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Abstract

A method for online decorrelation of chemical sensor signals from the effects of environmen-

tal humidity and temperature variations is proposed. The goal is to improve the accuracy

of electronic nose measurements for continuous monitoring by processing data from simul-

taneous readings of environmental humidity and temperature. The electronic nose setup

built for this study included eight metal-oxide sensors, temperature and humidity sensors

with a wireless communication link to external computer. This wireless electronic nose was

used to monitor air for two years in the residence of one of the authors and it collected data

continuously during 537 days with a sampling rate of 1 samples per second. To estimate
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the effects of variations in air humidity and temperature on the chemical sensors signals,

we used a standard energy band model for an n-type metal-oxide (MOX) gas sensor. The

main assumption of the model is that variations in sensor conductivity can be expressed as a

nonlinear function of changes in the semiconductor energy bands in the presence of external

humidity and temperature variations. Fitting this model to the collected data, we confirmed

that the most statistically significant factors are humidity changes and correlated changes of

temperature and humidity. This simple model achieves excellent accuracy with a coefficient

of determination R2 close to 1. To show how the humidity-temperature correction model

works for gas discrimination, we constructed a model for online discrimination among ba-

nana, wine and baseline response. This shows that pattern recognition algorithms improve

performance and reliability by including the filtered signal of the chemical sensors.

Keywords: electronic nose, chemical sensors, humidity, temperature, decorrelation,

wireless e-nose, MOX sensors, energy band model, home monitoring
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1. Introduction1

Conductometric chemical sensors are known to be very sensitive to humidity levels in2

the environment [1–11]. This cross-sensitivity challenges the tasks of identification and3

quantification of volatiles in uncontrolled scenarios. For example, electronic noses can be4

used for human monitoring purposes [12–17]. In fact, they have been successfully used to5

quantify the number of people working in a space-craft simulator [18]. In this case, it is likely6

that the primary signal used by the algorithm to estimate the number of people present at7

some given time is the humidity level in the chamber. If we filter the sensor responses by8

the humidity and temperature changes, a clearer chemical signature of the chamber can be9

obtained, and this can facilitate more complex monitoring tasks like identifying individuals10

[19]. A possible solution to this sensitivity problem is the design of a special sensing chamber11

that controls humidity and delivers the gas to the sensors under predefined conditions [20–12

22, 18, 8]. Such preconditioning chambers are effective for signal improvement, but their use13

increases the costs of electronic nose design for applications in continuous monitoring of the14

environment [14]. A different approach is to build a model that predicts the changes in the15

sensor conductance as a function of humidity and temperature variations [5, 8, 23, 24].16

The prevailing phenomenological model of sensor sensitivity is that the ratio of the sen-17

sor resistance depends on a power law of the gas concentration [25]. The model provides18

accurate predictions when the gas is known and under controlled conditions. However, it19

is rendered inaccurate with changes in the environment. Correction methods based on ar-20

tificial neural networks [8] using present and past values of the input features are proven21

to be successful despite lacking an explanation of the underlying processes. Fundamental22

models, on the other hand, can capture the dynamical changes of resistance under humidity23

variations accurately [23]. In these models, the number of parameters is not large, but the24

model parameters depend on the presented gas to the sensors. Therefore, in continuous25

monitoring systems, where there can be a complex mixture of gases present in the air, it is26

indeed challenging to make proper corrections on the sensor readings based on humidity and27

temperature variations.28

3



In this work, we propose an online methodology to subtract the changes driven by humid-29

ity and temperature from the MOX sensor responses, and demonstrate that this procedure30

enhances the performance of pattern recognition algorithms in discriminating different chem-31

ical signatures. We first develop a model based on the energy bands of n-type semiconductors32

that is suitable for low-power micro-controllers (Texas Instruments MSP430F247). We then33

make use of the predictions of this model to subtract changes expected to be due to humidity34

and temperature variation. Using a wireless electronic nose composed of 8 MOX sensors,35

we collected 537 days of data in the residence of one of the authors and showed that our36

model is capable of predicting all MOX sensors with a coefficient of determination R2 larger37

than 0.9. Because the electronic nose was subject to several unpredictable conditions (house38

cleaning, wireless connectivity issues, etc), this data set represents a wide variety of events39

present in home monitoring scenarios. To evaluate the impact to online discrimination of40

volatiles identities, we created a small data set consisting of exposing the electronic nose41

to two distinct stimuli: wine and banana. We show that the discrimination performance is42

significantly enhanced using the decorrelated data combined with the raw time series. This43

is a crucial task for any electronic nose system if one wants to characterize or detect events44

based on their chemical signatures in the presence of varying environmental conditions.45

2. Example of sensors correlation with humidity and temperature46

In Fig. 1, we show a representative example of the humidity problem using chemical47

sensors for continuous monitoring purposes. The electronic nose in our setup is composed of48

8 metal oxide (MOX) sensors, along with temperature and humidity sensors. Such platform49

was previously used in our wind tunnel studies to identify 10 gases at different locations [26].50

As a result of this previous investigation, we know that we can discriminate between gases51

accurately, and estimate gas concentrations in the ppm range [27]. The time series shown52

in Fig. 1 were obtained in October 2014 in a regular working day, in the residence of one of53

the authors.54

The top panel shows the humidity levels throughout a complete day, where the x-axis55

indicates the hour of the day. For example, the first rise in humidity at about 5:30 AM56
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Figure 1: Illustrative example of recording during one day using the wireless electronic nose composed of 8
MOX sensors, including a humidity and temperature sensor. The first panel presents the humidity values,
the second panel is the external temperature, and then resistance values for 4 different MOX sensors in the
board.

corresponds to the morning shower. The sudden drop in humidity at about 6:30 AM indicates57

opening the bathroom window, and the changes observed at 5 PM are associated with the58

moment at which the family was returning home and the door to the backyard was being59

opened. The second panel presents the temperature of the electronic nose location that we60

denote by TE to differentiate it from the temperature of the sensor heater, T . This residence61

did not have any air conditioning system or heater operating during this period.62

It is clear from this graph that the environmental changes in humidity and temperature63

are often correlated. The measured resistance values of the MOX sensors are presented in the64
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Sensor type Number of units Target gases
TGS2611 1 Methane
TGS2612 1 Methane, Propane, Butane
TGS2610 1 Propane
TGS2600 1 Hydrogen, Carbon Monoxide
TGS2602 2 Ammonia, H2S, Volatile Organic Compounds (VOC)
TGS2620 2 Carbon Monoxide, combustible gases, VOC

Table 1: Sensor devices selected for the wireless electronic nose (provided by Figaro Inc.)

four bottom panels. Although the sensor board is made of 8 MOX sensors, here we present65

recordings of only 4 of them because the remaining sensors are highly correlated with those66

shown. Changes in the sensors resistance are strongly affected by changes in humidity and67

temperature, as expected from the extensive literature on the topic [1–11]. Nevertheless, the68

whole data set also includes examples where MOX sensor changes cannot be explained only69

in terms of variations in humidity and temperature as there also exist chemical variations in70

the environment that have effects on sensors’ responses. As exposed before, our goal is to71

find a way to decorrelate the MOX sensors from humidity and temperature, and show that72

this improves pattern recognition tasks such as discrimination of gas identity.73

3. Design of the wireless electronic nose74

In this section, we describe the electronic nose designed for home monitoring purposes.75

The sensor array is based on eight metal oxide gas sensors provided by Figaro Inc. The76

sensors are based on six different sensitive surfaces, which are selected to enhance the sys-77

tem selectivity and sensitivity. Table 1 shows the selected sensing elements along with the78

corresponding target compounds. In order to control the variability between the sensing79

elements and increase the flexibility of the sensing platform, the operating temperature of80

the sensors can be adjusted by applying a voltage to the built-in, independently reachable81

heating element available in each sensor. The humidity and temperature sensors are inte-82

grated in the board using the Sensirion SHT75. The device is very similar to the M-Pod [24],83

except that ours is directly powered by any electrical outlet to record continuously over long84

periods of time.85
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Figure 2: The electronic nose made of the sensor board (right) and a wireless communication board.

The sensor array is integrated with a customized board that includes a microprocessor86

MSP430F247 (Texas Instruments Inc.). In Fig. 2 we show the operating electronic nose. The87

microcontroller was programmed to perform the following actions: i) Continuous data collec-88

tion from the eight chemical sensors through a 12-bit resolution analog-to-digital converter89

(ADC) device at a sampling rate of 100 Hz; ii) Control of the sensor heater temperature by90

means of 10 ms period and 6 V amplitude Pulse-Width-Modulated (PWM) driving signals;91

iii) A two-way communication with another device to transmit the acquired data from the92

sensors and control the voltage in the sensors’ heaters. The sensor board provides serial data93

communication to another device via either a USB and/or a 4-pin connector (Tx, Rx, Gnd,94

Vcc).95

A wireless communication module acts as a bridge between the MSP430F247 microcon-96

troller and the network. The communication with the MSP430F247 microcontroller is done97

via the UART port, whereas the communication with the network is performed wirelessly.98

The board is based on a WiFly RN-131G radio module included in a RN-134 SuRF board99

(Roving Networks Inc). The WiFly module incorporates a 2.4GHz radio, processor, full100

TCP/IP stack, real-time clock, FTP, DHCP, DNS, and web server.101

The module can be accessed via a RS-232 serial port (9600 default baud rate) or a 802.11102

wireless network so that its configuration can be modified. The wireless communication103
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module is configured such that it accepts UDP and TCP connections, the baud rate of104

the microprocessor is set to 115200 so that it can exchange data with the MSP430F247105

microcontroller, and working with an external 4” reverse polarity antenna to increase the106

power of the transmission.107

4. Online model for sensors response108

An energy band model for n-type semiconductors describes the changes in the resistance109

of the sensor before exposure, RI , and after exposure, RF , as a nonlinear expression of the110

changes in the semiconductor’s energy bands [1, 2]. Energy bands changes depend on varia-111

tions in humidity and gas external temperature, which modulates the overall transduction.112

If we denote by ∆Φ = ΦF −ΦI the work function change computed as the difference between113

the work function after and before exposure, and we express the electron affinity change as114

∆χ = χF − χI , the overall transduction can be expressed (following [2]) as:115

ln

(
RF

RI

)
=

1

kBT
(∆Φ−∆χ) , (1)

where kB is the Boltzmann constant, and T is the sensor operating temperature controlled by116

the built-in sensor heater. The sensor temperature is not constant because it is modulated117

by the external temperature, TE. To be able to build a basic model to be fitted to the118

data, we make the following assumptions. We assume that relative changes in the external119

humidity, ∆H = h, and changes in external temperature, ∆TE = t, are small enough. We120

also assume that the chemical content remains unchanged during the environmental changes.121

This assumption is important because it is known that humidity changes induce nonlinear122

changes in the energy depending on the chemical agent (see [4]). Under these assumptions,123

we can rewrite the transduction in equation 1 as124

ln

(
RF

RI

)
=

1

kB(T + µt)
(∆Φ(h)−∆χ(h)) , (2)
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where µ > 0 is a dimensionless factor that reflects the impact of the external temperature125

into the sensor.126

Because the sensor board is based on a Texas Instruments MSP430F247 micro-controller,127

which can only perform simple mathematical operations, we now consider in equation 2 terms128

up to second order in ∆H and ∆T . This removes most of the non-linearities from equation129

2, but without oversimplifying the model. We investigate the validity of this approximation130

in section 5 in each of the sensors separately. Thus,131

ln

(
RF

RI

)
=

(
1

kBT
− µ

kBT 2
t+

µ2

kBT 3
t2 +O(t3)

)
×(

∆Φ(0)−∆χ(0) +

[
∂∆Φ

∂h

∣∣∣∣
h=0

− ∂∆χ

∂h

∣∣∣∣
h=0

]
h +

1

2

[
∂2∆Φ

∂h2

∣∣∣∣
h=0

− ∂2∆χ

∂h2

∣∣∣∣
h=0

]
h2 +O(h3)

)
. (3)

Note that ∆Φ(0) −∆χ(0) = 0 because there are not changes in humidity and temperature132

on our sampling time scale. The simplified model is133

ln

(
RF

RI

)
=

1

kBT

[
∂∆Φ

∂h

∣∣∣∣
h=0

− ∂∆χ

∂h

∣∣∣∣
h=0

]
h+

1

2kBT

[
∂2∆Φ

∂h2

∣∣∣∣
h=0

− ∂2∆χ

∂h2

∣∣∣∣
h=0

]
h2

− µ

kBT 2

[
∂∆Φ

∂h

∣∣∣∣
h=0

− ∂∆χ

∂h

∣∣∣∣
h=0

]
ht . (4)

Therefore, we fit the following model to the data134

ln

(
RF

RI

)
= β1∆H + β2 (∆H)2 + β3∆H∆TE, (5)

where135

β1 =
1

kBT

[
∂∆Φ

∂h

∣∣∣∣
h=0

− ∂∆χ

∂h

∣∣∣∣
h=0

]
β2 =

1

2kBT

[
∂2∆Φ

∂h2

∣∣∣∣
h=0

− ∂2∆χ

∂h2

∣∣∣∣
h=0

]
β3 = − µ

kBT 2

[
∂∆Φ

∂h

∣∣∣∣
h=0

− ∂∆χ

∂h

∣∣∣∣
h=0

]
.

9



Sensor RMS R2 β1 (β1/se(β1)) β2 (β2/se(β2)) β3 (β3/se(β3)) β3/β1

1 0.06 1.00 -0.0044 (-128.14)∗ 0.00014 (38.40)∗ 0.0110 (58.41)∗ -2.61
2 0.12 1.00 -0.0110 (-186.04)∗ 0.00034 (54.11)∗ 0.0240 (71.75)∗ -2.21
3 0.12 1.00 -0.0110 (-187.12)∗ 0.00034 (53.57)∗ 0.0230 (69.60)∗ -2.18
4 0.14 1.00 -0.0110 (-190.95)∗ 0.00033 (55.31)∗ 0.0230 (73.06)∗ -2.19
5 1.24 0.98 -0.0056 ( -41.48)∗ 0.00018 (12.23)∗ 0.0086 (11.15)∗ -1.54
6 0.48 0.99 -0.0039 (-104.94)∗ 0.00012 (30.29)∗ 0.0071 (33.71)∗ -1.84
7 2.06 0.90 -0.0070 ( -99.24)∗ 0.00022 (28.94)∗ 0.0095 (23.57)∗ -1.36
8 2.09 0.91 -0.0057 ( -70.75)∗ 0.00020 (22.94)∗ 0.0029 ( 6.43)∗ -0.52

Table 2: Results of fitting the model defined in equation (5). The Root Mean Square (RMS) of the error in
the predictions always remained below 3.0, and the coefficient of determination R2 was always above 0.9. We
also show the coefficients β1, β2, and β3 fitted for each sensor, along with their signal-to-noise ratio (se(X)
stands for standard error of X). All β parameters are statistically significant (indicated with a *), with a
p-value below 10−10.

Thus, our model has only three parameters to be fitted: β1, β2 and β3. In particular, β1 and136

β3 have opposite sign and they are related by β3/β1 = −µ/T . This means that the ratio137

|β3/β1| becomes smaller with increasing sensor temperature.138

5. Results139

We fit the model defined in equation (5) to data of 537 days (from Feb 17, 2013 until140

June 5 2015) by down-sampling the time series to one data point per minute and per sensor.141

Heaters for sensors 1-4 are always kept at the same operating voltage, while sensors 5 to142

8 are controlled under a protocol that guarantees that the sensor responses always remain143

within a the same range of values. Results summarized in Table 2 prove the effectiveness144

and statistical significance of the energy band model: the accuracy rates achieved by the145

model, measured by the coefficient of determination R2, are above 90% for all sensors, and146

all the model coefficients are statistically significant. Sensors with a fixed heater temperature147

(i.e., sensors 1-4) outperformed sensors that operate with their heater temperature actively148

changed (i.e., sensors 5-8). In the worst case (sensor 8), the difference in R2 is close to 10%.149

This probably suggests that higher order terms become important in the approximation of150

equation (3) when the heater temperature is actively changed. Moreover, as predicted by151

equation (4), the parameters β1 and β3 have opposite signs for all the sensors in the electronic152
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nose. The ratios β3/β1 estimated for the eight MOX sensors by our fitting (see Table 2) are153

consistent with the voltage applied on the sensors’ heaters: obtained ratios for sensors 1-4 are154

similar as the sensors are kept under the same heating conditions, and ratios for sensors 5-8155

are lower as, due to the active temperature control, they tend to be at higher temperature.156

To filter the signal components due to changes in humidity and temperature, we subtract157

the model prediction in equation (5) from the raw sensor output. This operation is recognized158

as a method that searches signals independent of environmental conditions [28]. This is159

typically the case for continuous monitoring devices that are not intended to measure the160

concentration of a particular gas. The resulting signal is161

R∗
i (t) = Ri(t)−Ri(t) = Ri(t)−Ri(t− 1)e(β1i∆H+β2i(∆H)2+β3i∆H∆TE), (6)

where Ri denotes the resistance values of the sensor i, and β1i, β2i, and β3i are the adjusted162

values for β1, β2, and β3 for the i-th sensor. In Fig. 3, we show the result of applying this163

transformation on sensor 1. On the left panel, we present the humidity, temperature, and164

sensor output. After applying the transformation, the decorrelated output of the sensor is165

shown on the right panel. The sensor drift due to the temperature and humidity changes166

is filtered out. However, because we are subtracting from the sensors signal Ri(t) their167

predicted value Ri(t) according to our model, the resulting filtered signal R∗
i (t) often has168

zero mean and the relationship among the sensors is partially lost. This is important for gas169

discrimination [26], and we deal with this issue in section 6.170

5.1. Parameter Stability171

To test the stability of the parameters over time, we trained the model over a short period172

of time of 3 months of data and tested its performance in the following month (i.e., forward173

testing methodology). In Fig. 4, we show the time evolution of the model performance174

and parameters β of sensor 1 based on humidity and temperature changes. The window175

of 3 months was chosen in order to guarantee R2 > 0.9 for all sensors throughout the year176

(Fig. 5a) and to avoid longer time scales, where sensor drifting and seasonal changes in177
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Figure 3: Result of applying the humidity and temperature filter provided by equation (5) on sensor 1. First,
the resistance is is predicted using the variation in humidity, and then this predicted resistance is subtracted
from the original signal

the environment may influence sensors response. We also show the histogram of all values178

assumed by β parameters throughout this period (Fig. 5b–d).179

Finally, the model is robust to failures in the sensors due to number of reasons. For180

instance, in some instances the electronic nose stopped transmitting due issues in the wire-181

less connectivity; in other events, sensors were displaced from their location during house182

cleaning, and stopped working. Because algorithms need to be as robust as possible given183

the uncontrolled conditions under which they operate, our R2 already takes it into account.184

In summary, there are many possible reasons in daily operations that hinder the operation185

of the electronic nose, and they reproduce uncontrolled conditions that such sensors face.186

5.2. Sampling rate187

Another important question is determining an acceptable sampling rate on the electronic188

nose to be able to filter the humidity and the temperature. We estimate the effect in terms189

of regression accuracy of different sampling rates by computing the average R2 values for all190

the sensors modifying the sampling period from 5 to 500 seconds. In Fig. 6, we can see that191

beyond the 2 minute sampling period, the filter performance drops below 0.9. Beyond this192

point, the approximations made in the band-based model in equations (3-4) fail.193

Faster sampling rates may still be required to implement for some strategies that use194

sensor heater control in an active manner [29] or in fast changing environments. However,195

further work is still needed to consider highly ventilated scenarios in which temperature196
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Figure 4: Time evolution of the out-of-sample performance measured by evaluating R2 on the first sensor of
the electronic nose. The three bottom panels represent the evolution of the parameters, β1, β2 and β3 of the
model over time.

and humidity change in time at the same rate as the atmosphere chemical composition..197

Comparatively, an empirical approach can be found in [24], where a similar model is fitted to198

a linear dependence on temperature and humidity, but not on the changes of the temperature199

and humidity.200

6. Impact on online discrimination of gas identity201

To investigate whether a predictive model can potentially benefit from filtering tempera-202

ture and humidity sensors, we constructed a data set from recordings of two distinct stimuli:203

wine and banana (Fig. 7). We compared the impact of using the raw data and the filtered204

data in terms of classification performance when discriminating among presence of banana,205

wine and lack of stimulus (i.e., background activity). Signals recorded with banana or wine206

evoked different responses in the sensors. In particular, responses to banana were often207

weaker and returned to the baseline activity much faster than those of wine (compare for208

instance R4 in Fig. 7). Rather than using the particular chemical signatures of compounds209

from bananas and wines, our goal is to construct a model that learns to predict presence of210
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Figure 5: Histograms of performance R2 (a) and values of β parameters (b-d) for all the sensors using 3
months of training and testing in the following month.

banana/wine based on the multivariate response of the sensors. The chemical signature of211

bananas changes, for instance, as they ripen [30], and wine’s signature depends on alcohol212

content (ethanol), origin of the grape, among other factors [31, 32]. Thus, our approach213

attempts at building a model that does not rely on wine type and banana ripeness.214

These data were collected over the course of 2 months by placing a sample of either a215

banana or wine next to the electronic nose for a period of time ranging from 10 minutes to 1216

hour. Baseline signals were taken from 2PM to 3PM to avoid additional noise due to home217

activity. The time of the day when the stimulus was presented varied, except between 12AM218

and 6AM. On total, our dataset comprises the time series of 34 banana presentations, 36 wine219

presentations, and 30 baseline samples. To implement online discrimination, the data was220

organized in moving windows with lengths of 10 minutes. For instance, for a presentation of221

length 60 min we create a total of 60 - 10 = 50 windows to be used during the classification.222

To solve the classification problem, we used a nonlinear classifier called Inhibitory Support223
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Vector Machine (ISVM) [33], which, in contrast to other multiclass SVM methods, is Bayes224

consistent for three classes. ISVM is a particular case of the λ-SVM classifier, a pointwise225

Fisher consistent multiclass classifier [34]. ISVMs have been successfully applied to arrays of226

electronic noses (identical to the one used in the present paper) in controlled conditions [35,227

34], in wind tunnel testing [26], and for ethylene discrimination in binary gas mixtures228

[27]. Inspired by the learning mechanisms present the insect brain [36], Inhibitory SVMs229

use a large-margin classifier framework coupled to a mechanism of mutual and unselective230

inhibition among classes. This mutual inhibition creates a competition, from which only one231

class emerges. The decision function of Inhibitory SVMs associated with the j-th class and232

the input pattern xi is defined as fj(xi) = 〈wj ,Φ(xi)〉 − µ
∑L

k=1 〈wk,Φ(xi)〉, where L is233

the number of classes and µ scales how strong each class will inhibit each other. If µ = 0,234

the decision function for standard SVMs is recovered. It can be analytically shown that the235

optimal value for µ is 1/L. The predicted class of a data point xi is determined by the236

maximum among the decision functions for each class: y(xi) = arg maxj fj(xi). Because we237

used Radial Basis Functions (RBF) as the kernel of the inhibitory SVM, our classifier had238

two meta-parameters: the soft margin penalization C, and the inverse of the scale of the239

RBF function γ. For more details about the ISVM model, see [33, 34].240

To evaluate the impact on discrimination performance due to decorrelating the signals241

from temperature and humidity sensors, we tested 4 different feature sets: raw sensor time242

series (RS), raw sensor data with humidity and temperature (RS,T,H), filtered data (FS) by243
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Figure 7: Example of response of all sensors due to the presentation of our stimuli: banana and wine. Sensors
are indexed according to table 1. Vertical blue lines delimit the period of time that the stimulus remained
close to the electronic nose. These time series were recorded on September 22nd, 2015.

decorrelating sensors using equation 6, and raw sensor data with filtered sensor data (RS,FS).244

To properly estimate the generalization ability of the model, we used standard procedures in245

machine learning to evaluate the performance of our classifier when discriminating samples246

not used for training the classifier [37]. We first divided our data set into two groups: a247

training set with 4/5th of the experimental presentations, and a test set with 1/5th of the248

data. All moving windows associated with the same presentations were kept in the same249

group. We used 4-fold cross-validation on the training set to estimate the classifier meta-250

parameters (C and γ). Using these meta-parameters, we re-trained the model using the251

whole training set and, then, assessed the performance using the test set. The range of252
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Feature set Cross-validated accuracy Accuracy in test Std p-value
RS 78.5% 76.5% 6.8% 0.02∗

RS,T,H 73.3% 71.1% 6.8% 1 · 10−12 ∗∗

FS 72.4% 71.2% 4.8% 2 · 10−12 ∗∗

RS,FS 82.6% 80.9% 6.3% 1

Table 3: Classification accuracies in four feature sets (abbreviations are defined in the text) derived from
our dataset with three classes: wine, banana, and baseline activity. The meta-parameters of the final
Inhibitory SVM model were selected as those with the best cross-validated accuracies in the training set
(second column), and the generalization error of the final model was evaluated in the test set (third column).
The standard deviation (std) for the test dataset is estimated over 50 random partitions. Accuracy results
from (RS,FS) are significantly different from all other feature sets (p-values from Kolmogorov-Smirnoff tests,
∗∗ passes at 1%, ∗ passes at 5%).

values for the meta-parameters explored during the 4-fold cross-validation in the training253

set were γ = {0.5, 1, 5, 10, 50, 100}, and C = {104, 105, 106, 107, 108, 109}. To obtain a good254

statistical estimate of the classification accuracy, we re-shuffled our data and repeated this255

procedure 50 times, which was enough for the average and variance to converge.256

Using the raw sensor data combined with the filtered signals (RS,FS) improved signifi-257

cantly (Kolmogorov-Smirnov, p < 0.025) the performance in online discrimination (Table 3).258

The raw sensors data (RS) alone reached 76% of accuracy, and including the temperature259

and humidity information (RS,T,H) did not improve. This shows that the additional fea-260

tures are likely redundant. Probably due to loss of inter-dependencies among sensors (as261

anticipated in section 5), the filtered sensor data (FS) by itself underperformed RS. Still,262

the model becomes more consistent, with lower variance in its performance, than the mod-263

els trained on (RS) and (RS,T,H). Indeed, using both raw and filtered time series (RS,FS)264

improved significantly the model performance and its consistency. Thus, this experiment265

illustrates that temperature and humidity filters can not only improve pattern recognition266

performance, but they can also improve model stability, which is especially challenging in267

chemical sensing [38–42].268

7. Conclusions269

Changes in humidity and temperature shape the responses of arrays of MOX sensors,270

which in turn modifies nonlinearly chemical signatures of different volatiles. Filtering changes271
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in the sensor responses due to changes in both humidity and temperature during sampling272

represents a major improvement for complex machine learning and monitoring tasks. We273

used a model based on semiconductor energy bands to express the nonlinear dependence274

of sensor resistance with humidity and temperature variations in an electronic nose. The275

model was designed to fit in simpler micro-controllers, removing all possible non-linearities276

up to second order in the change of humidity and temperature, envisioning applications to277

cost-efficient devices. We found that the most dominant terms are the change in humidity,278

the quadratic term of the change in humidity, and the correlated variations of humidity279

and temperature. We showed that the model provides robust corrections to the distortions280

caused by environmental changes. Therefore, our level of approximation on the semiconduc-281

tor energy band is an inexpensive solution for applications in online and continuous home282

monitoring using chemical sensors.283

Specifically, the coefficient of determination R2 of our model when fitted to all the 537284

days of sampling is remarkably close to 100%. The model predicts a particular dependence285

between two of the coefficients that is consistently verified in all the tested sensors. We286

also showed that the maximum sampling period to obtain a reliable filter of humidity and287

temperature is of the order of 1 minute. The accuracy achieved with faster sampling rates288

provides small gains, and it would require some overhead in wireless communication when289

the corrections are done at the base station. Additionally, 3-month training window was290

selected to ensure that R2 is larger than 90% for all sensors and throughout the whole year.291

With 3 months, the training dataset likely included enough number of training examples292

(events and background) while the effect of long-term drift in the sensors was still weak to293

degrade the trained models. Previous work using similar sensing units showed that models294

trained in two-month windows keep high accuracy during the following two months [43].295

Stability could probably be improved further if one selects longer training windows or by296

coupling our strategy with already proposed strategies to counteract long-term sensor drift297

[43, 39, 44].298

We verified empirically the benefits of decorrelating humidity and temperature from the299
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sensors’ response by applying it to a task of gas discrimination. We recorded the response300

of the sensors when presented with either a banana or glass of wine. Then, we used a Bayes-301

consistent classifier [34, 33] to discriminate between the presence of banana, presence of302

wine, and baseline activity. To compare the performance of the classifier with and without303

the decorrelation of humidity-temperature, four different subsets of data were created by304

combining raw sensor responses, filtered sensor data, and temperature and humidity. Ex-305

perimental results show that including the filtered data in the classification model improves306

not only the discrimination capability of the model, but also its stability.307

In summary, we have shown that simultaneous recordings of the humidity and the temper-308

ature can be used to help extracting relevant chemical signatures. The online decorrelation309

model proposed in this work was designed for online operation even in the simpler micro-310

controllers available in the market, which is essential for cost-efficient devices. Additionally,311

humidity sensors are extremely appealing due to a high correlation between humidity levels312

and human perception of air quality [45, 46]. Thus, when combined with other techniques313

[18, 35, 47, 27, 48, 49], our model is likely to significantly enhance the performance of chemical314

detection systems, as for instance of home monitoring tasks. Our contribution thus empha-315

sizes the importance of simultaneous recordings of humidity and temperature, and that their316

use is computationally amenable in sensor boards using low-energy micro-controllers.317
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