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Abstract

National Health Systems across Europe are facing the same challenges to
achieve a high quality of healthcare, including, for example, the need to
adapt to demographic changes and a growing demand for care; improving
efficiency and financial sustainability; an ageing population associated
with a high incidence of certain chronic diseases (e.g., Alzheimer’s and
dementia); growing incidence of preventable diseases such as cancer, heart
disease, diabetes, respiratory, mental health, and others representing a
huge cost for society and the economy; and huge differences in health and

healthcare between and within the countries.

Healthcare is changing, and the era of data-driven healthcare organisations
is increasingly popular, mainly due to progress in open data initiatives;
digitalisation of medical records; technical advances and new analytical
tools; pharmaceutical R&D data availability; and mobile healthcare ap-
plications. All of these new trends can be exploited by data-driven ap-
proaches (e.g., machine learning, metaheuristics, modelling & simulation,

and data analytics) to increase efficiency and value in health services.

Despite extensive research and technological development, the evidence
impact of those methodologies in the healthcare sector is limited. In this
Thesis we argue that an approach without borders in terms of academic
societies and field of study could help to tackle the lack of impact of

data-driven approaches to enhance efficiency and value in healthcare.

This Thesis is based on solving practical problems for particular context
in different levels of healthcare management, with the research drawing

upon both theoretical and empirical analysis.

The research is organised in four stages. In the first part, a variety of
techniques from Modelling and Simulation were studied and used to anal-
yse current performance and to model improved and more efficient future
states of healthcare systems. The focus was primarily concerned with the

analysis of capacity, demand, activity, and queues both at hospital and
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population levels. In the second part, Genetic Algorithm was studied and
used to solve a Routing Home Healthcare problem. In the third part,
Social Network Analysis was studied and used to visualise and analyse
email networks. In the final, a new healthcare system performance met-
ric is proposed and implemented using a case study. New frameworks to
implement these methodologies in the context of real-world problems are

presented throughout the Thesis.

Working in collaboration with the University of Southampton, Wessex
Academic Health Science Network (AHSN), and NHS England, several
projects were developed and implemented for healthcare improvement in
the UK. The work aims to increase early detection of cancer and thereby
reduce premature mortality. The research was conducted working closely
with NHS Trusts and Clinical Commissioning Groups (CCGs) across the
Wessex region in England to produce bespoke endoscopy service mod-
elling, as well as population level models. At a regional level, we pro-
duced a Colorectal Cancer Screening Programme model in the South of
England, and an analysis of endoscopy activity, capacity and demand
across the region was conducted. We estimated the future demand for
endoscopy services in five years’ time, and we found that the system has
enough capacity to attend the expected future demand. A new healthcare
system performance metric is presented as a tool to improve healthcare

services.

Genetic Algorithm metaheuristics were implemented and applied in a vari-
ant of the Home Health Care Problem (HHCP), focusing on the route

planning of clinical homecare.

Working with the IMIM (Hospital del Mar Medical Research Institute,
Barcelona) and the Agency of Health Quality and Assessment of Catalo-
nia (Agencia de Qualitat i Avaluacié Sanitaries de Catalunya [AQuAS],
Barcelona), a project was developed to estimate future utilisation sce-
narios of knee arthroplasty (KA) revision in the Spanish National Health
System in the short-term (2015) and long-term (2030) and their impact
on primary KA utilisation. One of the findings was that the variation in
the number of revisions depended on both the primary utilisation rate and
the survival function applied. Projections of the burden of KA provided

a quantitative basis for future policy decisions on the concentration of




high-complexity procedures, the number of orthopaedic surgeons required

to perform these procedures, and the resources needed.

A Social Network Analysis (SNA) project was developed in collaboration
with the Wessex Academic Health Science Network (AHSN) in the UK.
The analysis focus on organisational email knowledge extraction with SNA

and Data Mining.

A new healthcare system performance metric - based on the Overall Equip-
ment Effectiveness (OEE) measure - is proposed and evaluated using real

data from and Endoscopy Unit from a UK based hospital.

To summarise, this work identifies four key techniques to use in the in-
vestigation of health data - machine learning algorithms, metaheuristic,
discrete event simulation and data analytics. Following a review of the dif-
ferent subjects and associated issues, those four techniques were evaluated

and used with an applied-focus to solve healthcare problems.

Key learning points from all different studies, as well as challenges and op-
portunities for the application of data-driven methodologies are discussed
in the final chapter of the Thesis.
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