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Abstract. We present a minimally parametric, model independent reconstruction of the
shape of the primordial power spectrum. Our smoothing spline technique is well-suited to
search for smooth features such as deviations from scale invariance, and deviations from a
power law such as running of the spectral index or small-scale power suppression. We use
a comprehensive set of the state-of the art cosmological data: Planck observations of the
temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and
Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii
Lensing Survey correlation function. This reconstruction strongly supports the evidence for
a power law primordial power spectrum with a red tilt and disfavours deviations from a
power law power spectrum including small-scale power suppression such as that induced
by significantly massive neutrinos. This offers a powerful confirmation of the inflationary
paradigm, justifying the adoption of the inflationary prior in cosmological analyses.
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1 Introduction

All recent cosmological observations are in excellent agreement with the standard ΛCDM
model: a spatially flat cosmological model, with matter-energy density dominated by a cos-
mological constant and cold dark matter, where cosmological neutrinos are effectively massless
and where the primordial power spectrum of adiabatic perturbations is a (almost scale in-
variant) power law. State-of-the art cosmological observations such as those of the Planck
satellite [1], measuring cosmic microwave background (CMB) anisotropies, provided us with
very precise measurements of the parameters of the standard cosmological model [2].

Most cosmological analyses assume a power-law primordial power spectrum with a fixed
spectral index, and deviations from this assumption are often in the form of a “running” of
the spectral index.

A nearly scale invariant power spectrum is a generic prediction of the simplest models
of inflation, but there are models with (small) deviations from this prediction (e.g., [3–6]).
Small deviations from scale invariance constitute a critical and generic prediction of inflation.
For this reason a model-independent reconstruction of the primordial power spectrum (PPS)
shape can be a powerful test of inflationary models.

Here we perform a minimally parametric reconstruction of the PPS using smoothing
spline interpolation in combination with cross validation. This approach follows [7–9].

The idea is simple: we choose a functional form that allows a great deal of freedom in
the shape of the deviations from a power-law. Because most models predict the PPS to be
smooth, among the possible choices we use a smoothing spline. The ensuing challenge is to
avoid over-fitting the data; a complex function that fits the data set extremely well is of no
interest if we are simply fitting statistical noise. To prevent over-fitting we use cross-validation
and a roughness penalty. The roughness penalty is an additional parameter that penalises a
high degree of structure in the functional form. By performing cross-validation as a function
of this penalty, we can judge the amount of freedom in the smoothing spline that the data
require, without fitting the noise.

The Planck collaboration has performed an analysis with the same goals in mind, but
with different methods [10]. They carried out both a parametric search for deviations from a
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power law, using a set of theoretically motivated shapes for the PPS, and a minimally para-
metric analysis to reconstruct the PPS. In all cases there is no strong evidence for deviations
from a power law.

Our analysis differs from that of the Planck collaboration and from others existing in the
literature as we analyse jointly a comprehensive set of state-of-the-art experiments probing
the matter power spectrum and the latest Planck measurements.

Because we assume standard late-time evolution of density perturbations and consider
both early-time observables (CMB) and late-time ones (i.e., large-scale structure), our re-
construction is also sensitive to late-time effects on structure formation. In particular a
non-negligible neutrino mass would suppress the growth of structures below the neutrino
free-streaming scale, inducing an “effective” loss of small scale power in our reconstructed
PPS. Reconstructing in a model-independent way a possible neutrino signature on the shape
of the matter power spectrum is of particular importance as [11–16] claims that relatively large
neutrino masses (Σν & 0.4 eV) could solve the tension between CMB and local measurements,
whilst other studies [17–24] rule out this possibility.

The rest of the paper is organised as follows: in section 2 we briefly summarise the
methodology adopted, the data chosen and how they are analysed. In section 3 we present
our findings; we discuss and present the conclusions in section 4.

2 Methodology and datasets

2.1 Spline reconstruction

We perform a minimally-parametric reconstruction of the primordial power spectrum based
on the method presented in [7] and further refined in [8, 9]. Here we only briefly summarise
the approach; it is based on the cubic smoothing spline technique (for details see [25]). In
this approach to recover a smooth function f(x), given its value fi only on a set of n points
xi, hereafter knots, one fits the pairs (xi, fi) with a cubic spline s(x). The spline, its first,
and second derivatives are continuous on the knots by definition. The full function is then
uniquely defined by the values at the knots and two boundary conditions. We choose to
require that the jump in the third derivative across the first and last knots is forced to zero.

In our application the resulting spline function is the reconstructed primordial power
spectrum. The fi are free parameters we wish to determine and we place the knots equally
spaced in log k as it is the most conservative choice to recover deviations from a power law.
The whole s(k) is used as the PPS to compute the observables and evaluate the likelihood of
the parameters fi. Including the roughness penalty, the effective likelihood becomes

− log(L) = − log(Lexp) + αp

∫ ln kf

ln ki

(
s′′(ln k)

)2
d ln k (2.1)

where s′′ denotes the second derivative of s with respect to ln k, ki and kf are respectively
the position of the first and of the last knots, αp is a weight that controls the penalty, and
Lexp is the likelihood given by the experiments.

The roughness penalty effectively reduces the degrees of freedom, disfavouring jagged
functions that “fit the noise”. As αp goes to infinity, one effectively implements linear re-
gression; as αp goes to zero one is interpolating. The use of cubic spline — instead of other
possible interpolating functions — is motivated by the fact that such a function minimises
the roughness penalty for a given set of knots (fi, xi).
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In generic applications of smoothing splines, cross-validation is a rigorous statistical
technique for choosing the optimal roughness penalty [25]. Cross-validation (CV) quantifies
the notion that if the PPS has been correctly recovered, we should be able to accurately
predict new independent data. To make the problem computationally manageable, we adopt
the following. We split the data set in two halves A and B. A Markov chain Monte Carlo
(MCMC) parameter estimation analysis (for a given roughness penalty) is carried out on A,
finding the best fit model. Then the − log likelihood of B given the best fit model for A,
CVAB, is computed and stored. This is repeated by switching the roles of the two halves,
obtaining CVBA. The sum CVAB+CVBA, gives the “CV score” for that penalty weight. With
this construction, the smoothing parameter that best describes the entire data set is the one
that minimises the CV score. The cross validation data sets are described below (see table
1).

We choose to use 5 knots equally spaced in log k between k = 10−5 Mpc−1 and k =
1 Mpc−1, i.e., k1 = 10−5 Mpc−1, k2 = 1.78 × 10−4 Mpc−1, k3 = 3.16 × 10−3 Mpc−1,
k4 = 5.62 × 10−2 Mpc−1, k5 = 1 Mpc−1 (see figure 1 bottom panel for knots placement
visualisation). The number and position of the knots is held fixed throughout the analysis.
As discussed in reference [8], beyond a minimum number of knots, there is a trade-off between
the number of knots and the penalty, and the form of the reconstructed function does not
depend significantly on the number of knots beyond this minimum number. As the main goal
of this work is to explore, in a minimally parametric way, smooth deviations from a power
law, a few (> 3) knots are sufficient.

The basic cosmological parameters, ωb = Ωbh
2, ωc = Ωch

2, h, and τreio — physical bary-
onic matter density parameter, physical cold dark matter parameter, dimensionless Hubble
parameter and optical depth to last scattering surface — are varied in the MCMC along-
side the values fi of the reconstruction at the knots. A flat geometry is assumed so that
Ωm + ΩΛ = 1.

The prediction for cosmological observables, the calculation of the likelihood and the
MCMC parameter inference are implemented using the standard Boltzmann code CLASS
[26] and its Monte Carlo code, Monte Python (MP) [27], suitably modified.12

Even though we reconstruct the primordial power spectrum, we are sensitive to late-time
cosmological effects. Our main focus is on massive neutrinos: the presence of non-negligibly
massive neutrinos would distort our reconstruction in a way that is predictable due to the
linearity of the growth functions [28] (see Appendix). Thus in the analysis we will assume
massless neutrinos.

Of course neutrino masses do not actually affect the physical PPS. But assuming stan-
dard gravity, standard growth of structure, and massless neutrinos in the analysis, would
yield a reconstructed PPS with an artificial distortion, if neutrino masses were not negligible.
In fact a detectable signature of massive neutrinos in the real data would appear as a power
suppression feature in the reconstructed PPS. Of course a detection of power suppression
cannot be univocally interpreted as signature of neutrino masses; other particles beyond the
standard model could easily share the same properties of neutrinos when it comes to damping
perturbations or it could be a real feature in the PPS.
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Figure 1. Comoving scales covered by the experiments used in our analysis. The vertical dashed line
show the limit of the linear scales. The triangles show the position of the knots. The leftmost one is
not visible in the plot.

2.2 Datasets

We use a comprehensive set of power spectra obtained from observations of CMB and of large
scale structure (including both weak gravitational lensing and galaxies redshift surveys) as
follows:

• Planck power spectra of temperature and polarisation of the CMB. The Planck collab-
oration released in 2013 the temperature data from the first half of the mission [29].
We complement the Planck 2013 data with the WMAP polarisation. We refer to this
as PlanckCMB13. In 2015 the results of the full analysis has been released [30]. Tem-
perature and E-mode polarisation power spectra (and their cross-correlation) data and
likelihoods come in two sets: a low ` from ` = 2 to ` = 49, and the high ` angular power
spectrum. We use the temperature and polarisation data up to ` = 2500 and we refer
to this as PlanckCMB15.

• Beside the CMB power spectrum, Planck reconstructed the CMB lensing potential [31],
which contains information on the amplitude of large scale structure integrated from
recombination to present time. We will refer to it as PlanckLens.

• The Canada-France-Hawaii Lensing Survey (CFHTLenS) [32] provides the two point
correlation function of the tomographic weak lensing signal.

1http://class-code.net
2http://baudren.github.io/montepython.html
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Run A B

1.1 PlanckCMB13, PlanckLens PlanckCMB13, SDSS DR7
1.2 PlanckCMB13, CFHTLenS PlanckCMB13, WiggleZ
2 PlanckCMB13, PlanckLens, SDSS DR7 PlanckCMB13, CFHTLenS, WiggleZ

Rec. PlanckCMB15, PlanckLens, SDSS DR7, CFHTLenS, WiggleZ

Table 1. Cross-validation datasets A and B for the various runs. The reconstruction (Rec.) involve
all the experiments together.

• The WiggleZ Dark Energy Survey (WiggleZ), through the measurement of position and
redshift of 238,000 galaxies, mapped a volume of one cubic gigaparsec over seven regions
of the sky up to a redshift z . 1. The corresponding galaxy power spectrum is presented
in [33].

• The Sloan Digital Sky Survey collaboration, in Data release 7 (SDSS DR7), used a
sample of luminous red galaxies to reconstruct the halo density field and its power
spectrum roughly between k = 0.02 h/Mpc and k = 0.2 h/Mpc [34].

In figure 1 we show the scales probed by each experiment along with the location of the
knots.

2.3 Runs set-up

We now describe the cross validation set up. In order to constrain both the shape of the PPS
and the cosmological parameters, we have to consider CMB primary data in all CV runs. Be-
cause of time constraints PlanckCMB2013 is used in the set up CV runs but PlanckCMB2015
is used in the final run. This choice is conservative, favouring slightly more freedom (lower
penalty) to the reconstructed PPS. Besides these, we have 4 other experiments: 2 measuring
weak lensing and 2 using galaxy catalogues. We perform 3 CV runs in a pyramidal scheme as
summarised in table 1. We start performing in parallel two different cross-validation analysis
on two pairs of experiments where each pair is formed by a weak lensing experiment and by
a galaxy catalogue. The dependence of the CV score on αp was mapped by sampling several
αp values. The results of these preliminary runs show no unexpected behaviour or tension,
i.e., the reconstructed PPS shows no significant deviation from a power-law, and the shape
of the CV score is the same for both run 1.1 and run 1.2. Knowing this, we then combine
the large scale structure data to have one weak lensing and one galaxy survey in each CV
set. The best roughness penalty found from this CV is used in the final run which includes
all experiments (this is called “Rec.” run in the table). The penalty parameter value to use
in the reconstruction is determined by the CV score of run 2 alone: its dependence on αp is
illustrated in figure 2. The fact that the shape of the three CV scores — from run 1.1, 1.2,
and 2 — shown in figure 2 is very similar, indicate robustness and that there are no significant
tensions between the datasets.

The CV score has a fairly well defined “wall” for high penalties , but is quite constant
under a certain threshold at αp ∼ 10. For high αp the penalty starts being the dominant
contribution to the likelihood, so the behaviour in the limit of high αp is expected. On the
other hand, if small values of the penalty were to lead to overfitting, the CV score should
increase as αp decreases. This is not what we see and can be understood as follows. CMB
angular power spectra are always included in the analysis and in this limit, it is the statistical
power of these data (not the penalty) that drives the smoothness of the reconstruction and
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Figure 2. CV score as a function of αp for the cross-validation run 2. A different arbitrary offset has
been subtracted from each CV score.

therefore the CV score. In other words, for low values of the penalty below αp ∼ 10, all
datasets are well consistent with the Planck-inferred PPS reconstruction: the CMB data
alone disfavour unnecessarily wiggly shapes, even when there is a low penalty.

Since there is not a well defined minimum for the CV score, we opt for presenting two
different cases. One is more conservative, in the sense that it has a stronger penalty that
allows only small deviations from the concordance power-law model. For this one we choose
αp = 1.

The other leaves more freedom to the data, as we choose a more relaxed penalty αp =
0.01. A reconstruction with αp � 0.01 is pretty much uninformative. In fact recall that the
free parameters in our MCMC runs are the physical baryon density ωb, the physical cold dark
matter density ωcdm, the rescaled Hubble parameter h, the optical depth to reionization τreio,
and the value of the five knots of the spline that we used to parametrize the shape of the PPS.
At such low penalty values the reconstruction transfers in part the features of the radiation
transfer function and the effect of the optical depth to reionization into the PPS opening up
degeneracies in parameter space.

3 Results

Here we present the results with the latest Planck likelihood (2015 release) and all the large
scale structure power spectrum data (Planck Lensing 2015, WiggleZ, CFHTLenS, and SDSS
DR7), with the two different roughness penalties (αp = 1 and αp = 0.01) justified above.

As discussed in refs. [17, 35–38] there is a tension between the inferred matter power
spectrum amplitude from CMB and from CFHTLenS, which may arise from possible system-
atic errors in the photometric redshifts of CFHTLens. For this reason we present results first
without and then with CFHTLens.

3.1 Reconstruction without CFHTLens

In figure 3a and 3b we show the reconstructed PPS for αp = 1 and αp = 0.01 respectively.
The colour-bars on the upper side show the scales probed by each experiment as in figure 1,
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Figure 3. Reconstructed PPS. The best fit reconstruction is shown in white. Errors are shown by
plotting in dark blue (light blue) 400 spline picked at random among the 68.27% most likely points
(points in the range 68.27% - 95.45%) in the MCMC. The red (pale red) region shows the 68% (95%)
confidence intervals for Planck 2015 TT, TE, EE + Low P. The colour-bars on the upper side show
the scales probed by each experiment as in figure 1, green for PlanckLens, red for WiggleZ, gold for
SDSS DR7. PlanckCMB15 covers the whole plot.

green for PlanckLens, red for WiggleZ, gold for SDSS DR7. PlanckCMB15 covers the whole
plot. The best fit reconstruction is shown in yellow and errors are shown by plotting in dark
blue (light blue) a random sample of 400 reconstructions chosen among the 68.27% most likely
points (points in the range 68.27% - 95.45%) in the MCMC. The 95.5% confidence regions
appear to coincide with the 68.3%: this is because the reconstructed spectra are simply more
wiggly and are not allowed to deviate more, and consistently across scales, from the best fit.

In the figure the red and pale red regions show the 68 and 95% confidence intervals for
the standard power law ΛCDM Planck 2015 TT, TE, EE + Low P analysis [2].

Note that for the more conservative choice of the penalty, errors of the reconstructed
PPS are comparable with errors from Planck parametric fit at all scales. For the less con-
servative penalty this is also true on scales corresponding to ` > 30. This did not happen
with the previous generation of cosmological data (see [9]) where the reconstructed PPS was
significantly less constrained than with a power law fit.

The additional freedom in the PPS allowed by the lower penalty αp = 0.01 is used on
scales corresponding to low CMB multipoles ` < 30. These scales are dominated by cosmic
variance and are known to be lower than the standard ΛCDM prediction e.g., [29, 39–41] and
refs therein.

In figure 4a and 4b we also show the reconstructed n(k) ≡ d lnP (k)/d ln k (αp = 1
and αp = 0.01) for ease of comparison with the standard power law results.3 We find no
evidence that any scale dependence of the power spectrum spectral slope is necessary, which
is in agreement with previous analyses. However with this new data set we find that n = 1 is
highly disfavoured by the data, in particular for αp = 1 the significance of the departure from
scale invariance is comparable with that obtained when adopting the “inflation–motivated”
power-law prior. Even for the more flexible reconstruction, not even one point of the more
than 4× 105 MCMC points falls near scale invariance.

The results shown in Figs. 3 and 4 offer a powerful confirmation of the inflationary

3Recall that the quantity that was actually reconstructed using cross-validation to find the optimal penalty
is in reality the power spectrum.
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Figure 4. Power spectrum spectral index of the reconstructed PPSs. The white line corresponds to
the best fit reconstruction. Errors are shown by plotting in dark blue (light blue) 400 reconstructions
randomly selected from the 68.27% most likely points (points in the range 68.27% - 95.45%) in the
MCMC. The red (pale red) region shows 68% (95%) confidence intervals for the power law Planck
2015 TT, TE, EE + Low P fit. The colour-bars on the upper side show the scales probed by each
experiment as in figure 1, green for PlanckLens red for WiggleZ, gold for SDSS DR7. PlanckCMB15
covers the whole plot. In the right figure, the grey line is n(k) ≡ 1, i.e., scale invariance.
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Figure 5. Reconstructed PPS divided by the Planck 2015 TT, TE, EE + LowP + Lensing power-law
PPS best-fit using the same conventions as Figs.3 for the legend and the reconstructed P (k). The red
lines show the small-scales power suppression effect due to massive neutrinos. The upper line is the
Σmν = 0 eV theoretical prediction based on the conditional best fit to Planck 2015 TT, TE, EE +
Low P + Lensing + BAO + JLA + H0 data, the lower line is the same with Σmν = 0.2 eV.

paradigm, justify the adoption of the inflationary prior in cosmological analyses.
Finally in figs. 5a and 5b we show the ratio of the reconstructed PPS to the best fit

Planck 2015 (temperature, polarisation, and lensing) power law model.
The reconstruction is fully compatible with the parametric fit. The figure also shows the

expected effect of small scale power suppression due to massive neutrino free-streaming for
two representative values of neutrino masses Σmν = 0 eV and 0.2 eV. The two models are the
conditional (i.e., keeping Σmν fixed at the required value) best fit to the data (Planck 2015
TT, TE, EE + Low P + Lensing + BAO + JLA + H0 data). Clearly models with Σmν > 0.2
eV are highly disfavoured by the data even with this minimally parametric reconstruction:
not a single step of a 4 × 105 size MCMC goes near the Σmν = 0.2 eV line. This of course
does not exclude the — admittedly contrived — case with a arbitrarily large neutrino mass
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Figure 6. Reconstructed PPS. Refer to figure 3 for explanation and colour code. In addition, the
purple line shows the scales covered by CFHTLenS.
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Figure 7. Power spectrum spectral index of the reconstructed PPSs. Refer to figure 4 for explanation
and colour code. In addition, the purple line shows the scales covered by CFHTLenS.

inducing a small scale power suppression which is cancelled by a compensating boost of the
PPS on the same scales. Occam’s razor disfavours this scenario.

3.2 Reconstruction with CFHTLens

The reconstructed P (k), n(k) and P (k) relative to the power law best fit are shown in figures 6,
7, and 8 using the same conventions as in figures 3, 4, and 5.

Comparison with the results of section 3.1 (in figures 3, 4, 5) shows that qualitatively
the reconstructions are very similar, there is no strong evidence for deviations from the power
law behaviour and scale invariance is still excluded. However quantitatively some differences
may be appreciated. Adding the CFHTLenS datasets has the effect of lowering the overall
PPS normalisation (clearly visible by comparison with figure 3).

The ratio with Planck power law best-fit in figure 8 highlights how, independently from
our choice of datasets, high neutrino masses are disfavoured. Quantitatively the Σmν > 0.2
eV bound is excluded at more than 95% confidence if we assume a power law PPS, as discussed
in section 3.1.

For completeness we also report the recovered values and errors for all the model pa-
rameters in table 2 and table 3 for the two penalties αp = 1 and αp = 0.01 respectively.
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Figure 8. Reconstructed PPS relative to Planck 2015 TT, TE, EE + LowP + Lensing power-law
PPS best-fit. Refer to figure 5 for explanation and colour code. In addition, the purple line shows the
scales covered by CFHTLenS.

Without CFHTLenS − lnLmin = 6727.02
Param best-fit mean±σ 95% lower 95% upper
100 ωb 2.226 2.229+0.015

−0.015 2.199 2.258

ωcdm 0.1194 0.1191+0.0011
−0.0011 0.1168 0.1214

h 0.6795 0.6815+0.0052
−0.0053 0.6712 0.6919

τ 0.0542 0.05982+0.0092
−0.013 0.04001 0.07955

10+9K1 2.788 2.736+0.11
−0.12 2.507 2.965

10+9K2 2.546 2.534+0.07
−0.07 2.395 2.673

10+9K3 2.307 2.32+0.043
−0.049 2.231 2.412

10+9K4 2.072 2.108+0.036
−0.053 2.028 2.194

10+9K5 1.872 1.9+0.047
−0.059 1.802 2.006

With CFHTLenS − lnLmin = 6777.64
Param best-fit mean±σ 95% lower 95% upper
100 ωb 2.244 2.236+0.015

−0.014 2.207 2.264

ωcdm 0.1182 0.1182+0.0011
−0.001 0.1161 0.1204

h 0.6867 0.6854+0.0048
−0.0051 0.6757 0.6953

τ 0.05239 0.05852+0.0087
−0.013 0.04001 0.07795

10+9K1 2.721 2.697+0.12
−0.12 2.463 2.931

10+9K2 2.512 2.504+0.069
−0.071 2.363 2.645

10+9K3 2.281 2.3+0.041
−0.048 2.213 2.389

10+9K4 2.065 2.098+0.035
−0.051 2.021 2.182

10+9K5 1.869 1.9+0.045
−0.058 1.802 2.003

Table 2. Best fit, mean and confidence intervals for the MCMC parameters in the reconstruction
with αp = 1

The degeneracies among the parameters for the PPS value at the knots can be appre-
ciated in the triangle plots of figure 9a for αp = 1 and figure 9b for αp = 0.01. Correlations
with and among the cosmological parameters not shown are negligible. As expected, higher
penalty induce correlations among the knots which are stronger between neighbouring ones.

Interestingly the only cosmological parameter that correlates with the knots is τreio,
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Without CFHTLenS − lnLmin = 6726.32
Param best-fit mean±σ 95% lower 95% upper
100 ωb 2.239 2.226+0.016

−0.016 2.194 2.259

ωcdm 0.1173 0.1193+0.0013
−0.0012 0.1168 0.1218

h 0.6898 0.6806+0.0055
−0.006 0.6694 0.6922

τ 0.07136 0.05974+0.0088
−0.014 0.04 0.08061

10+9K1 1.968 2.351+0.67
−0.69 1.014 3.711

10+9K2 2.159 2.351+0.29
−0.3 1.769 2.934

10+9K3 2.272 2.31+0.059
−0.062 2.191 2.431

10+9K4 2.148 2.106+0.036
−0.056 2.024 2.198

10+9K5 1.933 1.923+0.073
−0.078 1.773 2.074

With CFHTLenS − lnLmin = 6776.95
Param best-fit mean±σ 95% lower 95% upper
100 ωb 2.235 2.234+0.015

−0.016 2.203 2.266

ωcdm 0.1179 0.1182+0.0012
−0.0011 0.116 0.1205

h 0.686 0.6853+0.0052
−0.0054 0.6749 0.6958

τ 0.06203 0.05911+0.0085
−0.014 0.04 0.07976

10+9K1 2.241 2.42+0.67
−0.69 1.09 3.784

10+9K2 2.294 2.373+0.28
−0.31 1.787 2.962

10+9K3 2.28 2.292+0.056
−0.063 2.176 2.414

10+9K4 2.106 2.1+0.035
−0.055 2.019 2.189

10+9K5 1.899 1.919+0.071
−0.08 1.772 2.071

Table 3. Best fit, mean and confidence intervals for the MCMC parameters in the reconstruction
with αp = 0.01

which show degeneracy with the knots at higher k (figure 9c and 9d). This behaviour is
however not unexpected. The τreio parameter only affects the CMB and in particular its
main effect is to suppress the temperature power spectrum at multipoles ` & 80. With
our choice for the location of the knots, the most affected knots are therefore K4 and K5.
Improved polarisation data at low ` should reduce this degeneracy. The figure excluding the
CFHTLenS dataset is qualitatively very similar and thus is not shown here.

4 Discussion and conclusions

The analysis of the latest cosmological data [2] indicates a highly significant deviation from
scale invariance of the primordial power spectrum (PPS) when parameterized by a power
law or by a spectral index and a “running”. This offers a powerful tool to discriminate
among theories for the origin of perturbations and among inflationary models. In fact, the
deviation from scale invariance of the PPS is a critical prediction of inflation and is the only
signature that is generic to all inflationary models. It is therefore a vital test of the inflationary
paradigm.

One may wonder if a strong theory prior on the form of the power spectrum, such as the
power law prescription, can lead to artificially tight constraints or even a spurious detection
of a deviation from scale invariance, if the adopted model were not a good fit to the data.

Here we have built on the work of [7, 8] to reconstruct the PPS with a minimally
parametric approach, using the cross-validation technique as the smoothness criterion. We
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Figure 9. Triangular plots for the run with all the datasets combined. We refer to the value of the
spline function evaluated at the i-th knot as Ki.

consider a comprehensive set of state-of-the art cosmological data including probes of the
Cosmic Microwave Background, and of large scale structure via gravitational lensing and
galaxy redshift surveys. While the spline reconstruction used here is best suited for smooth
features in the PPS, it is also sensitive to sharp features if they have high enough signal-to-
noise.

We find that there is no evidence for deviations from a power law PPS, and that errors
of the reconstructed PPS are comparable with errors obtained with a power law fit. These
results should be compared with those presented in [9], to appreciate the increase in statisti-
cal power brought about by the latest generation of experiments. In fact with current data
a scale-invariant power spectrum is highly disfavoured even with this minimally parametric
reconstruction. In particular for our conservative choice of smoothness penalty parameter
values the significance of the departure from scale invariance is comparable with that ob-
tained when adopting the “inflation–motivated” power-law prior. Constraints no longer relax
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significantly when generic forms of the PPS are allowed.
Because of its flexibility, our reconstruction would be able to detect the tell-tale signature

of small scale power suppression induced by free streaming of neutrino if they are sufficiently
massive. Of course in reality the suppression happens in the late-time power spectrum, not
in the primordial one. But as we do not include the effect of neutrino masses in the matter
transfer function, the reconstruction would recover an “effective” small scale damping. Our
reconstruction detects no such signature, ruling out a model with a power law PPS and sum
of neutrino masses of 0.2 eV or larger.

Our results, which recover in a model independent way a power law power spectrum
with a small but highly significant red tilt, offer a powerful confirmation of the inflationary
paradigm, justifying adoption of the inflationary prior in cosmological analyses.
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Figure 10. How a non-zero neutrino mass would induce a power suppression in the reconstructed
power spectrum. Both method A.1–A.2 and B.1–B.2 give the same result R.1–R.2 at linear level.

Appendix: Reconstruction sensitivity to non-primordial effects

Figure 10A.1–10R.2 visualises the concept — exploited here — that in the reconstructed power
spectrum the effect of a non-zero neutrino mass is degenerate with a power suppression. This
is a good approximation especially on scales where the evolution is linear or mildly non-
linear, i.e., k < 0.2 h/Mpc. Consider a ΛCDM universe with massive neutrinos, where
all the cosmological parameters are known and with a power law PPS at the end of inflation
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(figure 10A.1). From these initial conditions we evolve the perturbations assuming massive
neutrino (different values for the total mass are shown). On small physical scales neutrino
free streaming [42] suppresses power 10A.2) yielding a resulting power spectrum shown in
figure 10R.1. Now we can think of an alternative method: implement the neutrino power
suppression (figure 10B.1) directly on the initial PPS as a deviation from a power law as shown
in figure 10B.2. This initial power spectrum is then evolved assuming massless neutrinos. The
linearity of the perturbation evolution equations guarantees that the generated matter and
CMB power spectra would be the same as in the first case (figure 10R.1). In figure 10R.2 we
can appreciate the fact that discrepancies in the prediction made in the two cases come from
non-linearities. For example, when considering neutrino with Σmν = 0.4 eV we expect a small
scale suppression in the linear power spectrum of 15% (figure 10A.2). The differences due
to non linearities exceed 1% only above k = 0.1 h/Mpc, and are never more than 4% at the
scales of interest. This means that in principle this approach we should be able to distinguish
the effect for Σmν ≥ 0.06 eV, even though it would prevent us to obtain an unbiased measure
in case of detection.

Another source of error that might contribute is given by the use of spline with a limited
number of knots. If the number of knots, or their position, is not suitably chosen, one could
be unable to reconstruct a given signal. It is not our case, with our choice of knots we have
verified that we can reconstruct any neutrino power suppression with a 10−3 accuracy.
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