
a possible source of systematic uncertainty for the BAO technique, is consistent with zero for
our samples.

Key words: surveys – cosmology: observations – dark energy – distance scale – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The Baryon Acoustic Oscillation (BAO) signal is a relict of the early
Universe, where photon pressure caused sound waves to move out
of overdensities (Peebles & Yu 1970; Sunyaev & Zeldovich 1970;
Bond & Efstathiou 1987). These sound waves became imprinted in
the distribution of Cosmic Microwave Background (CMB) photons
as well as in the matter density field. Over time, the density field
evolved through gravitational collapse and cosmic expansion. While
gravitational interaction can smear out the BAO signal, a complete
destruction would require interactions over very large scales (today
≈150 Mpc), making the BAO feature a very robust observable.

The BAO signal in the density field at different redshifts can
be related to the BAO signal measured in the CMB and therefore
allows employment of the so-called standard ruler technique (Blake
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& Glazebrook 2003; Seo & Eisenstein 2003). We can compare the
apparent size of the BAO signal measured in galaxy surveys with
the absolute size of this signal measured in the CMB and use this
to map out the expansion history of the Universe. Simulations have
shown that the BAO signal is unaffected by systematic uncertainties
down to the sub-percent level (Eisenstein, Seo & White 2007a;
Guzik & Bernstein 2007; Smith, Scoccimarro & Sheth 2007, 2008;
Angulo et al. 2008; Padmanabhan & White 2009; Mehta et al.
2011) and hence represents one of the most reliable tools available
for precision cosmology.

The most precise BAO measurement has recently been reported
by the Baryon Oscillation Spectroscopic Survey (BOSS) collabo-
ration (1 per cent; Anderson et al. 2013) at a redshift of z = 0.57.
BOSS also achieved a 2 per cent BAO distance constraint with the
LOWZ sample at z = 0.32 (Tojeiro 2014). The WiggleZ galaxy
survey (Drinkwater et al. 2010) produced a 4 per cent constraint at
redshift z = 0.6 (Blake et al. 2011b; Kazin et al. 2014) and the
6-degree Field Galaxy Survey (6dFGS) (Jones et al. 2009) yielded
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a 5 per cent constraint at z = 0.1 (Beutler et al. 2011). Using the
SDSS-DR7 (Abazajian et al. 2009) main sample, Ross et al. (2014b)
reported a 4 per cent BAO constraint. Future galaxy surveys point
to BAOs as their main science driver (e.g. DESI; Schelgel et al.
2011) and will push well below percent-level precision over a large
redshift range.

In this paper, we study the BAO signal in the overlap region of
the two largest galaxy surveys available to date, the CMASS sample
of BOSS DR11 (Ahn et al. 2014) and the WiggleZ galaxy survey
(Drinkwater et al. 2010). We use the BOSS DR11 sample, since the
overlap between BOSS and WiggleZ does not increase with DR12.
The two surveys have been produced independently, being subject to
different seeing conditions, instrumental noise, reduction pipelines
and observation strategies. While BOSS targeted mainly luminous
red galaxies (LRGs) and has a galaxy bias around b ≈ 2, WiggleZ
selected blue emission line galaxies (ELGs) with a bias around b
≈ 1. Since we restrict our analysis to the overlap region between
the two surveys, our data sets have the same sample variance. This
allows a test of possible systematic uncertainties in galaxy clustering
measurements. In this study we focus on BAO measurements while
a companion paper (Marin et al. 2015) investigates redshift-space
distortions in the overlap region.

The typical candidates for possible systematic errors in galaxy
clustering studies are redshift space distortions as well as non-linear
clustering, accompanied by a non-linear galaxy bias. Non-linear
evolution is normally connected to the density peaks of the matter
density field and hence we expect that galaxies which sit in high-
density regions, such as LRGs, should have stronger non-linear
effects compared to field galaxies, such as ELGs. On the other
hand, field galaxies have a larger redshift space distortion signal,
which is a source of possible systematics if not modelled correctly.
In addition to the properties of the density field itself, there are also
survey specific aspects such as incompleteness that can modify the
measured clustering statistic.

Another possible systematic bias for BAO measurements is the
relative velocity effect. The different velocities of baryons and dark
matter after decoupling can affect early galaxy formation processes.
At places where the relative velocity is large, baryons can escape
gravitational potentials. The first stars in the Universe will form
wherever the relative velocity is low, since this is where the baryons
will condense into the gravitational potentials of the dark matter.
The relative velocity decays with redshift and is negligible at the
redshift of the BOSS and WiggleZ galaxies. The question is whether
the modulation of structure formation due to the relative velocity
effect at high redshift is carried in the tracer galaxies we observe
today to measure BAO. Yoo & Seljak (2013) argue that galaxies
which consist predominantly of old stars (such as LRGs) could
carry this effect, while young galaxies might not. This would result
in a modulation of the BAO signal in BOSS, but not in WiggleZ.
In the overlap region between BOSS and WiggleZ we can measure
the BAO position in the same volume and compare whether the two
surveys yield the same result, allowing the placement of constraints
on the possible impact of the relative velocity effect.

In the next section we will introduce the two data sets used in
our analysis, BOSS-CMASS and WiggleZ. Section 3 describes our
correlation function estimate followed by a discussion of our mock
catalogues in Section 4. In Section 5 we present our technique of
density field reconstruction followed by a discussion of our model
for the correlation functions in Section 6. We then compare the
obtained displacement fields and perform the correlation function
fits in Section 7. In Section 8 we determine the correlation between
BOSS-CMASS and WiggleZ. In Section 9 we introduce the relative

velocity effect and perform fits to the data to constrain the relative
velocity bias. We conclude in Section 10.

For clarity we will use the name CMASS-BW, WiggleZ-BW
and cc-BW for the CMASS, WiggleZ and cross-correlation results
limited to the overlap region between the two surveys. We adopt a
flat �CDM cosmology with �m = 0.27. The same model is used to
construct templates for the BAO fits and hence our measurements
should be used in conjunction with rfid

s (zd) = 150.18 Mpc.1

2 DATASETS

2.1 The BOSS survey

BOSS, as part of SDSS-III (Eisenstein et al. 2011; Dawson et al.
2013) measured spectroscopic redshifts of ≈1.5 million galaxies
(and 150 000 quasars) making use of the SDSS multifibre spec-
trographs (Bolton et al. 2012; Smee et al. 2013). The galaxies are
selected from multicolour SDSS imaging (Fukugita et al. 1996;
Gunn et al. 1998, 2006; Smith et al. 2002; Doi et al. 2010) and
cover a redshift range of z = 0.15–0.7, where the survey is split into
two samples called LOWZ (z = 0.15–0.43) and CMASS (z = 0.43–
0.7). In this analysis we only use the CMASS sample. The survey is
optimized for the measurement of the BAO scale and hence covers a
large cosmic volume (Veff = 2.31 × 109[Mpc h−1]3) with a density
of n ≈ 3 × 10−4[h Mpc−1]3, high enough to ensure that shot noise is
not the dominant error contribution at the BAO scale (White 2011).
Most CMASS galaxies are red with a prominent 4000 Å break in
their spectral energy distribution. Halo Occupation studies have
shown that galaxies selected like the CMASS galaxies are mainly
central galaxies residing in dark matter haloes of 1013 M� h−1, with
a 5–10 per cent satellite fraction (White 2011). CMASS galaxies are
highly biased (b ∼ 2), which boosts the clustering signal including
BAO with respect to the shot noise level.

We include three different incompleteness weights to account for
shortcomings of the CMASS data set (see Ross et al. 2012 and
Anderson et al. 2013 for details): a redshift failure weight, wrf, a
fibre collision weight, wfc, and a systematics weight, wsys, which
is a combination of a stellar density weight and a seeing condition
weight. Each galaxy is thus counted as

wc = (wrf + wfc − 1)wsys. (1)

Fig. 1 shows the sky coverage of BOSS-CMASS with the north
galactic cap (NGC) on the left and the south galactic cap (SGC) on
the right.

2.2 The WiggleZ survey

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a
large-scale galaxy redshift survey of bright ELGs, which was carried
out at the Anglo-Australian Telescope between 2006 August and
2011 January using the AAOmega spectrograph (Sharp et al. 2006).
Targets were selected via joint ultraviolet and optical magnitude
and colour cuts using input imaging from the Galaxy Evolution
Explorer (GALEX) satellite (Martin et al. 2005). The survey is now
complete, comprising 240 000 redshifts and covering 816 deg2 in
six separate sky areas. The redshift range is roughly 0.1 < z < 1.0
with a mean redshift at z = 0.6. Fig. 1 shows the sky coverage of

1 Sound horizon scale calculated with CAMB (Lewis, Challinor & Lasenby
2000).

MNRAS 455, 3230–3248 (2016)



3232 F. Beutler et al.

Figure 1. Sky coverage of BOSS-CMASS DR11 (black) and WiggleZ (red). The left-hand plot shows the NGC, while the right-hand plot shows the SGC.
Five of the six WiggleZ regions are covered by CMASS, with region S22 being only partly covered. We only plot a random fraction of 3 per cent of all galaxies.

Figure 2. The overlap region between BOSS-CMASS (black) and WiggleZ (red). Most of the angular incompleteness is caused by WiggleZ, while the empty
stripes in region N11 are caused by incomplete photometric data in CMASS. To generate these regions, we divided the sky into 0.1 deg2 bins and included all
bins which contain CMASS as well as WiggleZ random galaxies. We only plot a random fraction of 10 per cent of all galaxies.

WiggleZ (red), where we name the different patches S1, S3, S22,
N9, N11, and N15.

The strategy for completeness correction in WiggleZ is differ-
ent to the method used in CMASS. Instead of weighting the data
galaxies, the incompleteness has been introduced into the random
catalogues (Blake et al. 2010) and hence no completeness weighting
is needed for this data set.

2.3 Definition of the overlap region

We define the overlap region between CMASS and WiggleZ by
splitting the sky into 0.1 deg2 bins and selecting all bins which
contain CMASS as well as WiggleZ random galaxies. The redshift
range is defined by CMASS and is given by 0.43 < z < 0.7. Fig. 1
shows the six WiggleZ regions (red), of which five are covered

by the BOSS-CMASS sample (black), with region S22 being only
partly covered.

The five overlap regions are shown separately in Fig. 2. Most
of the incompleteness in these plots is caused by the WiggleZ sur-
vey, while the empty stripes in region N11 are a result of missing
photometry and hence missing galaxies in CMASS.

The relative importance of sample variance and shot noise in
a galaxy clustering measurement is determined by the quantity
n(z)P(k), where n(z) is the galaxy number density and P(k) is the
galaxy power spectrum amplitude at the BAO scale. Therefore we
can trade a smaller galaxy density with a larger galaxy bias and
vice versa. The WiggleZ survey has a higher galaxy number density
compared to CMASS, while CMASS galaxies have a larger bias
and hence a larger power spectrum amplitude. The CMASS sample
has been designed with the target nP = 3, while WiggleZ has aimed
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Table 1. Effective volume and number of galaxies of the five distinct
CMASS-WiggleZ overlap regions (see Fig. 2) as well as the total volume
of the two surveys. The effective volume is calculated using equation (2)
and P0 = 20 000 h−3 Mpc3 for CMASS and P0 = 5000 h−3 Mpc3 for Wig-
gleZ. The names CMASS-BW and WiggleZ-BW stand for the CMASS and
WiggleZ samples restricted to the overlap region between the two.

Veff

Region (107 h−3Mpc3) Ngal

CMASS-BW 1.8 5742
S1

WiggleZ-BW 0.8 6621

CMASS-BW 1.9 6070
S22

WiggleZ-BW 1.1 10 339

CMASS-BW 3.1 9356
N9

WiggleZ-BW 1.7 13 960

CMASS-BW 3.7 10 280
N11

WiggleZ-BW 2.0 15 324

CMASS-BW 4.6 14 673
N15

WiggleZ-BW 2.6 22 736

CMASS-BW 15.1 48 570
Combined

WiggleZ-BW 8.2 71 407

CMASS-DR12 232.2 786 324
CMASS-DR11 204.0 690 827
CMASS-DR10 150.6 544 133
CMASS-DR9 76.9 264 281
WiggleZ 21.3 191 732

for nP = 1. The best quantity to compare the two surveys is the
effective volume, where we use the equation suggested by Tegmark
(1997):

Veff =
∫

d3x

[
n(x)P0

1 + n(x)P0

]2

. (2)

Here P0 is fixed to the amplitude of the power spectrum at the
wavenumber of the first BAO peak, k ≈ 0.06h/Mpc, which turns out
to be P0 = 20 000 h−3 Mpc3 for CMASS and P0 = 5000 h−3 Mpc3

for WiggleZ. The larger value of nP in the CMASS sample leads to
a larger effective volume compared to WiggleZ (by about a factor of
2). The different volumes for CMASS and WiggleZ in each overlap
region, as well as the combined volumes, are summarized in Table 1.
The redshift distribution for the two samples limited to the overlap
region is plotted in Fig. 3.

3 ES T I M ATI N G TH E C O R R E L AT I O N
F U N C T I O N

We calculate the correlation function by counting the number of
galaxy–galaxy pairs, DD(s), as a function of scale s, as well as
galaxy–random, DR(s), and random–random, RR(s) pairs. We then
use the correlation function estimator suggested by Landy & Szalay
(1993):

ξ (s) = 1 + DD(s)

RR(s)

(
nr

nd

)2

− 2
DR(s)

RR(s)

(
nr

nd

)
, (3)

where nr = ∑Nr wi(x) and nd = ∑Nd wi(x) represent the sums
over the weights for all random and data galaxies, respectively. We
include the inverse density weighting of Feldman, Kaiser & Peacock
(1994):

wi(x) = 1

1 + n(x)P0
, (4)

Figure 3. Redshift distribution of CMASS-BW (red) and WiggleZ-BW
(blue) combining the five separate regions.

with P0 = 20 000 h−3 Mpc3 for CMASS and P0 = 5 000 h−3 Mpc3

for WiggleZ. In the case of CMASS we also include the complete-
ness weighting of equation (1).

The cross-correlation function between two tracers A and B can
be calculated as

ξAB(s) = 1 + DADB(s)

RARB(s)

(
nA

r nB
r

nA
d nB

d

)
− DARB(s)

RARB(s)

(
nA

r

nA
d

)

− RADB(s)

RARB(s)

(
nB

r

nB
d

)
. (5)

Fig. 4 shows the correlation functions for CMASS-BW (top),
WiggleZ-BW (bottom) and the cross-correlation (cc-BW, middle).
The three figures on the left present the results before density field
reconstruction, while the figures on the right display the result after
reconstruction (see Section 5 for a discussion of our reconstruction
technique). The five correlation functions for the individual regions
of CMASS-BW and WiggleZ-BW are indicated as grey lines. Us-
ing the covariance matrix (see next section) we can combine the
correlation functions of the five sub-regions (coloured data points).
The auto-correlation functions of both surveys, as well as the cross-
correlation function before and after reconstruction, show a clear
BAO signal at around 100 Mpc h−1.

We also measured the cross-correlation coefficient defined as

r2(s) = ξ 2
cc−BW(s)

ξCMASS−BW(s)ξWiggleZ−BW(s)
(6)

and presented in Fig. 5. In linear theory we expect this quantity to
be

r2
theory(s) =

[
1 + 1

3 (βA + βB) + 1
5 (βAβB)

]2

(1 + 2
3 βA + 1

5 β2
A)(1 + 2

3 βB + 1
5 β2

B)
. (7)

Assuming bA = 2, bB = 1 and f = bβ = 0.76 results in r2
theory =

0.997. This expectation is included in Fig. 5 (black dashed line).
The mock realizations show a large correlation coefficient after
density field reconstruction. We currently do not have a model for
the correlation function shape post reconstruction (White 2015) and
therefore we only use the pre-reconstruction result in our fitting in
Section 9.

Fig. 5 also shows a small correlation coefficient before recon-
struction (blue data points). We used Gaussian error distribution to
obtain the uncertainties on the data points in Fig. 5, however, the
errors on r have a significant non-Gaussian component. In Marin
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Figure 4. The correlation functions of CMASS-BW (top), WiggleZ-BW (bottom) and the cross-correlation (middle) in the overlap regions between CMASS
and WiggleZ. The grey lines show the correlation functions for the five individual sub-regions (see Fig. 1), while the coloured data points show the combined
correlation functions calculated from equation (10). The error bars are the diagonal of the combined covariance matrices (see Fig. 7). Note that the scatter in
the grey lines does not represent the error in the data points, since each grey line corresponds to a different volume and is weighted accordingly. The black
lines show the best fit to the individual correlation functions corresponding to the upper part of Table 2.

et al. (2015) we performed fits to the auto- and cross-correlation
functions having r as a free parameter. We find that r is consistent
with 1 for scales above 20 Mpc h−1 (see fig. 5 in Marin et al. 2015).

4 MO C K R E A L I Z AT I O N S

We produced 480 mock catalogues for each of the five over-
lap regions using the COLA technique (Tassev, Zaldarriaga &
Eisenstein 2013). These mock catalogues will be presented in a
separate paper together with the details of the COLA implementa-

tion we employed (Koda et al. 2015). These mock catalogues have
also been used in Kazin et al. (2014) and Marin et al. (2015). Each
simulation uses 12963 particles in a [600 Mpc h−1]3 box resulting
in a particle mass of 7.5 × 109 M� h−1, allowing us to resolve
CMASS as well as WiggleZ size haloes. The haloes are identified
using a friend-of-friend algorithm with a linking length of 0.2 times
the mean particle separation. We use Halo Occupation distribution
models to populate these haloes with galaxies so that the mock real-
izations match the measured projected correlation functions wp(rp),
where rp is the angular separation between a galaxy pair. The fiducial

MNRAS 455, 3230–3248 (2016)



The BOSS–WiggleZ overlap region I 3235

Figure 5. The measured correlation coefficient before (blue) and after
(black) density field reconstruction. The dashed line shows the expecta-
tion of linear theory. The blue data points are shifted by 0.5 Mpc h−1 to the
right for clarity. The solid lines indicate the mean correlation coefficient of
the mock realizations before (red) and after (magenta) density field recon-
struction. The error on the data points is derived from the variations in the
480 mock catalogues (grey lines). When fitting the correlation coefficient in
Section 9 we only use the data before reconstruction, since we do not have
a model for the correlation function post reconstruction.

cosmology of these mock catalogues is flat �CDM with
�m = 0.273, �b = 0.0456, H0 = 70.5 Mpc−1 km s−1, σ 8 = 0.812
and ns = 0.96. The comparison of the correlation functions mea-
sured in the mock catalogues and the data correlation functions are
shown in Fig. 6. The mocks match the WiggleZ and CMASS clus-
tering on large scales while they slightly overestimate the clustering
amplitude of the cross-correlation function. The discrepancies are
less significant after reconstruction (three panels on the right in
Fig. 6).

4.1 Covariance matrix

Using the mock realizations of the individual sub-regions we can
produce covariance matrices for each of the auto- and cross-
correlation functions. We calculate the covariance matrix using

Cij = 1

479

480∑
n=1

[
ξn(si) − ξ (si)

] [
ξn(sj ) − ξ (sj )

]
, (8)

with ξ n(si) being the nth correlation function estimate at separation
si and the sum is over all 480 mock realizations. The mean value is
defined as

ξ (si) = 1

480

480∑
n=1

ξn(si). (9)

Instead of analysing the 10 auto-correlation functions and five cross-
correlation functions individually, we chose to combine the correla-
tion functions to obtain two auto-correlation functions for CMASS-
BW and WiggleZ-BW as well as one cross-correlation function. We
combined the correlation functions of the five individual sub-regions
using the covariance matrices calculated above and following the
procedure outlined in White (2011) and Blake et al. (2011b). Each
sub-region is weighted by its corresponding uncertainty

C−1ξ tot(s) =
5∑

regions i

[Ci]−1ξ i(s), (10)

with Ci being the covariance matrices of the individual sub-regions.
The inverse covariance matrix for the combined correlation func-
tions is given by

C−1 =
5∑

regions i

[Ci]−1, (11)

which follows from equation (10). The combined covariance ma-
trices before and after density field reconstruction are presented
in Fig. 7. The combined correlation functions for CMASS-BW,
WiggleZ-BW and the cross-correlation function are shown in Fig. 4
as coloured data points. We also compare the CMASS-BW correla-
tion function with the CMASS-DR11 correlation function in Fig. 8.
While the CMASS-BW correlation function before reconstruction is
in excellent agreement with CMASS-DR11, we find the prominent
BAO peak at slightly larger scales compared to CMASS-DR11.
We will discuss this aspect further when fitting these correlation
functions in Section 7.2.

It has been shown that the inverse covariance C−1 derived from
a finite number of realizations underestimates the uncertainties
(Anderson 2003; Hartlap, Simon & Schneider 2007; Percival et al.
2013). In the case of Gaussian errors and statistically independent
bins, this effect can be accounted for by multiplying the variance
estimated from the likelihood distribution with

mσ = 1 + B(Nbins − Np)

1 + 2A + B(Np + 1)
, (12)

where Nmocks is the number of mock realizations, Nbins is the number
of bins, Np is the number of free parameters and

A = 1

(Nmocks − Nbins − 1)(Nmocks − Nbins − 4)
, (13)

B = A(Nmocks − Nbins − 2). (14)

Furthermore, the sample variance needs to be multiplied by

mv = mσ

Nmocks − 1

Nmocks − Nbins − 2
. (15)

Since the bins in a correlation function are not statistically indepen-
dent, these correction factors are only an approximation. Given the
480 mock realizations in our analysis, 26 bins and 5 free parameters
(see Section 7.2), we have mσ = 1.033 and mv = 1.095. How-
ever, when fitting all three correlation functions simultaneously (78
bins), this factor can rise to mv = 1.4, significantly contributing to
our error budget.

5 D ENSI TY FI ELD RECONSTRUCTI ON

In linear theory, the comoving position of the BAO peak is set after
the epoch of decoupling, providing the foundation of its use as a
standard ruler. There are, however, non-linear effects, which can
change the BAO peak position, as well as its shape. The most sig-
nificant effect is non-linear damping of the BAO peak (Eisenstein
et al. 2007a; Seo et al. 2008). This effect is often modelled with
a Gaussian damping term. Although we are interested in the BAO
peak position and not in its amplitude, damping can shift the peak
position, because of the non-symmetric shape of the correlation
function around the BAO peak (Eisenstein et al. 2007a; Guzik &
Bernstein 2007; Smith et al. 2007, 2008; Angulo et al. 2008; Mehta
et al. 2011). Additionally, Crocce & Scoccimarro (2008) found that
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Figure 6. Comparison between the mock realizations and the CMASS-BW (red, top) WiggleZ-BW (blue, bottom) and cross-correlations functions (black,
middle). The grey lines show the 480 mock realizations with the mean given by the coloured data points and the error representing the variance. The coloured
lines indicate the measurement in the data. The dashed black lines mark the fitting range which goes from 50 to 180 Mpc h−1.

mode coupling can lead to shifts in the BAO peak position. Interest-
ingly, mode coupling as well as non-linear damping can be removed
by a technique called density field reconstruction, meaning that the
measured distribution of galaxies itself can be used to reduce the
impact of these non-linear effects by estimating the displacements
of galaxies from their initial position in the density field (Eisenstein
et al. 2007b; Padmanabhan & White 2009; Mehta et al. 2011). Den-
sity field reconstruction enhances the signal-to-noise ratio of the
BAO signature using extra information contained in the higher or-
der correlations of the galaxy distribution (Eisenstein et al. 2007b).
We apply density field reconstruction to the observed density field
following the formalism of Padmanabhan et al. (2012). First we

smooth the observed and random fields with a Gaussian filter of the
form

G(k) = exp

[−(k�smooth)2

2

]
, (16)

where we choose �smooth = 15 Mpc h−1 (Xu et al. 2012). The over-
density field is then calculated in real-space as

δ(x) = ρg(x)

ρr(x)

nr

ng
− 1, (17)
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Figure 7. The correlation matrix for the combined CMASS-BW, cross-correlation (cc-BW) and WiggleZ-BW correlation functions before (left) and after
(right) density field reconstruction. These matrices are combinations of the individual matrices for the five separate regions using equation (11). For each
region we use 480 mock realizations for CMASS-BW and WiggleZ-BW. The colour indicates the level of correlation, where red is high correlation, green is no
correlation and blue is high anti-correlation. Since each set of CMASS-BW and WiggleZ-BW mock catalogues has been produced from the same simulation
(see Section 4), there is a considerable amount of correlation between the three correlation functions, mimicking the situation of the real data. Given that we
use a fitting range of r = 50–180 Mpc h−1 with 5 Mpc h−1 bins, this matrix has 26 × 26 bins for each correlation function and 78 × 78 bins in total.

Figure 8. Comparison of the CMASS-BW (red data points) and CMASS-DR11 (red dashed lines) correlation functions before (left) and after (right) density
field reconstruction. Post reconstruction one can see that the BAO peak in CMASS-BW is at larger scales compared to CMASS-DR11, which leads to a smaller
value of DV as is also visible in the resulting likelihood distribution (see Fig. 12).

with ρg(x) and ρr(x) being the density of the smoothed galaxy and
random distribution, respectively. The normalization is defined as

nr

ng
=

∑Nr
i wi(x)∑Ng
i wi(x)

. (18)

In linear perturbation theory, the displacement field �(x) is related
to the redshift-space density field by (Nusser & Davis 1994)

∇ · �(x) + β∇ · [� los(x)] = − δ(x)

b
, (19)

where � los is the line-of-sight component of the displacement field.
Transforming this equation into Fourier space and using the ap-
proach φ(x) = ∑

kφ(k)exp (ikx) and δ(x) = ∑
kδ(k)exp (ikx) we

get

− φ(k)
[
k2

x + k2
y + k2

z (1 + β)
] = δ(k)

b
, (20)

which we solve for φ(k) for every wavenumber k. The displacement
field is than given by �(k) = −i k

|k|φ(k), which we Fourier transfer
back into configuration space. Our approach uses the plane-parallel
approximation, which is valid for the small angular coverage of the
five individual fields studied in this analysis (Blake et al. 2011a).

We then apply the displacement to our galaxies by shifting their
x, y and line-of-sight positions following

slos = sold − (1 + f )� los(x), (21)

sx,y = sold − �x,y(x). (22)

We do not apply the factor of (1 + f) in the case of the random
galaxies, since the random distribution does not contain redshift
space distortions. During reconstruction we use the growth rate
f = 0.7 as well as the linear bias b = 1.9 for CMASS-BW (Beutler
et al. 2014) and b = 1.0 for WiggleZ-BW (Blake et al. 2011a). The
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three plots on the right of Fig. 4 show the correlation functions for
CMASS-BW (top), WiggleZ-BW (bottom) and cross-correlation
(cc-BW, middle) after applying density field reconstruction.

6 MO D E L L I N G T H E LA R G E - S C A L E
C O R R E L AT I O N F U N C T I O N

Our model for the galaxy correlation function follows the procedure
of Anderson et al. (2013). The galaxy correlation function is given
by

ξ (s) = B2ξm(αs) + A(s) (23)

where

A(s) = a1

s2
+ a2

s
+ a3. (24)

The matter correlation function is obtained through (Eisenstein et al.
2007a)

ξm(s) =
∫

k2dk

2π2
P (k)j0(ks)e−k2σ 2

s (25)

with σ s = 2 Mpc h−1 and the monopole power spectrum is given
by

P (k) = Psm,lin(k)
[
1 + (Olin(k) − 1) e−[k2�2

nl]/2
]
. (26)

We fix �nl = 8.8 Mpc h−1 before reconstruction and �nl =
4.4 Mpc h−1 after reconstruction (Anderson et al. 2013; Magana
et al. 2014). The function Olin(k) represents the oscillatory part of
the fiducial linear power spectrum and Psm(k) is the smooth power
spectrum monopole. To obtain Psm,lin(k) we fit the fiducial linear
power spectrum, Plin(k), with an Eisenstein & Hu (1998) no-Wiggle
power spectrum, Pnw(k), together with five polynomial terms:

Psm,lin(k) = B2Pnw(k) + c1

k3
+ c2

k2
+ c3

k
+ c4 + c5k. (27)

The oscillatory part of the power spectrum is given by

Olin(k) = Plin(k)

Psm,lin(k)
. (28)

Our model in equation (23) has five free parameters (B, α, a1 − 3).
To turn the constraint on α into a physical parameter we use

α = DV (z)rfid
s

Dfid
V (z)rs

(29)

with

DV (z) =
[

(1 + z)2DA(z)
cz

H (z)

]1/3

, (30)

where DA(z) is the angular diameter distance and H(z) is the Hubble
parameter.

7 TESTING FOR BAO SYSTEMATICS

Although the linear bias model was always believed to be suffi-
cient for scales as large as the BAO signal, some studies using
halo catalogues from N-body simulations suggest that there are
scale-dependent bias effects even on BAO scales (Noh, White &
Padmanabhan 2009; Desjacques et al. 2010; Wang & Zhan 2013).
This means that the BAO signal can vary, depending on the tracer
chosen to map the underlying density field. In the following sec-
tions of this paper, we will fit the large scale correlation function of
CMASS and WiggleZ, and compare the displacement fields derived

Figure 9. Comparison of the displacements in the CMASS-BW catalogue
using the CMASS-BW displacement field (x-axis) and the WiggleZ-BW
displacement field (y-axis). The plot shows a random selection of 5 per cent
of all galaxies in the five overlap regions.

from the two surveys. Since we restrict our analysis to a common
volume, we expect the results to be correlated. Since the two sur-
veys trace the underlying density field differently, we can test for
systematic effects in the BAO analysis.

7.1 Comparing the CMASS and WiggleZ displacement fields

In Section 5 we derived two displacement fields using the CMASS-
BW and WiggleZ-BW galaxies, respectively. Here we are interested
to learn (1) whether one of the displacement fields leads to better
BAO constraints and (2) whether there are any systematic shifts in
the BAO position depending on which displacement field is used
for the reconstruction.

We apply the displacement field derived using the WiggleZ survey
to the CMASS galaxies and the displacement field derived from the
CMASS survey to the WiggleZ galaxies resulting in four data sets:

(1) CMASS-BW using the CMASS-BW displacement field,
(2) CMASS-BW using the WiggleZ-BW displacement field,
(3) WiggleZ-BW using the CMASS-BW displacement field,
(4) WiggleZ-BW using the WiggleZ-BW displacement field.

Fig. 9 compares the two displacements for each CMASS-BW
galaxy. We quantify the correlation between the displacement fields
using the correlation coefficient

r(A, B) =
∑

i

(
�A

i − �
A
) (

�B
i − �

B
)

√
σAσB

(31)

where � represents the mean of the displacement and σx =∑
i(xi − x)2, summing over all galaxies i. The correlation coef-

ficient for the regions (S1, S22, N9, N11, N15) = (0.65, 0.64, 0.67,
0.68, 0.81) for the CMASS-BW galaxies and (0.49, 0.74, 0.76, 0.73,
0.75) for the WiggleZ-BW galaxies. The smallest region (S1) shows
the lowest correlation coefficient, indicating that volume effects do
play a role in this case.

MNRAS 455, 3230–3248 (2016)



The BOSS–WiggleZ overlap region I 3239

Figure 10. Comparison of the CMASS-BW (red) and WiggleZ-BW (blue)
galaxies using the CMASS-BW and WiggleZ-BW displacement fields, re-
spectively. The x-axis is the mean displacement, while the y-axis shows the
difference. The CMASS-BW data points are shifted by 0.25 Mpc h−1 to the
right for clarity. The uncertainties are derived from the mock realizations.

The mean difference between the CMASS-BW and WiggleZ-BW
displacement fields using CMASS galaxies is �� = �CMASS-BW

− �WiggleZ–BW = −0.047 ± 0.016 Mpc h−1, while for the WiggleZ
catalogue �� = −0.150 ± 0.020 Mpc h−1 (the errors are the error
on the mean between all galaxies). We therefore find moderate
differences between the two displacement fields. The difference
between the two displacement fields does depend linearly on the
amplitude of the displacement, (�CMASS + �WiggleZ)/2, as shown
in Fig. 10 for the CMASS-BW galaxies (red) and the WiggleZ-BW
galaxies (blue). Such a discrepancy could be caused by an incorrect
assumption of the bias parameter when deriving the displacement
field.

To further investigate the impact of the two different displace-
ment field on the BAO scale, we now calculate the correlation
functions using both displacement fields. The correlation functions
after combining the five different regions are presented in Fig. 11.
In the next section we will fit these correlation functions and derive
BAO constraints.

7.2 Fitting the large-scale correlation function

We start with fitting the individual correlation functions of CMASS-
BW and WiggleZ-BW as well as the cross-correlation function. We
search for the best-fitting parameters defined by the minimum χ2,
given by

χ2 =
∑

ij

DT
i C−1

ij Dj , (32)

where D is a vector containing the difference between the data and
the model. Using the fitting range 50–180 Mpc h−1 in 5 Mpc h−1

bins results in 26 elements for the vector D. We use the python-
based MCMC sampler emcee (Foreman-Mackey et al. 2013) to
derive the likelihood. The results are shown in Table 2. We can
clearly see that the constraints for all three correlation functions

Figure 11. Comparison of the correlation functions for CMASS-BW (top),
WiggleZ-BW (bottom) and the cross-correlation function (cc-BW, middle)
after density field reconstruction using the two displacement fields derived
from the CMASS-BW and WiggleZ-BW galaxies, respectively. The label
‘(switched)’ indicates the case where the displacement field of the other
survey has been used for reconstruction. The red data points are shifted to
the right by 1 Mpc h−1 for clarity.

improve significantly after reconstruction. The resulting BAO con-
straints are worse, however, if we switch the displacement fields
between the two surveys (these results are labelled as ‘(switched)’
in Table 2). The same result occurs in the mock realizations, where
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Table 2. Summary of the fitting results. The first sector reports the fits to CMASS-BW, WiggleZ-BW and cross-correlation (cc-BW) functions
individually, while the second sector shows the combined fits to all three correlation functions. For each case we list the result pre- and post
reconstruction, as well as the result where we switched the displacement fields �(x) used for reconstruction (switched). The errors on each parameter
are obtained by marginalizing over all other parameters. The fitting range is 50–180 Mpc h−1 in 5 Mpc h−1 bins leading to 26 bins and 5 free parameter
(bias, three polynomials and α) in case of the fit to the individual correlation functions. When fitting all correlation functions simultaneously (last three
rows) there are 3 × 26 = 78 degrees of freedom and 13 free parameters. The likelihood distributions are shown in Fig. 12. Our fiducial sound horizon
is rfid

s (zd) = 150.18 Mpc.

survey α DV (z) rfid
s (z)
rs(z) (Mpc) χ2

CMASS-BW pre-recon 1.029+0.11
−0.085 2100+220

−170 31.2/(26 − 5)

CMASS-BW post-recon 0.970 ± 0.022 1970 ± 45 22.6/(26 − 5)

CMASS-BW post-recon (switched) 0.976 ± 0.029 1982 ± 59 23.1/(26 − 5)

cc-BW pre-recon 1.073+0.056
−0.067 2180+110

−140 22.8/(26 − 5)

cc-BW post-recon 1.050 ± 0.032 2132 ± 65 26.7/(26 − 5)

cc-BW post-recon (switched) 1.023+0.059
−0.092 2080+120

−190 13.0/(26 − 5)

WiggleZ-BW pre-recon 1.08+0.12
−0.15 2190+240

−300 18.1/(26 − 5)

WiggleZ-BW post-recon 1.033 ± 0.10 2100 ± 200 10.4/(26 − 5)

WiggleZ-BW post-recon (switched) 1.08+0.11
−0.14 2190+220

−280 15.6/(26 − 5)

combined-BW pre-recon 1.095 ± 0.068 2220 ± 140 84.6/(78 − 13)

combined-BW post-recon 0.966 ± 0.031 1956 ± 63 103.5/(78 − 13)

combined-BW post-recon (switched) 0.972+0.047
−0.078 1974+95

−158 60.5/(78 − 13)

58 per cent of the WiggleZ-BW mock catalogues show a larger
uncertainty on α when using the CMASS-BW displacement field
for reconstruction instead of the WiggleZ-BW displacement field.
Similarly 59 per cent of the CMASS-BW mock realizations show
poorer constraints when using the WiggleZ-BW displacement field.
The resulting likelihood distributions for all fits are presented in
Fig. 12 including a comparison to the CMASS-DR11 result. The
likelihood distributions are reasonably approximated by Gaussians.

In the limit of sample variance dominated uncertainties the three
correlation functions would carry the same amount of information
and only one of them would need to be analysed. In the shot noise
limit all three correlation functions would be independent and would
need to be analysed together to make maximal use of the available
information. In the case of CMASS-BW and WiggleZ-BW, shot
noise does contribute significantly to the error budget, so that a
combined analysis is beneficial.

Therefore we now fit all three correlation functions together using
the combined covariance matrix shown in Fig. 7. The fit has 13 free
parameters, one scaling parameter, α, the three bias parameters,
BCMASS–BW, Bcc–BW and BWiggleZ–BW as well as three polynomial
terms per correlation function. The data vector for this fit is given
by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξCMASS−BW
model (s1) − ξCMASS−BW

data (s1)
...

ξCMASS−BW
model (s26) − ξCMASS−BW

data (s26)

ξ cc−BW
model (s1) − ξ cc−BW

data (s1)
...

ξ cc−BW
model (s26) − ξ cc−BW

data (s26).

ξ
WiggleZ−BW
model (s1) − ξ

WiggleZ−BW
data (s1)

...
ξ

WiggleZ−BW
model (s26) − ξ

WiggleZ−BW
data (s26)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

containing 3 × 26 = 78 bins in total. The results are shown in
the lower part of Table 2. In the case of pre-reconstruction, this fit

is driven by the cross-correlation function, which has significantly
smaller uncertainties than any of the auto-correlation functions and
leads to a value of α = 1.095 ± 0.068. After reconstruction it is
the CMASS-BW constraint which drives the combined fit, leading
to α = 0.966 ± 0.031. The combined constraint on α is worse than
the CMASS-BW only constraint on α, which is mainly caused by
the large scaling factor of mv = 1.4 (see equation 15), needed for
this fit.

7.3 Comparison to mock realizations

The question now is whether the measured α values for CMASS-
BW and WiggleZ-BW are consistent. We can test this, by using
the 480 correlated mock realizations, which we used to calculate
the covariance matrix in Section 4.1. We calculate the correlation
function for each mock catalogue and repeat the fitting procedure
described in the last section. Fig. 13 shows the distribution of the
different constraints on α for the mock realizations, together with
the results found for the data (red data points). The ellipses in
these plots are the 1σ standard deviation including the correlation
between the different measurements. We only plot results which
have a value of α between 0.6 < α < 1.4 as well as an error on
α less than 25 per cent. For CMASS-BW we have 318 out of 480
mock catalogues which fulfill these criteria, while for WiggleZ-BW
there are 242 and 302 for the cross-correlation.

Using the mock realizations the standard deviations for α are
σα = (0.039, 0.036, 0.055) for CMASS-BW, cc-BW and WiggleZ-
BW, respectively. While the mock realizations predict the best BAO
constraint to be in the cross-correlation function, in the data the
most accurate distance scale measurement (post-reconstruction) is
in CMASS-BW. This result is, however, consistent with sample
variance, and we have many mock realizations which show a similar
behaviour. Fig. 14 compares the distribution of errors for the mock
realizations with the data. The signal-to-noise ratio of the auto-
correlation functions is given by

nAPAA

nAPAA + 1
, (34)
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Figure 12. Likelihood distribution for DV
rfid
s
rs

derived from CMASS-BW
(red), WiggleZ-BW (blue) and the cross-correlation function (black), before
(top) and after (middle) density field reconstruction. The dashed red line
shows the CMASS-DR11 constraint of (Anderson et al. 2013). The bottom
panel displays the result where the displacement fields derived from the two
surveys have been switched.

Figure 13. These plots show the distribution of α for the mock realizations
of CMASS-BW, WiggleZ-BW and cc-BW. We only plot results which have a
value of α between 0.6 <α < 1.4 as well as an error on α less than 25 per cent.
The ellipse represents the 1σ distribution drawn from the variance and
correlation coefficient. Note that the ellipse has not been derived from the
black points drawn in these plots but instead from jack-knife samples to avoid
outliers. The red data point shows our measurement post-reconstruction from
Table 2. The agreement between the red data points and the black ellipse is
only required if the cosmology of the mocks is the true cosmology.
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Figure 14. The error on α measured in the 480 mock realizations of
CMASS-BW (red), WiggleZ-BW (blue) and the cross-correlation function
(black). The uncertainty σα is taken to be the mean of the upper and lower
68 per cent confidence levels. The values measured in the data are shown by
the correspondingly coloured vertical dashed lines.

while the signal-to-noise ratio of the cross-correlation function
scales with (Smith et al. 2008)

2
√

nAnBPAB√
(nAPAA + 1)(nBPBB + 1) + nAnBP 2

AB

. (35)

Assuming nP = 3 for CMASS-BW and nP = 1 for WiggleZ-BW
as well as PCMASS–BW = 4PWiggleZ–BW (Pcc–BW = 2PWiggleZ–BW), we
find 0.75, 1.04 and 0.5 for CMASS-BW, cc-BW and WiggleZ-
BW, respectively. This rough estimate of the expected signal-to-
noise ratio agrees well with the result of the mock realizations. We
can therefore conclude that in our actual data measurements the
WiggleZ-BW constraint has an error slightly larger than expected,
the cross-correlation function error is close to the expected error
and the CMASS-BW error is smaller than expected.

To determine whether the three different BAO constraints agree,
we construct the vector T = (αCMASS–BW − αcc–BW, αCMASS–BW −
αWiggleZ–BW). Using the mock catalogues we obtain a correlation
coefficient for the two components of the vector T of 60.6 per cent,
which allows us to construct a covariance matrix and calculate
χ2 = TTC−1T with two degrees of freedom. Post reconstruction we
get χ2/d.o.f. = 1.25/2 when using the mean uncertainty predicted
from the mocks, and 4.1/2 when using (averaged) 1σ errors from
the actual measurements. The three different BAO measurements
are therefore statistically consistent.

The BAO peak in CMASS-BW leads to a distance constraint
of DV rfid

s /rs = 1970 ± 45 Mpc (post reconstruction), which is low
compared to the CMASS-DR11 result of DV rfid

s /rs = 2068 ±
20 Mpc (Anderson et al. 2013).2 Since CMASS-BW uses about
7 per cent of the CMASS-DR11 galaxies, we can approximate the
correlation coefficient, r 2, to be about 0.07, implying that these
constraints are fairly independent. We can quantify the significance
of the deviation between two correlated measurements with

�X√
σ 2

A + σ 2
B − 2 × r(σA, σB )σAσB

, (36)

2 This value has been corrected by the ratio of the fiducial sound horizons
to allow direct comparison with our constraint.

where r(σ A, σ B) is the correlation coefficient. This leads to a sig-
nificance of 2.1σ for the deviation between CMASS-DR11 and
CMASS-BW.

The WiggleZ survey has a distance constraint of DV rfid
s /rs =

2100 ± 200 Mpc, which we can compare to DV rfid
s /rs =

2221+97
−104 Mpc measured in Kazin et al. (2014). The WiggleZ con-

straint has a slightly different redshift range compared to our
WiggleZ-BW constraint (0.4 < z < 0.8) and does include the ad-
ditional sky region S3 (see Fig. 1), therefore a direct comparison is
not possible.

Ross et al (2014a) split the CMASS sample based on k + e cor-
rected i-band absolute magnitudes and [r − i]0.55 colours, yielding
two sub-samples with bias b = 1.65 (blue) and b = 2.3 (red). Studies
of the BAO scale in these sub-samples revealed no statistically sig-
nificant deviations, in agreement with our findings. Different to Ross
et al (2014a) our study is based on two entirely different surveys and
therefore also includes possible systematics due to instrumentation,
telescope site conditions or reduction pipeline.

8 D E T E R M I N I N G T H E C O R R E L AT I O N
BETWEEN BAO C ONSTRAI NTS IN C MASS
A N D W I G G L E Z

In the last section we set constraints on the quantity DV
rfid
s
rs

using
the CMASS-BW and WiggleZ-BW auto-correlation functions as
well as their cross-correlation function. The constraint from the
WiggleZ-BW auto-correlation function uses almost all WiggleZ in-
formation within the redshift range 0.43 < z < 0.7, excluding only
region S3, which is small in comparison. The entire CMASS sam-
ple, however, covers a sky area much larger than the overlap region.
In this section we will determine the correlation of WiggleZ-BW
and cross-correlation constraints found in the last section with the
CMASS-DR11 constraint of Anderson et al. (2013). We will then
construct a covariance matrix which allows us to use our results
together with the result of CMASS-DR11 for cosmological param-
eter constraints. We will also provide an estimate of the correlation
for the future CMASS-DR12 constraint.

First we divide the two surveys into the following sub-regions:

(1) BOSS-CMASS, excluding overlap region.
(2) BOSS-CMASS, in overlap region (CMASS-BW).
(3) WiggleZ, excluding overlap region.
(4) WiggleZ, in overlap region] (WiggleZ-BW).

For each region, the parameter of interest is the constraint on the
scaling parameter α. Assuming no correlation between the different
regions, the final constraints for each survey are given by

αB = 1 + V1(α1 − 1) + V2(α2 − 1)

V1 + V2
, (37)

αW = 1 + V3(α3 − 1) + V4(α4 − 1)

V3 + V4
, (38)

where the subscripted numbers refer to the four survey sub-regions
described above, and V is the volume given in Table 1. The sub-
scripted B stands for BOSS-CMASS and W stands for WiggleZ.
The correlation between αB and αW is given by

r2(αB, αW) ≈ r2(α2, α4)V2V4

VBVW
, (39)
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where the correlation coefficient between the constraints in the
overlap regions, r 2(α2, α4), can be calculated from the 480 mock
realizations as

r2(α2, α4) =
∑480(α2 − α2)(α4 − α4)√∑480(α2 − α2)2

∑480(α4 − α4)2
. (40)

For practical reasons we use a jack-knife approach, in which we
determine α for the mean of N − 1 realizations, excluding each
of the 480 mock realizations in turn. The correlation coefficients
between CMASS-BW and WiggleZ-BW in the overlap region is
r 2(α2, α4) = 0.301. Similarly, we can define the correlation co-
efficient between the auto-correlation functions and the cross-
correlation function giving r 2(αC, α4) = 0.570 and r 2(α2,
αC) = 0.584, where the subscripted C stands for the cross-
correlation function. To obtain the correlation coefficient between
our WiggleZ-BW constraint and the CMASS DR11 constraint of
Anderson et al. (2013), we use the volume of CMASS-DR11 (as
given in Table 1) in equation (39) and set V4 = VW. Therefore the
data vector D = (CMASS-DR11, cc-BW, WiggleZ-BW) = (2056,
2132, 2100) Mpc has the following correlation matrix:

RDR11 =
⎛
⎝ 1

r2(αB, αC) 1
r2(αB, α4) r2(αC, α4) 1

⎞
⎠ ,

=
⎛
⎝ 1

0.043 1
0.022 0.570 1

⎞
⎠ . (41)

The covariance matrix is given by C = VTRV, where the vector V
contains the variance of the individual constraints. In our case we
have VDR11 = (20, 65, 200) Mpc, where we adopted the CMASS-
DR11 uncertainty (left) from Anderson et al. (2013) together with
the WiggleZ-BW (right) and cross-correlation function (middle)
uncertainties from Table 2. This approach leads to the following
covariance matrix

CDR11 =
⎛
⎝ 400

56 4225
88 7410 40000

⎞
⎠ (42)

and the inverse is given by

C−1
DR11 =

⎛
⎝ 250.47

−3.48 35.11
0.09 −6.50 3.70

⎞
⎠ × 10−5. (43)

Since the overlap volume between CMASS and WiggleZ will not
change with DR12, this formalism can be rescaled to obtain the
correlation between our results and future CMASS data releases.
For example, using a cosmic volume of 2.322 h−3Gpc3 for DR12
we find the following correlation matrix

RDR12 =
⎛
⎝ 1

0.038 1
0.020 0.570 1

⎞
⎠ . (44)

This covariance matrix is only correct assuming that any correlation
between these surveys can be scaled with volume.

So far we have only used WiggleZ galaxies in the redshift range
0.43 < z < 0.7, ignoring a significant fraction of WiggleZ galaxies
at higher and lower redshifts. We can combine our results with
the high redshift (0.6 < z < 1.0) WiggleZ measurement reported
in Kazin et al. (2014) and given by DV rfid

s /rs = 2516 ± 86 Mpc.
This measurement has an effective redshift of zeff = 0.73. The
effective volume of WiggleZ in the redshift range 0.6 < z < 0.7

(overlap between the high redshift WiggleZ measurement and the
CMASS redshift range) is 6.1 × 107 h−3Mpc3. The correlation
matrix including the high redshift WiggleZ data point (labelled
by ext.) would be

Rext
DR11 =

⎛
⎜⎜⎝

1
0.043 1
0.022 0.57 1
0.013 0.39 0.51 1

⎞
⎟⎟⎠ (45)

with the data vector

Dext =

⎛
⎜⎜⎝

CMASS−DR11
cc−BW

WiggleZ−BW
WiggleZ−highz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2056
2132
2100
2516

⎞
⎟⎟⎠Mpc (46)

and the variance vector is V ext
DR11 = (20, 65, 200, 86) Mpc. This re-

sult makes the additional assumption that the correlation coefficient
we found for the CMASS redshift range can be scaled to the overlap
redshift range 0.6 < z < 0.7. We do not combine our measurements
with the low- and medium-redshift bins reported in Kazin et al.
(2014) since both overlap with the BOSS-LOWZ redshift range.
Therefore the results reported in this section can be combined with
the BOSS-LOWZ (Anderson et al. 2013; Tojeiro 2014) measure-
ment straightforwardly.

The assumed fiducial cosmologies used in the different measure-
ments above are not the same, resulting in different fiducial sound
horizons. The sound horizon used in the CMASS-DR11 analysis is
rfid

s = 149.28 Mpc, Kazin et al. (2014) have rfid
s = 148.6 Mpc and

our analysis uses rfid
s = 150.18 Mpc. When comparing the measure-

ments of DV above with a cosmological model one has to include
the ratio of the fiducial sound horizon and the sound horizon of that
model.

9 T H E R E L AT I V E V E L O C I T Y E F F E C T

In this section we discuss one possible source of systematic un-
certainty for BAO constraints, the relative velocity effect (Tseli-
akhovich & Hirata 2010). We first introduce the idea of the relative
velocity effect and discuss our model, before fitting the model to
the data.

While dark matter perturbations start to grow directly after the
end of inflation, baryon perturbations cannot grow until they decou-
ple from the photons, about 380 000 yr later. The different velocities
of dark matter and baryons after decoupling means that there is a rel-
ative velocity between the two components (Tseliakhovich & Hirata
2010; Fialkov et al. 2014). The relative velocity can allow baryons
to escape the dark matter potentials and prevent the formation of the
first stars in regions with high relative velocity (Fialkov et al. 2012;
McQuinn & O’Leary 2012; Naoz, Yoshida & Gnedin 2012). This
modulation would select regions with small relative velocity to first
undergo reionization. Since the relative velocity effect decays with
1 + z, it mainly affects the high-redshift Universe. However, it has
been speculated that galaxies which form at high redshift carry this
selection process down to low redshift, perhaps through processes
such as altering the metal abundances or supernovae feedback (Yoo,
Dalal & Seljak 2011). In Fourier space the relative velocity effect
has an oscillatory pattern on large scales which is out of phase with
the BAOs (Yoo & Seljak 2013). In configuration space the relative
velocity effect modifies the clustering amplitude primarily below
the sound horizon, leading to a shift of the BAO peak (Slepian &
Eisenstein 2014).

MNRAS 455, 3230–3248 (2016)



3244 F. Beutler et al.

The hypothesis is that old galaxies still carry the selection of the
relative velocity effect, while young galaxies do not. Under this
hypothesis we can measure the relative velocity bias by comparing
clustering statistics of BOSS and WiggleZ, since BOSS mainly
targeted (old) LRGs, while WiggleZ selected young star-forming
galaxies (ELGs). Our analysis method therefore assumes that BOSS
galaxies are affected by the relative velocity effect, while WiggleZ
galaxies are not.

9.1 Modelling

To model the correlation function including the relative velocity
effect we follow the implementation of Yoo & Seljak (2013). In this
model, the galaxy density field is given by

δg(x) = b1δm(x) + b2

2

[
δ2

m(x) − σ 2
m

] + bv

[
u2

r − σur

]
, (47)

where the relative velocity ur is computed at the linear order and
the matter density is computed to the second order. The auto-power
spectrum from such a density field can be written as

Pg(k) = b2
1PNL(k) +

∫
d3q

(2π)3
Pm(q)Pm(|k − q|)

×
[

1

2
b2

2 + 2b1b2F2(q, k − q)

+ 4b1bvF2(q, k − q)Gu(q, k − q)

+ 2b2bvGu(q, k − q) + 2b2
vG

2
u(q, k − q)

]
(48)

with the kernels

Gu(k1, k2) = −Tur (k1)

Tm(k1)

Tur (k2)

Tm(k2)

k1 · k2

k1k2
(49)

F2(k1, k2) = 5

7
+ 2

7

(
k1 · k2

k1k2

)2

+ k1 · k2

2

(
1

k2
1

+ 1

k2
2

)
. (50)

The dimensionless relative velocity transfer function Tur is defined
as

Tur = Tvb
− Tvcdm

σvr

, (51)

where Tvb
and Tvcdm are the velocity transfer functions of baryons

and cold dark matter, respectively and the normalization is given
by

σ 2
vr

(z) = 1

3

∫
dk

k
T 2

vr
(k, z)As

(
k

0.002 Mpc

)ns−1

. (52)

The transfer functions describe the evolution of each mode with
redshift as

δ(k, z) = T (k, z)δpri(k), (53)

where δpri is the primordial density perturbation. Before reionization
the linear relative velocity transfer function does not change its
shape but only its amplitude (see Fig. 15). Assuming the relative
velocity effect has been imprinted before reionization, any redshift
above reionization can be chosen to calculate the relative velocity
transfer function.3 We calculate the velocity transfer function Tur at
z = 15, while the matter transfer function in the denominator of the
velocity kernel is calculated at z = 0.57.

3 CMBfast and early versions of CAMB do not include the effect of reion-
ization to the baryon transfer function (see section 2.3 in Lesgourgues 2011).

Figure 15. The velocity transfer function Tv = Tvb − Tvcdm relative to the
cold dark matter transfer function Tcdm. While at high redshift this ratio
only changes in amplitude, at low redshift it has additional contributions
from reionization. Assuming that the relative velocity effect has been im-
printed before reionization, the velocity transfer function can be evaluated
at any redshift (above reionisation), since the amplitude is rescaled through
equation (52).

We can turn this model into configuration space using a Fourier
transform as given in equation (25). Fig. 16 shows the correlation
function for different values of the relative velocity bias bv . The
relative velocity bias causes an increase in the correlation function
amplitude as well as a shift of the BAO peak position towards
smaller scales.

Using the definition of equation (47) we can write a model for the
cross-correlation function of a tracer A, which carries the relative
velocity effect, with another tracer B, which does not carry this
effect:

P AB
g (k) = bA

1 bB
1 PNL(k) +

∫
d3q

(2π)3
Pm(q)Pm(|k − q|)

×
[

1

2
bA

2 bB
2 + (bA

1 bB
2 + bA

2 bB
1 )F2(q, k − q)

+ 2bB
1 bA

r F2(q, k − q)Gu(q, k − q)

+ bB
2 bA

r Gu(q, k − q)

]
. (54)

Fig. 17 shows the cross-correlation function for different values of
the relative velocity bias bv . As was the case for the auto-correlation
function, the relative velocity bias causes a shift of the BAO peak
position towards smaller scales. In the cross-correlation function the
shift is about 1/3 of the shift present in the auto-correlation function.
Unlike the auto-correlation, the relative velocity effect does not
change the amplitude of the cross-correlation function. This means
that the cross-correlation function between two tracers does not
have the bias bA

1 bB
1 and the correlation coefficient r2 = ξ 2

AB/(ξAξB)
is predicted to be smaller than unity. We therefore have two effects
which can be used to constrain the relative velocity effect: (1) the
BAO peak position and (2) the amplitude of the cross-correlation
function relative to the auto-correlation functions.

9.2 Constraining the relative velocity effect – BAO fits

As mentioned in the last section, we have two effects which can
be exploited to constrain the relative velocity effect, the shift in the
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Figure 16. Comparison of the auto-correlation functions for different values of the velocity bias parameter. The plot on the left shows the entire correlation
function, while the plot on the right focuses on the BAO peak. The relative velocity effect causes an increase in the correlation function amplitude as well as a
shift in the BAO peak position towards smaller scales. For these figures we assumed b1 = 2 and b2 = −0.4. The dashed lines represent the correction terms
for different values of the velocity bias; the dashed lines added to the black solid line results in the correspondingly coloured solid lines.

Figure 17. Comparison of the cross-correlation functions for different values of the velocity bias parameter. The plot on the left shows the entire correlation
function, while the plot on the right focuses on the BAO peak. The relative velocity effect causes a small shift in the BAO peak position towards smaller scales.
Unlike for the auto-correlation function, the relative velocity effect does not change the amplitude of the cross-correlation function. For these plots we assumed
bA

1 = 2, bA
2 = −0.4, bB

1 = 1 and bB
2 = 1. The dashed lines represent the correction terms for different values of the velocity bias; the dashed lines added to the

black solid line results in the correspondingly coloured solid lines.

BAO peak and the relative amplitudes of the individual correlation
functions. While the shift in the BAO peak position can be con-
sidered as robust, there are effects other than the relative velocity
bias which could change the amplitude. Any stochasticity, δs, in the
galaxy density field, which is not correlated with the matter density,
δg = bgδm + δs, and which does not correlate with the density field
of the other survey, would lead to a reduction in the amplitude of
the cross-correlation function. We will therefore perform multiple
fits. First we will show the constraint on the relative velocity ef-
fect just using the BAO peak position, and then include the relative
amplitudes of the correlation functions.

We start with the BAO peak position. For this fit we convert
the models of equations (48) and (54) into configuration space
and introduce additional polynomial terms to marginalize over
the shape of the correlation functions, similar to the discussion in
Section 6:

ξ ′
relvel(s) = B2ξrelvel(αs) + A(s). (55)

We also marginalize over the amplitude of the three correlation
functions by giving each correlation function a separate bias pa-
rameter. Higher order terms for the cross-correlation function
are always set by the bias of the auto-correlation functions. In
total we have 14 free parameters (BB, BC, BW, AB, AC, AW, α, bv),
where the polynomial terms A have three parameters each. Since
we assume that the relative velocity is only present in CMASS,
the relative velocity parameter, bv , only affects the CMASS and
cross-correlation function model. We perform fits where we addi-
tionally vary the parameter b2, but since this parameter is not well
constrained we often fix it to 1.0 for CMASS-BW and −0.4 for
WiggleZ-BW (Marin et al. 2013; Yoo & Seljak 2013). The result of
the fits are presented in the first two rows of Table 3 before recon-
struction, and the last two rows after reconstruction. Regardless of
how we treat the parameter b2, we obtain constraints on bv which are
consistent with zero. This result is not surprising since the shift of
the BAO peak due to the relative velocity effect is a shift to smaller
scales. Our data, however, show a BAO peak at larger scales for
CMASS-BW compared to WiggleZ-BW.
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Table 3. Summary of the fitting results for the relative velocity effect. The first two rows show the results when using only the BAO peak position
to constrain bv before density field reconstruction. The last two rows present the same fit after reconstruction. The third and fourth rows list the fit
parameters including the shape (and amplitudes) of the correlation functions. The fifth row provides the fit parameters to the correlation coefficient r 2.
All uncertainties are defined by the 68 per cent confidence levels. The fitting ranges are shown in the second column.

Fit condition Fitting range bv bCMASS
2 b

WiggleZ
2 χ2

pre-recon
BAO only 50–180 Mpc h−1 −0.067 < bv < 0.010 0.0+6.1

−1.4 14.5+4.7
−11.5 82.4/(78 − 16)

BAO only 50–180 Mpc h−1 −0.31 < bv < 0.060 1.0 −0.4 84.0/(78 − 14)
shape 50–180 Mpc h−1 −0.059 < bv < 0.096 −2.0+15

−14 −0.7+7.2
−6.7 89.4/(78 − 6)

shape 50–180 Mpc h−1 −0.12 < bv < 0.037 1.0 −0.4 94.7/(78 − 4)
r 2 20–60 Mpc h−1 −0.086 < bv < 0.062 1.0 −0.4 7.4/(9 − 4)

post-recon
BAO only 50–180 Mpc h−1 −0.21 < bv < 0.02 7.6+7.8

−8.3 −0.5+2.8
−3.1 98.9/(78 − 16)

BAO only 50–180 Mpc h−1 −0.22 < bv < 0.10 1.0 −0.4 103.5/(78 − 14)

Figure 18. Distribution of the relative velocity bias bv obtained from the
480 mock catalogues using the ‘shape’ and r 2 fitting methods (see Table 3
and text in Section 9.2 and 9.3).

9.3 Constraining the relative velocity effect – shape fits

Next we fit the correlation functions without marginalizing the
relative amplitudes. In this case we include a bias parameter for
CMASS-BW and WiggleZ-BW, but not for the cross-correlation
function. The amplitude of the cross-correlation function is given
by the product of the CMASS-BW and WiggleZ-BW bias parame-
ters. Since this fit does not marginalize over the relative amplitudes
and shape of the individual correlation functions, we also include
the velocity dispersion parameter σ v as

Pg,final(k) = Pg(k) exp(−k2σ 2
v /2),

P AB
g,final(k) = P AB

g (k) exp(−k2σ 2
v /2). (56)

Given the simplicity of our model, the parameter σ v absorbs small-
scale effects like non-linear structure formation which are bias de-
pendent. We therefore include three different σv parameters, one
for each correlation function. The parameter σv introduces stochas-
ticity on small scales which could mimic the relative velocity effect.
We verify that this model yields a relative velocity bias consistent
with zero when applied to our mock catalogues. Fig. 18 shows the
distribution of bv obtained from the 480 mock catalogues. We only
perform these fits pre-reconstruction, since we do not have a model
for the post-reconstruction correlation function. The results are in-
cluded in Table 3 with the label ‘shape’. While the constraints on

Figure 19. The effect of the three relative velocity terms of equation (48)
to the large scale correlation function. The black line shows the linear input
correlation functions, while the magenta, red and blue lines include the b2

v ,
b1bv and b2bv terms, respectively. The dashed lines represent the effect of
the relative velocity terms (solid coloured lines minus the black solid line).
We fix bv = 0.1, b1 = 2 and b2 = 1.

bv become tighter compared to the ‘BAO only’ fits, they are still
consistent with zero.

For the ‘shape’ fit the correction factor of equation (15) is 1.4 and
contributes significantly to our error budget. To avoid this additional
source of error we can fit the correlation coefficient r 2 instead
of the individual correlation functions. This approach reduces the
number of bins, which reduces the correction factor of equation
(15). The correlation coefficient should also be fairly independent
of the underlying cosmological model, since any effect common
to the correlation functions cancels. However, the parameters b1,
b2 and bv are degenerate when using r 2. From Fig. 19 we can see
that it might be possible to separately constrain b1 and b2 given
that b2 does behave very differently on small scales and around the
BAO peak. However, while on small scales there is concern about
the applicability of our model, on large scales the uncertainties are
too large to exploit these effects. Thus we cannot vary all three
parameters simultaneously. We therefore fix the value of b1 = 1.9
and b2 = 1.0 for CMASS-BW and b1 = 1 and b2 = −0.4 for
WiggleZ-BW. The term proportional to b2

v is usually significantly
larger than the b1bv and b2bv terms, justifying to some extent our
choice of fixing b1 and b2 (see Fig. 19).

MNRAS 455, 3230–3248 (2016)



The BOSS–WiggleZ overlap region I 3247

The mock realizations are in good agreement with the expected
value of the correlation coefficient above 20 Mpc h−1. The scales
above 60 Mpc h−1 have large uncertainties and can be neglected
for this fit, leading to the fitting range 20–60 Mpc/h. We again
verify that our model can reproduce a relative velocity bias of zero
when applied to our mock catalogues. The distribution of maximum
likelihood bv for the 480 mock realizations is included in Fig. 18
(blue line). The best-fitting parameters are included in Table 3. The
relative velocity bias is again consistent with zero.

So far the only constraint on the relative velocity bias, bv , in
the literature has been reported by Yoo & Seljak (2013) using
the CMASS-DR9 power spectrum. They found bv < 0.033 at the
95 per cent confidence level, consistent with our result. However,
their constraint was found by fixing all cosmological parameters to
the Planck values, while our BAO-only constraint can be considered
model independent.

1 0 C O N C L U S I O N

We have investigated the galaxy clustering in the overlap region be-
tween the BOSS-CMASS and WiggleZ galaxy surveys. Having two
galaxy samples in the same volume with different galaxy properties
as well as survey selection effects presents a valuable opportunity
to test for possible systematic uncertainties in our analysis of the
BAO scale. We can summarize our results as follows.

(i) We detect a BAO signal in both auto-correlation functions as
well as the cross-correlation function of CMASS and WiggleZ using
only the overlap region between the two surveys. The BAO detection
in the cross-correlation function represents the first BAO detection
in the cross-correlation function of two completely different galaxy
surveys. After applying density field reconstruction we find distance

constraints of DV
rfid
s
rs

= (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc
for CMASS, the cross-correlation and WiggleZ, respectively. The
three constraints are consistent with each other and with the distri-
bution found in the mock realizations. The results are also robust
against switching the displacement field of the two surveys dur-
ing density field reconstruction. We therefore cannot see signs of
systematic uncertainties.

(ii) We use our correlated mock realizations to determine the
correlation between CMASS and WiggleZ. Using these correlations
we derived a covariance matrix for the CMASS-DR11 and our
WiggleZ and cross-correlation constraints. While in the past the
WiggleZ constraints have often been ignored when constraining
cosmological models given the overlap (and hence correlation) with
the CMASS results, our covariance matrix now allows one to make
use of the WiggleZ information for cosmological constraints. Since
the overlap region between the two surveys will not grow with
future CMASS data releases, the covariance derived in this paper
can easily be rescaled to obtain the covariance between our WiggleZ
constraints and future CMASS data releases. We already provide a
correlation matrix for the expected CMASS-DR12 results.

(iii) Using the measured correlation functions we test for the
relative velocity effect, which is a possible source of systematic
uncertainty for BAO measurements. We perform various fits using
the effect of the relative velocity bias on the BAO peak position
as well as the relative amplitudes of the auto- and cross-correlation
functions. We cannot detect any signs of a relative velocity bias.

AC K N OW L E D G E M E N T S

FB would like to thanks Jaiyul Yoo for fruitful discussions and Julien
Lesgourgues, Antony Lewis and Thomas Tram for help with the ef-

fect of reionization to the relative velocity transfer function. CB ac-
knowledges the support of the Australian Research Council through
the award of a Future Fellowship. FM and JK were supported by
the Australian Research Council Centre of Excellence for All-Sky
Astrophysics (CAASTRO) through project number CE110001020.

Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the US Department of Energy. SDSS-III is man-
aged by the Astrophysical Research Consortium for the Participat-
ing Institutions of the SDSSIII Collaboration including the Uni-
versity of Arizona, the Brazilian Participation Group, Brookhaven
National Laboratory, University of Cambridge, Carnegie Mellon
University, University of Florida, the French Participation Group,
the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mexico State Uni-
versity, New York University, Ohio State University, Pennsylvania
State University, University of Portsmouth, Princeton University,
the Spanish Participation Group, University of Tokyo, University
of Utah, Vanderbilt University, University of Virginia, University
of Washington, and Yale University.

R E F E R E N C E S

Abazajian K. N. et al., 2009, ApJS, 182, 543
Ahn C. P. et al., 2014, ApJS, 211, 17
Anderson L. et al., 2013, MNRAS, 441, 24
Anderson T. W., 2003, An Introduction to Multivariate Statistical Analysis,

3rd edn. Wiley, New York
Angulo R., Baugh C. M., Frenk C. S., Lacey C. G., 2008, MNRAS, 383,

755
Beutler F. et al., 2011, MNRAS, 416, 3017
Beutler F. et al., 2014, MNRAS, 443, 1065
Blake C., Glazebrook K., 2003, ApJ, 594, 665
Blake C. et al., 2010, MNRAS, 406, 803
Blake C. et al., 2011a, MNRAS, 415, 2876
Blake C. et al., 2011b, MNRAS, 418, 1707
Bolton A. S. et al., 2012, 144
Bond J. R., Efstathiou G., 1987, MNRAS, 226, 655
Crocce M., Scoccimarro R., 2008, Phys. Rev. D, 77, 023533
Dawson K. S. et al., 2013, AJ, 145, 10
Desjacques V., Crocce M., Scoccimarro R., Sheth R. K., 2010, Phys. Rev.

D, 82, 103529
Doi M. et al., 2010, AJ, 139, 1628
Drinkwater M. J. et al., 2010, MNRAS, 401, 1429
Eisenstein D. J. et al., 2011, AJ, 142, 72
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Eisenstein D. J., Seo H. J., White M. J., 2007a, ApJ, 664, 660
Eisenstein D. J., Seo H.-J., Sirko E., Spergel D., 2007b, ApJ, 664, 675
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Fialkov A., 2014, Int. J. Mod. Phys. D, 23, 1430017
Fialkov A., Barkana R., Tseliakhovich D., Hirata C. M., 2012, MNRAS,

424, 1335
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,

306
Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider

D. P., 1996, AJ, 111, 1748
Gunn J. E. et al., 1998, AJ, 116, 3040
Gunn J. E. et al., 2006, AJ, 131, 2332
Guzik J., Bernstein G., 2007, MNRAS, 375, 1329
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Jones D. H. et al., 2009, MNRAS, 399, 683
Kazin E. A., Koda J., Blake C., Padmanabhan N., 2014, MNRAS, 441, 3524

MNRAS 455, 3230–3248 (2016)



3248 F. Beutler et al.

Koda J., Blake C., Beutler F., Kazin E., Marin F., 2015, preprint
(arXiv:1507.05329)

Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Lesgourgues J., 2011, preprint (arXiv:1104.2934)
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
McQuinn M., O’Leary R. M., 2012, ApJ, 760, 3
Magana M. V. et al., 2014, preprint (arXiv:1312.4996)
Marin F. A. et al., 2013, MNRAS, 432, 2654
Martin D. C. et al., 2005, ApJ, 619, L1
Martin F. A., Beutler F., Blake C., Koda J., Kazin E., Schneider D. P, 2015,

preprint (arXiv:1506.03901)
Mehta K. T., Seo H. -J., Eckel J., Eisenstein D. J., Metchnik M., Pinto P.,

Xu X., 2011, ApJ, 734, 94
Naoz S., Yoshida N., Gnedin N. Y., 2012, ApJ, 747, 128
Noh Y., White M., Padmanabhan N., 2009, Phys. Rev. D, 80, 123501
Nusser A., Davis M., 1994, ApJ, 421, L1
Padmanabhan N., White M., 2009, Phys. Rev. D, 80, 063508
Padmanabhan N., Xu X., Eisenstein D. J., Scalzo R., Cuesta A. J., Mehta

K. T., Kazin E., 2012, MNRAS, 427, 2132
Peebles P. J. E., Yu J. T., 1970, ApJ, 162, 815
Percival W. J. et al., 2013, MNRAS, 439, 2531
Ross A. J. et al., 2012, MNRAS, 424, 564
Ross A. J. et al., 2014a, MNRAS, 437, 1109
Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M.,

2014b, MNRAS, 449, 835
Schlegel D. et al., 2011, preprint (arXiv:1106.1706)
Seo H. J., Eisenstein D. J., 2003, ApJ, 598, 720

Seo H. -J., Siegel E. R., Eisenstein D. J., White M., 2008, ApJ, 686, 13
Sharp R. et al., 2006, Proc. SPIE, 6269, 62690G
Slepian Z., Eisenstein D., 2015, MNRAS, 448, 9
Smee S. et al., 2013, AJ, 146, 32
Smith J. A. et al., 2002, AJ, 123, 2121
Smith R. E., 2008, MNRAS, 400, 851
Smith R. E., Scoccimarro R., Sheth R. K., 2007, Phys. Rev. D, 75, 063512
Smith R. E., Scoccimarro R., Sheth R. K., 2008, Phys. Rev. D, 77, 043525
Sunyaev R. A., Zeldovich Y. B., 1970, Ap&SS, 7, 3
Tassev S., Zaldarriaga M., Eisenstein D., 2013, J. Cosmol. Astropart. Phys.,

1306, 036
Tegmark M., 1997, Phys. Rev. Lett., 79, 3806
Tojeiro R. et al., 2014, MNRAS, 440, 2222
Tseliakhovich D., Hirata C., 2010, Phys. Rev. D, 82, 083520
Wang Q., Zhan H., 2013, ApJ, 768, L27
White M., 2015, MNRAS, 450, 3822
White M. et al., 2011, ApJ, 728, 126
Xu X., Padmanabhan N., Eisenstein D. J., Mehta K. T., Cuesta A. J., 2012,

MNRAS, 427, 2146
Yoo J., Seljak U., 2013, Phys. Rev. D, 88, 103520
Yoo J., Dalal N., Seljak U., 2011, J. Cosmol. Astropart. Phys., 1107, 018

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 455, 3230–3248 (2016)

http://arxiv.org/abs/1507.05329
http://arxiv.org/abs/1104.2934
http://arxiv.org/abs/1312.4996
http://arxiv.org/abs/1506.03901
http://arxiv.org/abs/1106.1706

