

Data Driven Approach to Enhancing Efficiency

and Value in Healthcare

Richard E. Guerrero Ludueña

Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative
Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative
Commons.

This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License.

Part I

Background information

9

Chapter 2

Background information

This chapter presents a review of the three main methods we will use in this thesis:

Metaheuristic Optimisation, System Modelling and Simulation, and Data Analytics.

Main focuses of this review is to present a introduction to the methods, a summary

of different approaches described in the literature, and applications to healthcare.

The review is organised as follows. Metaheuristic Optimisation is discussed in

Section 2.1; Machine Learning is introduced in Section 2.2; Modelling and Simulation

is presented in Section 2.3; and a review of Data Analytics is presented in Section 2.4;

Section 2.5 presents the conclusions of this review; Finally, Section 2.6 summarises

this chapter.

2.1 Metaheuristic Optimisation

This section presents a review of metaheuristics algorithms and its application to

solve optimisation problems in healthcare. The main focus of this section is a discus-

sion of Genetic Algorithms, a metaheuristic algorithm applied in the Chapter 5. A

review of the general principles of optimisation and metaheuristic algorithms, simi-

larities and differences with other academic fields, and an introduction to alternative

metaheuristic algorithms are also presented.

11

12 2.1. Metaheuristic Optimisation

2.1.1 Optimisation

One of the fundamental challenges in modern organisations is the efficient utilisation

of expensive resources. Optimisation is one of the most popular quantitative decision

methodologies, since we can find optimisation problems everywhere, from workforce

planning to surgery scheduling in a hospital [128, 138]; from a modern controller de-

sign in an industrial evaporation system [166] to choosing the optimum location and

number of ambulances [156]. In these examples, the aim is to achieve an objective or

to optimise something such as profit, time, energy or travels. As resources are always

limited in real-world applications, we have to find solutions to optimally use these

valuable resources under various constraints. Mathematical optimisation, mathemat-

ical programming or simply optimisation is the selection of the best element (with

regard to some criteria) from a set of available alternatives.

Every process has a potential to be optimised, examples of real-life optimisation

are minimisation of travel time, process costs, and risk or maximisation of profit,

quality, and efficiency. A large number of real-life optimisation problems are complex

and difficult to solve; they cannot be solved in an exact manner within a reasonable

amount of time. Using approximate algorithms is the main alternative to solve this

class of problems [204].

A mathematical program is an optimisation problem of the form:

maximize fi(x), (i = 1, 2, ..., I)

subject to gj(x) ≤ 0, (j = 1, 2, ..., J)

hk(x) = 0, (k = 1, 2, ..., K)

(2.1)

where fi(x), gj(x), and hk(x) and

x ∈ X (2.2)

Here X is a subset of Rn and is in the domain of fi, gj and hk, which map into

real spaces. The functions fi(x) are called objective function. The components x of X

are called decision variables, and they can be real continuous, discrete or the mixed

of these two. The space extend over the decision variables is called design space,

while the space formed by the objective functions values is called solution space. The

solution space S, also named feasible region, feasible set or search space is the set of

all possible points (sets of values of the choice variables) of an optimisation problem

that satisfy the problem’s constraints.

Chapter 2. Background information

2.1. Metaheuristic Optimisation 13

The relations, x ∈ X, gj ≤ 0, and hk = 0 are called constraints, and the functions

fi where i = 1, 2, ..., I are called objective function.

A point x is feasible if it is in X and satisfies the constraints gj(x) ≤ 0, and

hk(x) = 0. A point x∗ is optimal if it is feasible and if the value of the objective

function is not less that of any other feasible solution: f(x∗) ≥ f(x) for all feasible x.

The sense of optimisation is presented here as maximisation, but it could just as well

be minimisation, with the appropriate change in the meaning of optimal solution:

f(x∗) ≤ f(x) for all feasible x.

An optimisation problem can be classified according to the number of objectives

as single objective (in the case of M = 1) or multionjective (M > 1). A multiob-

jective optimisation is also referred to multi-attributes or multicriteria. In real-world

problems, most optimisations tasks are multiobjective [129]. Another classification

of optimisation is in terms of number of constrains J +K. If there is no constraint

(J = K = 0), the problem is called an unconstrained optimisation problem [195].

If J = 0 and K ≥ 1, the problem is called equality-constrained problem [197, 126];

while K = 0 and J ≥ 1, represent a problem called inequality-constrained optimisa-

tion problem [181, 68].

Optimisation problems can also be classified as linear or nonlinear based on the

actual function forms. In a linearly constrained problem, the constrains gj and hk are

all linear. If both the constraints and the objective functions are linear, it becomes a

linear programming problem. If all fi, gj and hk are nonlinear, the problem is called

nonlinear optimisation problem [232, 119].

The size is an alternative approach to classify optimisation problems, measured in

terms of the number of unknown variables or the number of constraints: small-scale

are a class of problems with about five or fewer unknowns variables and constraints;

intermediate-scale are problems with about five to a hundred or a thousand variables;

and a large-scale problems are problems with thousands or even millions of variables

and constraints [198].

In optimisation, a mathematical program is often extended to indicate a family of

mathematical programs over a parameter space, say P . This involves extending the

domain of the functions, f , g and h, and a semi-colon is used to separate the decision

variables from the parameters.

Chapter 2. Background information

14 2.1. Metaheuristic Optimisation

max f(x, p)

g(x, p) ≤ 0

h(x, p) = 0

x ∈ X

(2.3)

2.1.1.1 Combinatorial Optimisation (CO)

Many real-world optimisation problems consist of the search for a best configura-

tion of a set of variables to achieve goals. As noted, optimisation problems can be

divided based on the type or existence of constraints (e.g. constrained and uncon-

strained optimisation problems), number of objective functions (e.g. single-objective

and multi-objective programming), nature of equations (linear programming, nonlin-

ear programming, geometric programming, quadratic programming, etc.), values of

decision variables (e.g. real-valued variables, discrete variables).

If we focus on the classification of optimisation problems based on the value of the

decision variables, Combinatorial Optimisation (CO) is defined as a type of problem

where we are looking for an object from a finite - or possibly countably infinite - set

of variables [105, 121, 32]. This objective is typically an integer number, a subset, a

permutation, or a graph structure [18]. Examples for CO problems are the Travelling

Salesman problem (TSP), the Quadratic Assignment Problem (QAP), Timetabling

and Scheduling problems [18].

2.1.2 Different approaches for solving optimisation problems

Once an optimisation problem has been formulated correctly, the following step is

to find a solution by using and exact method, approximate algorithms, or heuristic

approach, as appropriate.

Since the solution space S is finite, any optimisation problem could be exactly

solved by an algorithm that simply enumerates all elements in S and outputs one

among those elements corresponding to the best objective function value x∗. Un-

fortunately, since the number of feasible solutions | S | usually grows exponentially

with the size of the instance to be solved, such a naive approach is not efficient and

surely not applicable to solve real-world applications of practical interest. Several

optimisation problems can be solved in polynomial time (problems in P), but many

of them are hard or computationally intractable (NP − complete problems), or non-

deterministic polynomial time. Although any given solution to an NP − complete

Chapter 2. Background information

2.1. Metaheuristic Optimisation 15

problem can be verified quickly (in polynomial time), there is no known efficient way

to locate a solution in the first place and the time required to solve the problem us-

ing any currently known algorithm increases very quickly as the size of the problem

grows. As a consequence, determining whether or not it is possible to solve these

problems quick, called the P versus NP problem, is one of the principal unsolved

problems in computer science today [43, 70].

Classical approaches to solve an optimisation problem are Branch & Bound [125],

and Dynamic Programming [15]. They are divide-and-conquer methods, since both

solve a problem by combining the solutions to its subproblems.

If P �= NP , we cannot simultaneously have algorithms that (1) find optimal

solutions (2) in polynomial time (3) for any instance [224]. At least one of the these

requirements must be relaxed in any approach to dealing with and NP-complete

optimisation problem. Relaxing the ”for any instance” requirement, and finding

polynomial-time algorithms for special cases of the problem at hand is one of the

approaches. The second approach is to relax the requirement of polynomial-time

solvability, aiming to find optimal solutions to problems by clever exploration of the

full set of possible solutions to a problem, accepting that the algorithm will terminate

in any reasonable amount of time. A more common approach identified by Williamson

is to relax the requirement of finding an optimal solution, and instead settle for

a solution that is ”good enough”, especially if it can be found in seconds or less.

By relaxing the requirement of finding an optimal solution, NP-complete problems

are often addressed using approximation algorithms and heuristic and metaheuristics

methods.

By using an approximation algorithm the aims is to find a suboptimal solution

that closely approximates the optimal solution in terms of its value, providing an

approximation-guarantee α on the quality of the solution found.

2.1.3 Metaheuristic optimisation

As discussed, many optimisation problems of practical as well as theoretical impor-

tance consist of the search for a best configuration of a set of variables to achieve

goals [18]. Algorithms developed to tackle optimisation problems are classified as

exact (also called completed methods) or approximate algorithms [74]. Approximate

algorithms are not able to certify the optimality of the solutions they find; exact pro-

cedures theoretically can guarantee to find for every finite size instance of a problem

an optimal solution in a limited time [162]. For problems that are NP − hard [70],

no polynomial time algorithm exists, assuming that P �= NP . Therefore, complete

Chapter 2. Background information

16 2.1. Metaheuristic Optimisation

methods might need exponential computation time in the worst-case. In approximate

methods we sacrifice the guarantee of finding good solutions in a significantly reduced

amount of time [18].

Approximate algorithms can be classified as specific heuristics and metaheuristics

[204]. An heuristic is defined as an approximate solution technique designed and

applicable to a particular problem [73]. The term heuristic is sometimes used to refer

to a whole search algorithm and is sometimes used to refer to a particular decision

process sitting with some repetitive control structure [28]. Metaheuristic was defined

for the first time in 1986 [76], and derives from the composition of two Greek words.

Heuristic derives from the verb heuriskein which means ”to find”, while the suffix

meta means ”beyond, in an upper level” [18]. In [201], the history of metaheuristics

is described based on five distinct periods:

• Pre-theoretical period (until c. 1940), heuristics and even metaheuristics are

used but not formally studied.

• Early period (c. 1940 - c. 1980), formal studies on metaheuristic appear.

• Method-centric period (c. 1980 - c. 2000), many different methods proposed.

• Framework-centric period (c. 2000 - present), metaheuristics are more usefully

described as frameworks, and not as methods.

• Scientific period (the future), metaheuristics becomes a science.

Due to the computational complexity of hard optimisation problems, especially

in the presence of large scale problem instances, there has been a sizeable study

of various types of heuristics and metaheuristics such as simulated annealing [110,

56], tabu search [76, 78], evolutionary algorithms like genetic algorithms [79], colony

optimisation [51], and scatter search [77], to name a few.

Metaheuristics are defined as a class of methods commonly applied to subopti-

mally solve computationally intractable optimisation problems. Metaheuristic has

been also defined as an iterative master process that guides and modifies the op-

erations of subordinate heuristics to efficiently produce high quality solutions [159].

A metaheuristic may combine different concepts for exploring the search space and

uses learning strategies to structure the information in order to find efficiently near-

optimal solutions. It may manipulate a complete (or incomplete) single solution or a

collection of solutions at each iteration. The subordinate heuristics may be high (or

low) level procedures, or a simple local search, or just a construction method.

Chapter 2. Background information

2.1. Metaheuristic Optimisation 17

Four main components of metaheuristics are: initial space of Solutions; search

engines; learning and guideline strategies; and finally management of information

structures [159].

Metaheuristics has been located between Artificial Intelligence (AI) and Opera-

tional Research (OR) [28], as part of machine learning and soft computing [211], and

also as a branch of optimisation in Computer Science (CS) and applied mathematics

that are related to algorithms and computational complexity theory [204].

Metaheuristic has been defined in numerous ways by different authors. In this

thesis, we adopt the definition presented in [77, 74].

Definition 2.1.1. Metaheuristics are solution methods that orchestrate an interac-

tion between local improvement procedures and higher level strategies to create a

process capable of escaping from local optima and performing a robust search of a

solution space.

2.1.4 Genetic Algorithms

Figure 2.1 shows a classification of optimisation approaches based on the technique

used to search for solutions.

Guided random search techniques are method based on random searches in locating

the optimal solution. These methods are different from pure ”random walk” methods

in the sense that they use information from the previous iteration in locating the

next best point. These methods are hence classified under guided random search

methods. The guided random search techniques can be subclassified into Evolution-

inspired methods, Other Nature-inspired methods, and Logical Search techniques.

Genetic Algorithms (GA), Evolutionary Programming, and Evolution Strategies are

three types of Evolutionary Algorithms. Simulated Annealing (SA) and Ant Colony

Optimisation (ACO) are two examples of other Natural based techniques. Both GA

and ACO techniques use population of points in the search space and hence have

a better change of locating the global optima solution. The GA technique mimics

the biological process (genetics) whereas the ACO technique is based on the idea of

natural phenomena of the ants.

Genetic Algorithm (GA) was introduced by Holland in 1975 [94]. GA are self-

adapting strategies for searching, based on the random exploration of the solution

space completed with a memory component which enables the algorithms to learn

Chapter 2. Background information

18 2.1. Metaheuristic Optimisation

Evolutionary
programming

Evolution
strategies

Genetic
algorithms

Ant colony
optimisation

Tabu search

Evolution
inspired
methods

Other nature
inspired
methods

Logical search
algorithms

Simulated
Annealing

Guided
random
search

Calculus
based

techniques

Enumerative
techniques

Search
techniques

Figure 2.1: Family three of Optimisation approaches based on search technique.

the optimal search path from experience [202]. The algorithm is based on the nat-

ural selection process proposed by Darwin, whereby organisms evolve by rearrang-

ing genetic material to survive in environments confronting them (’Survival of the

fittest’). GA provide optimal or near optimal solutions for both constrained and un-

constrained optimisation problems, repeatedly modifying a population of individual

solutions. GA is part of the Evolutionary Algorithms, a classic example of heuristic

search algorithms.

GA can be divided into four main parts: definition of an appropriate structure

to represent the solution; determination of the fitness function; design of genetic

operators; and determination of probabilities controlling the genetic operators. A

classic GA can be described as follow:

1. Start with a randomly generated population of n l-bit chromosomes (candidates

solutions to a problem).

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

Chapter 2. Background information

2.2. Machine Learning 19

(a) Select a pair of parent chromosomes from the current population, the prob-

ability of selection being an increasing function of fitness. Selection is done

with replacement, meaning that the same chromosome can be selected more

than once to become a parent.

(b) With probability pc (the crossover probability or crossover rate), cross over

the pair at a randomly chosen point (chosen with uniform probability) to

form two offspring. If no crossover takes place, form two offspring that are

exact copies of their respective parents.

(c) Mutate the two offspring at each locus with probability pm (the mutation

probability or mutation rate), and place the resulting chromosomes in the

new population.

4. Replace the current population with the new population.

5. Go to step 2.

Each iteration of this process is called generation. The entire set of generations is

called a run. At the end of a run there are often one or more highly fit chromosomes

in the population. Since randomness plays a large role in each run, two runs with

different random-number seeds will generally produce different detailed behaviours.

Procedure summarised at the Figure 5.2 describes the basis for most applications

of GAs. There are a number of details to fill in, such as the size of the population and

the probabilities of crossover and mutation, and the success of the algorithm often

depends greatly on these details.

2.2 Machine Learning

Machine Learning (ML) is an interdisciplinary field that combines theories and tech-

niques from computer science, optimisation and statistics, and is sub-field of Artificial

Intelligence (AI) and a central part of Data Science (DS) [103, 194, 180].

In 1950, Turing asked, ”Can machines think?”, and since then, multiples defini-

tions have been proposed [214]. The first know formal definition of ML was presented

in 1959 [186]. The author presented ML as field of study that gives computers the

ability to learn without being explicitly programmed. The popular definition a com-

puter program is said to learn from experience E with respect to some class of tasks

T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with the experience E was proposed in [141]. ML has been also defined as

Chapter 2. Background information

20 2.2. Machine Learning

Start

Generate
population

Population

Fitness
evaluation

Stop?End

Select
individuals

Crossover

Mutation

Yes

 No

New
population

Figure 2.2: Flowchart for the Genetic Algorithm.

a discipline concerned with providing programs with the ability to learn and adapt

[95]. The term automated learning was used as part of another definition of ML

[194], where the author argues that in ML we wish to program computers so that

they can learn from input available to them, and also, that the term ML refers to the

automated detection of meaningful patterns in data. Jordan [103] proposes that ML

addresses the question of how to build computers that improve automatically through

experience, and extended the definition of ML to a discipline dealing with the devel-

opment of computer systems with the ability to automatically learn from experience;

and with the identification of the fundamental laws (statistical, computational, infor-

mation, theoretical) that govern all learning systems, including computers, humans,

and organisations. In [235], the authors suggested that a ML problem is referred to as

the problem of learning from experience with respect of some tasks and performance

Chapter 2. Background information

2.2. Machine Learning 21

measure, and said that ML depends on efficient learning techniques (algorithms), rich

and/or large data, and powerful computing environments.

Based on the definitions presented above, in this thesis we define ML as:

Definition 2.2.1. Machine Learning is an interdisciplinary discipline that focuses on

the implementation of computer software with capability to learn autonomously from

inputs available to them, and to generalise the knowledge in order to adapt to new

inputs.

The above definition (2.2.1) has five key elements:

1. Interdisciplinary discipline. ML combines theories and techniques from com-

puter science, optimisation and statistics.

2. Implementation of computer software. ML is based on the realisation of an

algorithms as a software through computer programming.

3. Capability to learn autonomously. ML aims with the implementation of algo-

rithms to give computer software the ability to learn from experience without

being explicitly programmed.

4. From available inputs. The ability to learn is directly related with the data

provided to the ML implementation.

5. Generalisation and adaptation. Generalisation and adaptation are related with

the ability of a ML implementation to learn from a sample of known data and

applied knowledge to make predictions in a future output variable given new

samples of unknown inputs.

In the recent years, both academics and companies have focused their attention

on the relationship between ML and Data Analytics and Big Data (see for example

[188, 99, 2, 235]). One of the main questions regarding ML is why not directly program

a computer to solve a problem manually, using the traditional programming paradigm

(see Figure 2.3). Two aspects have been identified as a key to decide when to use ML

rather than directly programme a computer with every rule, command and response:

problem complexity and the need for adaptivity [194].

Tasks performed by animals or humans, like driving, face or speech recognition,

image understanding, and also tasks beyond human capabilities (for example, analysis

of very large and complex data sets such as weather prediction; extracting medical

knowledge from medical archives; analysis of ’omics’ data, and web search engines),

Chapter 2. Background information

22 2.2. Machine Learning

Computer

Computer

Program Outputs

Program

Programmer

Inputs

Inputs

Outputs

Traditional Programming Paradigm

Machine Learning

Figure 2.3: Machine Learning and the Traditional Programming Paradigm. Machine
learning algorithms learn models from data, instead of formulating ’rules’ manually.

are two types of tasks too complex to be coded explicitly by humans. In all of those

examples, ML techniques perform well once exposed to sufficient training examples

[194].

The second aspect, adaptability, is related with the rigidity of programmed tools

that stay unchanged once written down and installed. ML tools are programmes that

adapt to their input data, and therefore are a solution to address tasks that change

over time, or from one user to another [194].

Artificial Intelligence (AI) is defined as ”the ability of a digital computer or

computer-controlled robot to perform tasks commonly associated with intelligent be-

ings” [39]. As noted, ML can be defined as part of AI. Both fields are related with

the extraction of knowledge from experience and with the identification of meaningful

patterns in complex data. These are characteristics that can be connected with hu-

man and animal intelligence [194]. Figure 2.4 presents the basic differences between

AI and ML. ML focuses on knowledge extraction using data from previous experi-

ences to complement human intelligence through the generalisation of learning. AI

tries to build automated imitation of intelligent behaviour.

In [4], Data Mining (DM) is defined as the application of ML to large databases.

In the past, an accepted DM definition was the analysis step as part of the ’Knowl-

edge Discovery in Databases’ (KDD). There are different approaches to discovering

Chapter 2. Background information

2.2. Machine Learning 23

Artificial
Intelligence

Machine Learning
algorithm

Intelligent
behaviour

Behaviour
automatically

imitated

Human
intelligence Insight to

complement
human

intelligence
Computer’s

strengths and
abilities

Figure 2.4: Machine Learning and Artificial Intelligence.

properties of data sets. Machine learning is one of them. Another one is simply

looking at the data sets using visualisation techniques or Topological data analysis.

2.2.1 Machine Learning Process

ML application are summarised as data pre-processing, learning, and evaluation (see

Figure 2.5) [235]. Before applying the ML models for the learning steps, in the data

pre-processing phase, the data must be converted into a form that can be used as

inputs to the learning step. At the learning phase, learning algorithms are choices and

the model parameters are tunes, ML models are then applied to the pre-processed data

to generate desired outputs. The final step of a ML application is the performance

evaluation of the learned models. The evaluation results may lead to adjusting the

parameters of chosen learning algorithms and/or selection different algorithms [235].

Figure 2.5 shows a framework for ML, where the component interacts with users,

domain, and system. Users may interact with ML by providing domain knowledge,

usability feedback, personal bias, and by leveraging learning outcomes to improve

decision making; domain can serve both as a source of knowledge to guide ML and

as the context of applying learning models; system architecture has impact on how

learning algorithms should run and how efficient it is to run them, and simultaneously

meeting ML needs may lead to a co-design of system architecture [235].

A cycle of four steps has been identified as part of a ML project [14]:

Chapter 2. Background information

24 2.2. Machine Learning

Figure 2.5: A framework of Machine Learning. Adapted from L. Zhou et al (2017)
[235].

• Acquisition. Collate the data from different sources.

• Prepare. Data cleaning and checking for quality before any processing can take

place.

• Process. Run machine tools (or machine learning routines).

• Report. Present the results.

2.2.2 A proposed new framework for Machine Learning ap-
plications

In this section, we propose a new process for ML applications. The definition of the

section 2.2 (see Figure 2.5), assumes that the ML application begins with a dataset

to train and evaluate the algorithms, and ends with the performance evaluation.

However, a successful machine learning application requires additional steps. Figure

2.6 summarises the proposed framework for ML applications. The framework is based

on five steps: Definition, data preparation, learn, evaluation and application.

1. Initiation step

• Understand domain. Before beginning a ML project we need domain

knowledge in order to ask the right question(s). Engagement with domain

experts is an important part of this step.

Chapter 2. Background information

2.2. Machine Learning 25

Understand
domain Select data Preprocess

data
Transform

data

Data preparation step

Select learning
algorithm

Adjust model
parameters

Collect data Attribute
selection

Training
model

Performance
evaluation

Learn step

11

1 2 3 4 5 6

7

8

91012

Apply dataPredict
output

13

Evaluate, clean
and report results

14

Obtain insight
from the analysis
(and visualise it)

Initiation step

Evaluation stepApplication step

Figure 2.6: A proposed new framework for Machine Learning applications.

• Question. The most important step in a ML application (like any data-

driven project) is the definition of the question, or a specific issue that

needs investigation.

• Select data. Based on the domain knowledge, the next step is to define what

information is essential for the analysis, what data sources are requested,

and what data is available. Once the data sources have been identified, we

need to exclude data unnecessary to address the question and/or domain

experts support. The next step is to identify what data sources are essential

for the analysis, and what data is available. At this stage, a record of

criteria for data exclusion and assumptions is recommended to facilitate

future analysis.

2. Data preparation step

• Extract data. The choice of methods for data extraction from the databases

will depend on the variables to be measured, the source or sources to be

used, and the resources available.

• Pre-process data. ML algorithms learn from data so it is critical that the

right data is used to solve the problem. Even if the right data is available,

it is important to make sure that it is in a useful scale, format and that even

Chapter 2. Background information

26 2.2. Machine Learning

meaningful features are included in the learning phase. Tabular data is the

most common way of representing data in ML or Data Mining applications.

This whole procedure is the most time consuming and difficult process and

is depicted in the Figure 2.7. Data pre-processing includes data munging

and conversion into tabular data. Data Munging or Data Wrangle is a term

used in Data Science, and is defined as the process of manual transforma-

tion of raw data into a usable format for more convenient consumption of

the data with the help of semi-automated tools.

This phase is an important step in every ML (or Data Science) project,

and sometimes is the most difficult and time consuming step. The level of

difficulty depends on the quality of data (inconsistent data types, missing

values, poor structure, outliers, etc.) and interaction with person delivering

data (domain).

Data munging can often amount to 70% of overall project time & budget.

In the practice, the first step of the data munging is get the data in a form

that we can work with, plot the data to understand what is happening,

and iterate between graphics and models to build a quantitative summary

of the data. Some of the activities that comprise data munging are:

It is very likely that the selected ML tools will influence the data pre-

processing to be performed.

• Select features. Deep knowledge of the problem domain is required to

select which features or attributes to use to create a predictive model.

Feature selection aims to reduce the number of attributes in the dataset,

selecting a subset of features that are most relevant to the predictive model.

There may be features that represent a complex concept that may be

more useful to a machine learning method when split into different parts

(decomposition), or there may be features that can be aggregated into a

single feature that would be more meaningful to the problem we are trying

to solve (aggregation).

There are three general classes of feature selection algorithms: filter meth-

ods, wrapper methods, and embedded methods.

3. Learn step. Learning (a correct or possible incorrect) function or rule for a

specific dataset is called inductive learning [180].

• Select learning algorithm.

Chapter 2. Background information

2.2. Machine Learning 27

Figure 2.7: Data pre-processing in Machine Learning.

• Adjust model parameters.

• Training model. A machine learning model sis an abstraction of the ques-

tion we are trying to answer or the outcome we want to predict.Models are

trained and evaluated from existing data. When training a model, known

data are used to adjust the model based on the data characteristics to get

the most accurate answer.

4. Test step.

5. Evaluation step.

• Evaluate performance. Once trained the model is evaluated using a ran-

domly selected data set to test and evaluate the model.

6. Application step

• Apply data to the question identified in step 1.

• Predict output.

• Evaluate, clean and report results.

• Obtain insight from the analysis (and visualise it). Here is when we really

add value because without a detailed analysis of results, the impact of a

ML project is limited. A good practice is the visualisation of results in a

way that can be easily interpreted for decision making.

Chapter 2. Background information

28 2.2. Machine Learning

2.2.3 Machine Learning algorithms grouped by learning style

ML can be classified based on its learning style; a popular classification is based

on three types of learning systems [180]: supervised learning; unsupervised learning;

and reinforcement. Other types have been also proposed: semi-supervised, and deep

learning [83, 234].

Below we present a description of each of the learning systems.

Unsupervised learning. Supervised learning is defined as a type of learning where

an agent learns patterns via the input even though no explicit feedback is supplied

[180]. One of the most common unsupervised learning task is the detection of poten-

tially useful clusters of input samples. In unsupervised learning the input data is not

labelled and does not have a known result, the goal is to uncover patterns or struc-

tures present in the input data. This may be to extract general rules, to organise data

by similarity, or to reduce redundancy. Unsupervised learning is useful in cases where

the aim is to discover implicit relationships in a given unlabelled dataset. Examples

problems are clustering, dimensionality reduction, and associate rule discovery [180].

Supervised learning. In supervised learning, the agent observes some example

input-output pairs and learns a function that maps from input to output. In this

case the output value is available directly from the agents percepts (after the fact);

the environment is the teacher [180]. In supervised learning the input data is called

training data and has a know label or output, the goal in supervised learning is to

learn a function that maps inputs to outputs. The ML model is trained in a process

that continues until the model achieves a desired level of accuracy on the training

data. Supervised learning is useful in cases where a property (label) is available for

a certain dataset (training set), but is missing and needs to be predicted for other

instances. Example problems are classification and regression.

Semi-supervised learning. Semi-supervised learning falls between supervised and

unsupervised learning, which utilises a small amount of labelled data (input-output

pairs) and a large amount of unlabelled to train a model [83]. The goal of semi-

supervised learning is similar to supervised one except that it learns from both la-

belled and unlabelled data. Example problems are classification and regression [180].

Semi-supervised learning makes use of labelled and unlabelled data to learn [234]. In

[234], the authors divided semi-supervised classification algorithms into three groups:

algorithms based on clustering hypothesis [210] as cited in [234], co-training algo-

rithms [17] as cited in [234], and algorithms based on the regularisation framework of

graphs [13] as cited in [234].

Chapter 2. Background information

2.2. Machine Learning 29

Reinforcement learning. In reinforcement learning, an agent learns from a series of

reinforcements - rewards or punishments, and it is up to the agent to decide which of

the actions prior to the reinforcement were most responsible for it [180]. The agent (or

learner) receives training information provided by the environment (external trainer)

in a form of a scalar reinforcement signal that constitutes a measure of how well the

system operates [118]. The agent is not told which actions to take, but rather must

discover which actions yield the best reward, by trying each action in turn [118].

In [190], the author defined reinforcement learning as learning to map situations to

actions so as to maximise a numerical reward, and indicated that without knowing

which actions to take, the learner must discover which actions yield the most reward

by trying them and compares the reinforcement learning algorithm with self tuning

regulator (STR) from an adaptive control [225]. The purpose of STR (also known as

auto-tuning system) is to control systems with unknown but constant parameters, or

slowly varying parameters [7]. The algorithm measures the states of the system as

outputs, estimate value functions, and output actions [190]. Reinforcement learning is

given feedback on its previous experiences but the feedback is rewards or punishments

associated with actions instead of desired output or explicit correction of sub-optimal

actions. It simulates the human learning based on trial and error. In [86], the reward

and punishment based learning are defined as concepts inspired by reinforcement

learning.

Deep learning. In [83], Deep learning (DL) is defined as a branch of neural net-

works, which simulates the multi-layer cognition of human brain to obtain high level

features and distributed data structure. DL is based on the idea of firstly using unsu-

pervised learning methods to pre-train the network layer by layer, and then making

the training output of lower level as the input for the upper layer, and finally adopting

supervised methods to fine-tune the parameters of the whole network [93, 16] as cited

in [83].

2.2.4 Supervised learning and classification problems

Supervised learning task can be defined as follows [180]:

Given a training set S = (x1, y1), (x1, y1), ..., (xm, ym) of m examples input-output

pairs, where each instance xi belongs to a domain X, and where each yi is generated

by an unknown function y = f(x). A hypothesis h is a function that approximates

the true function f . Learning is defined as a search through the space of possible

hypotheses for one that will perform well, even on new examples beyond the training

set. A test set of examples that are distinct from the training set is used to measure

Chapter 2. Background information

30 2.2. Machine Learning

Figure 2.8: The process of supervised Machine Learning. Adapted from [118].

the accuracy of a hypothesis [180]. Finally, the hypothesis generalises if it correctly

predicts the value of y for novel examples.

Classification is defined as the problem when the output y is one of a finite set

of values [180]. Boolean, binary or single-label classification is defined as the classi-

fication problem where the output y has only two values [180]. In [91], single-label

classification is defined as a problem where each training instance is associated with

only one class or label. In single-label classification, the task is to learn some target

function f : X → L that predicts the correct label for each new instance.

As noted, classification problems are part of the supervised learning, where a label

is available for training set but missing and needs for other instances.

Inductive ML is defined as the process of learning a set of rules from instances

(examples in a training set), or more generally speaking, creating a classifier that can

be used to generalise from new instances [118]. Figure 2.8 shows a process of applying

ML proposed by [118].

2.2.4.1 Multiclass classifiers

Multiclass classification or categorisation is defined as the problem of assign labels to

instances where the labels are drawn from a finite set of labels. A general approach

to solve this problem is to reduce the multiclass problem to a set of multiple binary

classification problems [40].

Using the definition of classification problem presented at the Section 2.2.4, a

multiclass classifier is a function H : X → Y that maps an instance x into an element

y of Y , where f : T → 1, 2, ..., n, with n ∈ N, and y1, y2, ..., yn (yj ∈ T, 1 ≤ j ≤ n).

Chapter 2. Background information

2.2. Machine Learning 31

Multiclass classifiers have been applied to a significant number of problems. In

[193], a single-label and a multiclass classifiers were used to estimate the thickeness of

melanoma before surgery, through the analysis of computational dermoscopic images.

2.2.4.2 Multilabel classifiers

Multilabel classification (MLC) is defined as the problem where each training instance

can be associated with more than one label [91]. The task is to learn some target

function f : X → 2L that predicts the correct set of labels (of unknown size) for

each new instance. Multilabel learning studies the problem where each example is

represented by a single instance while associated with a set of labels simultaneously

[233].

Existing methods for multilabel classification follow two main strategies: problem

transformation methods and algorithm adaptation methods [212] [233]. Zhang [233]

defined the problem transformation methods as a category of algorithms that tackle

multilabel learning problems by transforming it into other well-established learning

scenarios (e.g. single-label classification, label ranking, multiclass classification). Al-

gorithm adaptation methods are defined as a category of algorithms that tackle a

multilabel learning problem by adapting popular learning techniques (e.g. lazy learn-

ing techniques, decision tree techniques, kernel techniques, and information-theoretic

technique) to deal with multilabel data directly [233].

In [91], the authors defined implicit negativity as the assumption that each training

instance will have all the correct positive labels provided and that any label not listed

is negative; an adaptation of the backpropragation algorithm was proposed, as an

algorithm that does not assume implicit negativity.

Traditional single-label or multi-class classification problems can be regarded as

a degenerated version of multilabel classification if each example is confined to have

only one single label [233]. In [233], the authors proposed that the key challenge of

learning from multilabel data lies in the overwhelming size of output space because

the number of label set grows exponentially as the number of class label increases.

During the past decade, multilabel classification has attracted significant atten-

tion from machine learning and related communities and has been widely applied to

diverse problems [234]. Multilabel classification has been applied in many sectors, e.g.

in [106], MLC was used to classify land cover (physical material at the surface of the

earth). For content coding of psychotherapy transcripts [71], for nonintrusive electri-

cal monitoring inside residential buildings load monitoring [9], to label incompletely

labelled biomedical text data [113], to recognise surface materials from a photograph

Chapter 2. Background information

32 2.3. System Modelling and Simulation

[228], to identify small scale-incidents using information extracted from tweets [189],

to support automated checking of regulatory and contractual documents in construc-

tion [184], to predict doctor label for medical recommendations in the domain of 5G

communication [84], to classify power quality complex disturbances [130], gene expres-

sion analysis with small sample size [109], for automatic classification and prediction

of drug resistance in HIV patients [92], to predict adverse effects in local analgesia in

shoulder arthroscopy surgeries [171], to identify places and classify terrain in visual

mobile robot navigation [87], for functional genomics and text categorisation [140],

to detect and classify colon cancers based on slide histopathological images [229], for

prognosis of breast, lung and prostate cancer [185], and for automatic codification of

cancer information service chat transcripts [176].

2.3 System Modelling and Simulation

The Institute for Operations Research and the Management Sciences (INFORMS)

[207] defines Operational Research (or Operations Research) (OR) as the application

of scientific and mathematical methods to the study and analysis of problems involving

complex systems, while the Operational Research Society defines OR as the discipline

of applying advanced analytical methods to help make better decisions [208].

The use of Operational Research as a methodology to improve healthcare systems

has increased developed considerably over the years [25, 23]. Simulation, one of the

most commonly used Operational Research (OR) techniques, has been extensively

used in healthcare, mainly due its ability to deal with variability and uncertainty

[25, 23, 167, 143, 179, 63].

In this Thesis, system modelling and simulation is defined as the use of a mathe-

matical or logical simplified representation of a process or system as a basis to perform

’What-If’ analysis [25]. Figure 2.9 shows the process of problem solving using simu-

lation. The process begin with a real system to be evaluated; a simplified version of

the system is developed using modelling techniques; using this computerised simula-

tion model, the theoretical system is evaluated and different scenarios are simulated;

outputs from the simulation are then interpreted based on the real system; once the

solution has been translated to the real-system space, the final step is the implemen-

tation in the real system. A critical step in the modelling process is the validation of

both the conceptual and computerised model [61] [62].

Chapter 2. Background information

2.3. System Modelling and Simulation 33

Real system Simulation
model

Solution using
model

Solution in
real system

Modelling

Simulation

Interpretation

Implementation

Figure 2.9: Problem solving using simulation.

2.3.1 Classification of simulation models

Simulation models can be classified based on: time dimension (static - dynamic);

degree of certainty (deterministic - stochastic); and nature of change (continuous -

discrete). Figure 2.10 depicts these classification.

• Time dimension. A static simulation model is a representation of a system at

a particular point in time (i.e., time plays no role). Dynamic simulation model

is a representation of a system as it change over time.

• Degree of certainty. A stochastic simulation models is the representation of a

system containing at least one random variable as input (with certain proba-

bility). A deterministic simulation model is a representation of a system that

contain no random variables and no degree of randomness.

• Nature of change. Discrete simulation model represents a system where the

state variables change only at a discrete points of time. Continuous simulation

assumes that states variables change continuously over time.

Chapter 2. Background information

34 2.3. System Modelling and Simulation

Static
simulation Time dimension

Degree of certainty

Nature of change

Deterministic
simulation

Continuous
simulation

Dynamic
simulation

Stochastic
simulation

Discrete
simulation

Figure 2.10: Classification of simulation models.

2.3.2 Discrete Event Simulation

Discrete Event Simulation (DES) is one of the methodologies used in system mod-

elling and simulation, other types are System Dynamic, Agent Based simulation, Be-

havioural simulation, and Monte Carlo simulation [217, 59, 167]. Figure 2.11 shows

the relation between DES and other common modelling methodologies [25, 167].

DES can be defined as a stochastic OR technique, used to analyse specific processes

and use of resources, where the system can be modelled as a network of queues and

activities, with states changing at discrete points in time, and objects with individual

characteristics that define what happens within the simulation [177].

The key concepts of DES are entities, attributes, events, resources, queues, pro-

cesses, and time [107]. Entities (basic object for the simulation) are object that have

attributes, experience events, consume resources, and enter queues, over time; At-

tributes are features specific to each entity that allow it to carry information (e.g.,

age, sex, health status, past events, etc.). These attributes may change during the

simulation, and are used to determine the response of an entity to events in the sim-

ulation; An events comprises a specific change in the state of an entity or the system

at a specific point in time; Resources are objects that provide service to an entity.

Resource availability is typically associate to constrains in the system, and restricting

the flow of entities through the system; Queues are formed when an entity requires

a non available resource; A process allows an entity to execute a series of methods

in simulated time while other entities execute their own series of methods. Processes

Chapter 2. Background information

2.3. System Modelling and Simulation 35

Cognitive
modelling

Regression
analysis

Discrete
event

simulation

System
dynamics

Agent based
simulation

Process
mapping

Markov
models

Structural
equation
modelling

Mathematical
modelling

Qualitative
modelling Simulation

Modelling
methodology

Monte Carlo
simulation

Behavioural
simulation

Optimisation

Data
Envelopment
Analysis (DEA)

Soft System
Methods

(SSM)

Strategic Options
Development

Analysis (SODA)

Figure 2.11: Discrete Event Simulation and other modelling methodologies.

Chapter 2. Background information

36 2.3. System Modelling and Simulation

Figure 2.12: Stages of DES modelling process.

are associated to resources consumption; Finally, a simulation clock (initiated at the

start of the model run) is crucial to keep track of current simulation time.

A DES can be described using a series of logical steps. Accepted stages of the

modelling process are: structural development, parameter estimation, model imple-

mentation, model analysis, and representation and reporting [107].

Figure 2.12 shows the different stages of the DES process, including main activities

and outcomes. This definition assumes that a DES implementation starts by defining

the problem and system to be represented, including the components described above;

Next step is the development of an abstract and simplified model of the system;

In the conceptual modelling, both the organization of model-components and the

identification of behaviour and system control is performed [69]; The task of model

implementation involves programming the conceptual modelling and the population

of the model with input parameters. In this definition, the parameter estimation

assumes that all the data are available, or that expert elicited data can be applied to

complete missing information; In the analysis step, the simulation model is used to

perform ’What-If’ analysis; Final step is the reporting of both the simulation model,

and results and findings.

Nevertheless, many simulation projects are impeded to be properly evaluated and

implemented by lack of suitable data [21, 200, 24]. We recognise the value of infor-

mation and data, and its impact on application-oriented DES projects supporting

decision making process. For this reason, we proposed additional stages to the DES

modelling process. Figure 2.13 includes activities and outcomes related with data

collection, preprocessing, and modelling. In the next section, we will describe this

steps as part of an Social Network Analysis.

Chapter 2. Background information

2.4. Data Analytics 37

Figure 2.13: Proposed additional steps in the DES process.

2.4 Data Analytics

This section presents a review of data analytics and a review of Social Network Anal-

ysis from the data-analytic point of view.

2.4.1 Data Science and analytics

The concept of data was defined by Gould ([81] as cited in [150]) as a representation of

facts or ideas in a formalised manner capable of being communicated or manipulated

by some process. The term Data Science was coined by Cleveland in 2001 [36] and

argued that Data Science is generally involving the mixture of statistics and large-

scale computing. Since then many definitions have been presented. Naur [150], for

example, defined Data Science as the science of dealing with data, once they have

been established, while the relation of data to what they relation of data to what they

represent is delegated to other fields and sciences. In [34] the term Data Science is

defined as a fusion of computer science and statistics. The author suggested that

Chapter 2. Background information

38 2.4. Data Analytics

from the statistics research point of view, both statistics and data science have the

same objectives, but data science focuses more on the volume and the variety of

data. While from the perspective of computer science research, data science is more

practical.

The relationship between Data Science and Statistics has motivated a big aca-

demic debate [27, 45, 80, 231, 53]. In 2015, as part of the John Turkey 100th birth-

day celebration, Donoho [50] presented the paper ’50 years of Data Science’, relating

the origin of Data Science with the Tukey’s work [213], where the author identified

(50 years ago) four major influences on data analysis: formal theories of statistics,

developments in computers, increasing data availability, and the emphasis on quantifi-

cation across different disciplines. Donoho argued that the current popularity of Data

Science is motived by commercial interests rather than intellectual developments, and

concluded that Data Science is, in fact, an ”enlargement of academic statistics and

machine learning”.

The connection between Data Science and Operational Research has also gener-

ated academic discussion (see [222, 178]). In [127], the author presents the results of a

INFORMS members survey, where the 93% of the respondents indicated a relationship

between Operational Research and Data Analytics, and identified three main points

of view: Data Analytics is a subset of Operational Research, Operational Research is

a subset of Data Analytics, and Advanced Analytics is the intersection between the

two fields, with similar results in the survey (29%, 30%, and 28%, respectively). A

sign of the close relationship between Operational Research and Data Science are the

recently changes in INFORMS and The OR Society, the two largest societies in the

field of Operational Research. INFORMS changed from The Institute for Operations

Research and the Management Sciences to The Institute for Operations Research,

Management Sciences, and Analytics, while The OR Society is defined as The OR

Society - Operational Research, at the heart of analytics in its website.

2.4.2 Social Network Analysis (SNA)

Social Network Analysis (SNA) is becoming an important tool for researchers and

managers. This section presents an overview of the basic concepts of SNA in data

analysis including SNA metrics and performances.

2.4.2.1 Social Network Analysis

Network studies is a topic that has gained increasing importance in recent years

[160, 209] . In [134], Social Network is defined as a set of socially relevant nodes

Chapter 2. Background information

2.4. Data Analytics 39

connected by one or more relations. Social Networks are formally defined as a set of

nodes (or network members) that are tied by one or more types of relations [219].

Nodes, or network members (commonly persons or organisations, but in principle

any units that can be connected to other units can be studied as nodes, e.g. groups,

subunits of organisations, or more macro-level human systems [42]), are the basic

units in a social network.

SNA is an interdisciplinary technique developed under many influences, the most

important coming from mathematics and computer science [160, 85]. The study

of SNA started from around 1900, and originating mostly in the research areas of

sociology [209]. During this period, the studies of SNA focused on small groups and

small social networks. However, computer science have become very important for

SNA and the field itself is moving from sociology to computer science [192].

SNA has been described as a perspective, paradigm, or a strategy for investi-

gating social structures, rather than a formal theory or a methodology [134, 160].

SNA takes as its starting point the premise that social life is created primarily and

most importantly by relations and the patterns formed by these relations [134]. The

institutionalisation of SNA began with the foundation in 1978 of the International

Network for Social Network Analysis (INSNA) [160]. In 1988, one of the earliest texts

dealing exclusively with SNA was published [112].

Because SNA consider the networks to be the primary building blocks of the social

world, they not only collect unique types of data, but they begin their analyses from

a fundamentally different perspective than that adopted by researchers drawing on

individualist or attribute-based perspectives [134]. In SNA, the relationships between

actors become the first priority, and individual properties are only secondary. In the

traditional individualistic social theory and data analysis, properties of actors are

the prime concern, and individual actors are considered to be making choices without

taking the behaviour of other into consideration [160]. In [134], the author argued that

network explanations do not assume that environments, attributes or circumstances

affect actors independently, do not assume the existence of uniformly cohesive and

discretely bounded groups, and relations themselves are often analysed in the context

of other relations.

Up to now there has been no commonly accepted definition for the term Social

Network Analysis. It is just in the last few years that some researchers in the field

tried to propose a definition. In [170], SNA was described as the contextualisation

of social structures as a network with ties connecting members and channelling re-

sources, focuses on the characteristics of ties rather than on the characteristics of the

Chapter 2. Background information

40 2.4. Data Analytics

individual members, and the author suggested that communities are views as ’personal

communities’, i.e., as networks of individual relations that people foster, maintain,

and use in the course of their daily lives.

In this thesis, we adopt the definition presented in [191]:

Definition 2.4.1. Social Network Analysis conceptualises individuals or groups as

’points’ and their relations to each other as ’lines’. It is concerned with the patterns

formed by the points and lines and involves exploring these patterns, mathematically

or visually, in order to assess their effects on the individuals and organisations that

are the members of the ’networks’ formed by the intersecting lines that connect them.

It therefore takes the metaphorical idea of interaction as forming a network of con-

nections and gives this idea a more formal representation ir order to model structures

of social relations. Treating a social structure as a network is the cornerstone of SNA.

2.4.2.2 Relation between Social Network Analysis and other fields

From the sociology point of view, sociometrics can be described as the origin of SNA,

with two main schools: Harvard School (W. Lloyd Warner), and the Manchester

anthropological school [160].

From the Computer Science point of view, the origins of SNA are related with

graph theory (study of graphs, which are mathematical structures used to model

pairwise relations between objects). The paper written by Euler on the Seven Bridges

of Königsberg and published in 1741 is regarded as the first paper in the history

of graph theory [57]. A graph is made up of vertices, nodes, or points where are

connected by edges, arcs, or lines [209].

The first book in networks was published in 1936 by D. König [111], since then,

Networks have been used for modelling different systems of the real world, mainly us-

ing the concepts of complex networks (small-world networks and scale-free networks),

where nodes represent the different constituents of the system and edges depict the

interactions between them [19]. Many of this systems (including transport networks,

communication networks, biochemical networks, social networks, infraestructure net-

works, and some others) are know to have common characteristics in their behaviour

and structure [33].

2.4.2.3 Social Network Analysis process

Despite the many types of analysis that can be performed as part of a SNA, there

is a common set of key steps including the identification of goals of the analysis and

Chapter 2. Background information

2.4. Data Analytics 41

Figure 2.14: Stages of Social Network Analysis process

research questions, gathering data, and visualising and analysing the data. Figure

2.14 shows the stages in a Social Network Analysis process.

1. First step in a SNA process is to identify the problem and social network to

focus on, developing an understanding of the application domain. SNA can be

used to accomplish a variety of high level goals, each of which includes a large

number of potential subgoals and research questions, while these questions vary

considerably, they all focus on understanding social structures and how those

influence outcomes of interest.

2. Once the question and social network are identified, next step is to decide what

data to use. Table 2.1 summarises main social network data sources. Data

source that require more effort typically allow for more flexibility in the specific

types of data that are collected.

3. After that, network members must be defined. Defining which members to

include in a network analysis often poses an early challenge [134]. Three ap-

proaches to addressing this problem are:

• a position-based approach those actors who are members of an organisation

or hold particular formally defined positions to be network members and

all others would be excluded.

• an event based approach to defining the boundaries of network looks at

who had participated in key events believed to define the population.

• a relation-based approach begins with a small set of nodes deemed to be

within the population of interest and then expands to include other sharing

particular types of relations with those seed nodes as well as with any nodes

previously added.

Chapter 2. Background information

42 2.4. Data Analytics

4. After identified network members, the next step is to select the type of network,

define what an edge will represent. These could include collaborations, friend-

ships, citations, resource flows, information flows, emails, or any other possible

connection between these particular units [219]. Relations between individuals

can be measured as directed or indirected and as binary or valued [134].

5. Once the networks and relations are defined, the next step is te data collection.

Depending on the specific data needs, this process may take considerable effort.

Network data can be collected through observation, from archives and historical

material, from records from electronic communication, etc. [134].

6. Following the data collection, a data pre-process (data munging or data wran-

gling in the data science community) may be required. As will be discussed

trough this Thesis, the complexity of this process is usually underestimated in

many data driven applications, and depending on the context and data, can be

the most time and resources consuming part of the project [84] [55].

7. With the preprocessed data, the next stage is to visualise the network using

an appropriate tool. SNA requires the use of specialised software designed to

compute network metrics and visualise network graphs. Examples of software

are: Gephi, NetMiner, NodeXL, Pajek, R, Socioviz, etc.). For more details see

[187].

8. After data visualisation, an analysis of network, nodes and edges measures and

statistics analysis is required. The data are used to calculate measures of the

properties of network positions, nodes, edges, clusters, and networks as a whole.

Is in this stage when central nodes and communities are identified. A summary

of the main network metrics in SNA is presented in the Section 2.4.2.4.

9. The final step is the validation of findings, design of a strategy to improve

network outcomes, and report the SNA outcomes.

2.4.2.4 Social Network Analysis metrics

SNA metrics are used to evaluate and compare networks and nodes. SNA metrics

can be distinguished into those which evaluate the entire network (aggregate network

metrics) and those that only assess a specific node (Node specific metrics).

Aggregate network metrics are a set of metrics used to characterise the net-

work as a whole. This allows to compare different networks, or the development of a

Chapter 2. Background information

2.4. Data Analytics 43

Table 2.1: Main social network data sources

Data source Comments Effort
level

Raw data from CRM
system

Extract raw data from a customer relation-
ship management (CRM) system.

Medium-
high

Phone calls records Inferring a network from a list of calls. High
Network survey Asking people to manually characterise their

relationships with other people (e.g., ”list (or
select) the people you collaborate the most”).
These can be administered via paper or, via
specialised online survey tools.

High

Social network Web
sites

Extract data from social Web sites such Face-
book, Twitter, and Linkedin. Application
programming interfaces (APIs), import wiz-
ards, plug-ins, or stand-alone network data
capture tools.

Medium

Email datasets Inferring a network from a list of emails. Easy
Corporate
records/registers

Including stakeholders mailing lists, com-
pany accounting records, statutory company
registers and records (e.g., register of mem-
bers, directors, shareholders).

Medium-
high

Event attendance Register of attendances to events (e.g., an-
nual stakeholders events, workshops, semi-
nars).

Medium

Co-citations/co-
authorship

Register of co-citations or co-authorship
(e.g., academic papers, conferences pa-
pers/posters, reports).

Medium-
high

network over time (when analysing dynamic networks). Visualising entire networks

is often useful to identify structures such as the core or the periphery of a network,

network clusters, and other patterns. However, many graphs are too large to mean-

ingfully visualise and some properties of a graph are difficult to visualise (e.g., the

longest geodesic distance) making aggregate network metrics essential.

Using concepts from complex networks (or graph) theory, a network can be rep-

resented as graph, a mathematical object G = (V,E) composed by a set of nodes

or vertices V = {v1, . . . , vn} that are pairwise joined by links or edges belonging to

the set E = {e1, . . . , em}, with E ⊆ V × V . The term complex network, or simply

network, often refers to real systems while the term graph is generally considered as

the mathematical representation of a network [33].

The adjacent matrix A(G) = (aij) of a graph G = (V,E) determines the graph

Chapter 2. Background information

44 2.4. Data Analytics

completely and is defined by the conditions:

aij =

{
1 if {i, j} ∈ E
0 if {i, j} �∈ E

(2.4)

Assuming there are not self-loops, ∀i ∈ {1, . . . , n} we get that aii = 0.

A walk of length k in G is a set of nodes {v1, v2, . . . , vk, vk+1} such that for all

1 � j � k, there is an edge between vij and vij+1
. A path is a walk where vi1 = vik+1

.

A cycle is a path with an edge between the first and last node, i.e., a cycle is a closed

path. A triangle in G is a cycle of length 3.

The geodesic distance d(vi, vj) between two nodes is the length of the shortest

path connecting vi and vj.

The diameter of a graph G = (V,E) is defined as:

diam(G) = max(vi,vj)∈V d(vi, vj) (2.5)

The link density of a network takes values within the interval [0, 1], where Δ	 1

represents a sparse network, Δ � 1 meansG is dense, and Δ = 1 represents a complete

or fully connected network of n nodes.

Another popular concept in network topology is the average path length (or

characteristic path length), defined as:

lG =
1

n(n− 1)

n∑
j=1

n∑
k=1,k �=j

d(vj, vk) =
1

n(n− 1)

∑
j �=k∈V

d(vj, vk) (2.6)

Average path length can be used to represent the performance of a network (the

bigger is lG the smaller is its performance), and also to represent the concept of

network’s vulnerability (the bigger is lG the higher vulnerability in a network). In the

context of SNA, vulnerability can be described as the quantification of the network

security and stability under the effects of removing a finite number of edges and/or

nodes.

Complex graphs arising in real-world applications tend to be highly irregular

and exhibit a non-trivial topology - in particular, they are far from being either

regular, or completely random. Complex networks are very often:

• Scale-free, meaning that their degree distribution tends to follow a power law :

p(k) = number of nodes of degree k ≈ c · k−γ, γ > 0. Frequently, 2 ≤ γ ≤ 3.

This implies sparsity but also the existence of several highly connected nodes

(hubs).

Chapter 2. Background information

2.4. Data Analytics 45

• Small-world, meaning that the diameter grows very slowly with the number of

N of nodes, e.g., diam(G) = O(logN), N →∞

• Highly clustered, meaning they contain a very large proportion of triangles (un-

like random graphs).

Node Specific metrics: If the analysis is focuses on characterise how important

an individual is within a particular social network, a node specific metric must be

used. There are many different ways that a individual may be important, for ex-

ample, a individual may be popular, another may be connected to popular people

despite having few connections, etc. A set of quantitative measures called centrality

metrics are defined as part of the SNA, this measures represent the different types of

importance in a network.

Degree Centrality CD is a measure of the number of edges (e) connected to

a node (v). For directed networks, the number of incoming links is the in-degree

centrality, while the number of outgoing links is the out-degree centrality. Using graph

theoretical notation, the degree of a node vj can be represented by the expression:

CD(vj) =
n∑

i=1

e(vi, vj) (2.7)

where e(vi, vj) = 1 if and only if vi and vj are connected by a line, 0 otherwise.

A node with a high degree can be considered as being well connected and a node

with a relative low degree can be considered weakly connected. In a social network,

CD can be interpreted as a measure of popularity (e.g., the number of friends one

has) [20]. Using a email network as example, in-degree may measure the number of

messages one receives, while out-degree may measure the number of messages sent.

The average degree of a network, calculated over all the nodes of G can be

represented as follow:

〈κ〉 = 1

n

n∑
i=1

CD(vi) (2.8)

Given a network G = (V,E) where V = {1, . . . , n} and E = {e1, . . . , em}, the
number of edges of G is at most n(n−1)

2
.

The link density of G represents the amount of interconnectivity in a network

and is defined by the equation 2.9:

Δ =
2m

n(n− 1)
(2.9)

Chapter 2. Background information

46 2.4. Data Analytics

The clustering coefficient, when applied to a single node, is a measure of how

complete the neighbourhood of a node is. When applied to an entire network, it is

the average clustering over all of the nodes in the network [124] [220].

This metric measures how close the neighbourhood of a specific node vi is to a

complete subgraph, where the neighbourhood of a node is defined as the set of nodes

that are immediately adjacent to node vi.

The local clustering coefficient Ci (defined in [220]) for a node vi is the proportion

of edges between the nodes within its neighbourhood divided by the number of edges

that could possibly exist between them, i.e., the number of triangles in which node

vi participates normalised by the maximum possible number of such triangles, where

ti denotes the number of triangles around vi. Ci is defined as:

Ci =
2ti

CD(vi)(CD(vi)− 1)
. (2.10)

where ti is defined as:

ti = {(i, k) ∈ E | (i, j) ∈ E ∧ (i, k) ∈ E} (2.11)

We can refer to the clustering coefficient C(G) of a graph G as the average clus-

tering coefficient of all nodes in the network:

C(G) =
1

n

n∑
i=1

Ci (2.12)

By definition 0 < Ci � 1 and 0 < C(G) � 1.

Eigenvector centrality is a concept part of the spectral graph theory [35, 115],

introduced to find out the critical and most influential nodes in a network [20]. It as-

signs relative scores to all nodes in the network based on the concept that connections

to high scoring nodes contribute more to the score of the node than equal connections

to low-scoring nodes. Eigenvector centrality can be defined as a measure of a node’s

importance that considers the importance of the node’s neighbours, where impor-

tance is calculated as a weighted sum of direct connections and indirect connections

of every length, so eigenvector centrality is defined in a circular manner. In the SNA

context, an important node (or person) is characterised by its connectivity to other

important nodes (or people). A node with a high centrality value is a well-connected

node and has a dominant influence on the surrounding network.

Google utilises a variant of the eigenvector centrality (PageRank method) as a

global ranking of all web pages, condensing every page on the World Wide Web into

Chapter 2. Background information

2.4. Data Analytics 47

a single number based on their location in the Web’s graph structure. PageRank is

one of the algorithms (and was the first) used by the company to order search results

so that more important and central Web pages are given preference.

Betweenness Centrality is another approach to the study of network’s central-

ity. This is based on the idea that critical nodes and edges stand between others,

playing the role of an intermediary in the interactions or in the communications. A

node in a communication network is central to the extent that it falls on the shortest

path between pairs of other nodes. Betweenness centrality quantifies the number of

occurrences of the node as a bridge along the shortest path between two other nodes.

The number of shortest paths between all other nodes that a particular node is on -

i.e., how often a node lies ’between’ other nodes [66]. The node betweenness centrality

B(G) of a network G is [66]:

B(G) =

(
1

n

∑
i∈V

bi

)
. (2.13)

where bi is the betweenness of the node i ∈ V given by:

bi =
1

n(n− 1)

∑
k,j∈Vi �=j

nkj(i)

nkj

. (2.14)

where nkj is the number of different geodesics that join k and j, and nkj(i) is the

number of geodesics that join k and j passing through i.

Closeness centrality (or closeness) [182, 10, 67] is a measure of the degree with

which a node is nearer (closeness) to the rest of the nodes on a network, either directly

of indirectly. Closeness reflects the ability of an individual to access information

through the network members. Normalised closeness centrality (or closeness) of a

node is defined as the average length of the shortest distance (geodesic distance)

between the node and all other nodes in the network. Thus the more central a node

is, the closer it is to all other nodes. Closeness centrality C(G) can be represented

mathematically as:

C(G) =
1∑

i d(vi, vj)
. (2.15)

where d(vi, vj) is the distance between nodes vi and vj.

Harmonic closeness centrality H(G) is used when a graph is not strongly

connected. H(G) is calculated using the sum of reciprocal of distances, instead of the

reciprocal of the sum of distances, with the convention 1
∞ = 0.

Chapter 2. Background information

48 2.5. Conclusions

H(G) =
∑
vi �=vj

1

d(vi, vj)
. (2.16)

Edges can also carry weights to measure the capacity or the intensity of the

relationship between two nodes. Examples of this situations are the existence of strong

and weak ties in social networks. These networks are better described as weighted

networks, i.e., networks in which each edge has associated a value measuring the

strength of the relationship, and in these cases a so called weighted matrix W = (wij)

is defined, whose entry wij is the weight of the edge from node i to j. A weighted

(directed or undirected) network is defined as a triplet G = (V,E,W), where (V,E)

is a (directed or indirected) network and W = (wij) is the weights matrix of G.

2.5 Conclusions

This chapter has provided a review of historical and current literature relating to the

main data-driven methodologies analysed in the Thesis. Differences and similarities

between Metaheuristics, Machine Learning, Discrete Event Simulation, and Social

Network Analysis were presented.

A key component in all the different approaches is the importance of the correct

definition of the problem to focus on. Another important finding of the review is

the important role of the data selection, extraction, pre-processing, and conversion in

application-oriented projects.

2.6 Chapter Summary

Section 2.1 introduced the concepts of Metaheuristic Optimisation, Section 2.1.1 pre-

sented the fundamentals of optimisation and Combinatorial Optimisation. Section

2.1.2 focused on different approaches for solving optimisation problems, and intro-

duced the concepts of computational complexity theory. Section 2.1.3 presented the

history of metaheuristics and discussed different definitions. Section 2.1.4 summarised

different optimisation approaches, and described Genetic Algorithms.

Section 2.2 introduced Machine Learning (ML), discussed different definitions

found in the literature, and discussed the difference between ML and the traditional

programming paradigm. Section 2.2.1 described the ML process. In Section 2.2.2 we

proposed a new framework for ML applications. Section 2.2.3 presented a classifica-

tion of ML algorithms based on learning style. Section 2.2.4 introduced supervised

learning and classification problem, including Multiclass and Multilabel classifiers.

Chapter 2. Background information

2.6. Chapter Summary 49

Section 2.3 reviewed System Modelling and Simulation in the context of Oper-

ational Research (OR). Section 2.3.1 introduced problem solving using simulation

and presented a classification of simulation models. Section 2.3.2 described Discrete

Event Simulation (DES), including the key concepts and components of a DES, and

described the DES process. In this section we discussed the impact of the data in the

DES project, and we proposed additional stages to the ’standard’ DES process.

Section 2.4 introduced the concepts of Data Analytics and Data Science. Section

2.4.2 focussed on Social Network Analysis (SNA). Section 2.4.2.3 described the SNA

process. Section 2.4.2.4 presents the most popular metrics used in the analysis of

Social Networks, linking SNA with the graph theory.

Metaheuristic Optimisation, with a focus on Genetic Algorithms; a review of

Machine Leaning; Modelling and Simulation, with particular attention to Discrete

Event Simulation; and finally a review of Data Analytics, focussing on SNA.

Chapter 2. Background information

	REGL_COVER
	02. I_BACKGROUND INFORMATION

