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DEFINITIONS AND ABBREVIATIONS 

 

ADME  Absorption, Distribution, Metabolism and Elimination 

AUC  Area Under the Curve 

BPAR  Biopsy Proven Acute rejection 

C0  Trough concentration 

CL  Clearance 

CNI  Calcineurin Inhibitor 

CsA  Cyclosporine A 

CYP  Cytochrome P450 

EC-MPS Enteric-coated Mycophenolate Sodium 

FKBP-12 FK Binding Proteins-12 

IIV  Inter-Individual Variability 

IOV  Inter-Occasion Variability 

Ke  Elimination constant 

Ktr  Transfer rate constant 

L  Liter 

LSS  Limited Sampling trategy 

MAPB   Maximum A Posteriori Bayesian 

MPA  Mycophenolic Acid 

MMF  Mycophenolate Mofetil 

MT  Mean Transit Time 

mTor  Mammalian Target of Rapamycin 

npde  Normalized prediction distribution error 

Pgp  P-glycoprotein 

PK  Pharmacokinetics 

POD  post-transplant time 

PPAR  Peroxisome Proliferator-activated receptor 

PPC  Posterior Predictive Check 

PPK  Population Pharmacokinetics 

PXR  Pregnane-X-receptor 

SNP  Single Nucleotide Polymorphism 

rATG  Rabbit Anti-Thymocyte Globulin 

Tac  Tacrolimus 

TDM  Therapeutic Drug Monitoring 

pcVPC  Prediction-corrected Visual Predictive Check 
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1. RENAL TRANSPLANTATION  

 

Kidney transplantation is the treatment of choice for patients with end-stage chronic 

kidney disease, with better survival rates and quality of life  than patients on long-term 

dialysis 1. Renal Transplant is annually increasing reaching in 2015 a total of 2095 renal 

transplants in Spain according to the Spanish National Transplant Organization.  

 

Advances in immunosuppression have driven kidney transplantation from a scientific 

curiosity to the optimal treatment for patients with end stage kidney disease. Declining 

rates of acute rejection have led to improvements in short term kidney transplant 

survival, culminating in incrementally better long term patient and allograft outcomes.2 

However, long-term results remain suboptimal, immunosuppressant-related 

nephrotoxicity and chronic allograft rejection are the main causes of allograft loss3. 

 

1.1 Immunosuppression in renal transplant 
 
Immunosuppression management is not a one-size-fits-all practice. Many factors 

influence selection of a given regimen, the principal goal being to balance the benefit of 

rejection prevention against risk of over-immunosuppression. We believe that choice of 

a regimen should be guided by overall efficacy in addition to immunological and medical 

risks in individual patients or subpopulations. 

 

Recipients from renal transplant required lifelong administration of immunosuppressive 

medications to prevent organ rejection. Advances in kidney transplantation have 

occurred despite relatively few immunosuppression options. Attributing outcome 

improvement to specific therapies is best appreciated as an evolution through 4 

consecutive eras. 

 

Despite excellent short-term outcomes following kidney transplantation, long-term 

graft function and survival remain suboptimal as half-lives are currently estimated at 

only ~11 years1.  Early post-transplant identification of those individuals at highest risk 
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for developing late graft failure could permit targeted and individualized therapies 

aimed at improving long-term outcomes.   

 

The immunosuppressive strategies over the past three decades to reduce the incidence 

of allograft rejection and side-effects of the drugs, and to improve long-term graft and 

patient survivals. Despite these advances, there is lack of clear evidence of improvement 

of long-term graft survival because chronic allograft injury continues to cause late renal 

allografts losses 

 

Thus, the immunosuppressive therapy plays a key role to minimize rejections after solid 

organ transplantation. The widespread basis for immunosuppression in renal transplant 

is to use multiple drugs to work on different immunologic targets. The use of a multidrug 

regimen allows for their different pharmacologic activity at several key steps in the T-

cell activation or proliferation to lower dosages of each individual drug, thus producing 

less drug-related toxicity.4 

 

There are three main differentiate clinical immunosuppressive phases during the post-

transplant treatment: induction; maintenance and rescue therapy (Table 1). 

 

(Kumar A, Shrestha BM. 2016)5 
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In renal transplant, induction therapy consists on to the administration of high doses of 

immunosuppressants at the time of transplantation, generally prior to organ 

reperfusion. The goal of induction therapy is to prevent acute rejection during the early 

posttransplantation period by providing a high degree of immunosuppression at the 

time of transplantation. Induction therapy is often considered essential to optimize 

outcomes, particularly in patients at high risk for poor short-term outcomes. All of the 

induction immunosuppressive agents currently used are biological agents and are either 

monoclonal (muromonab-CD3, daclizumab, basiliximab, alemtuzumab) or polyclonal 

(antithymocyte globulin [equine] or antithymocyte globulin [rabbit]) antibodies. No 

standard induction immunosuppressive regimen exists for patients 

undergoing renal transplantation. Antithymocyte globulin (rabbit) is the most 

commonly used agent, whereas basiliximab appears safer. The choice of regimen 

depends on the preferences of clinicians and institutions6. (see table 1) 

 

Rescue agents are used when a transplant rejection is diagnosed. Rejection is identified 

as acute cellular rejection or acute antibody mediated rejection. Mild cellular rejection 

used to be treated with corticosteroids, whereas moderate and severe acute cellular 

rejection is typically treated with rATG. While, the antibody mediated rejection is 

treated with plasmapheresis, intravenous immunoglobulins and rituximab. Finally, if a 

refractory antibody mediated rejection is present a proteasome inhibitor (bortezomib) 

and C5 inhibitor (eculizumab) are used. 

 

Maintenance immunosuppressive therapy is administered to all renal transplant 

recipients to prevent acute rejection and renal allograft lost. Although an adequate level 

of immunosuppression is required to dampen the immune response to the allograft, the 

level of chronic immunosuppression is decreased over time (as the risk of acute rejection 

decreases) to help lower the overall risk of infection and malignancy. These risks directly 

correlate with the degree of overall immunosuppression. 
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The major immunosuppressive agents that are available in various combination 

regimens7–9. The current golden standard of immunosuppressive drug treatment after 

kidney transplantation, i.e., a combination therapy of tacrolimus and mycophenolate 

mofetil (MMF), is effective but fraught with side effects10. 

 

Figure 1.  The different Immunosuppressive drug targets on the T-Cell  

 

APC: Antigen Presenting Cells; IL-2: Interleukyne 2; MHC-II: Major 

Histocompatibility Complex class II; MMF: Mycophenolate Mofetil; NFAT: Nuclear 

factor of activated T-cells; TCR: T-Cell Receptor; TOR: Target of Rapamycin.  

(Jon A Kobashigawa and Jignesh K Patel. 2006)11 
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1.1.1. Calcineurin Inhibitors (CNIs): Tacrolimus and Cyclosporine 

 

The CNIs Tacrolimus (Tac) and Cyclosporine (CsA) both binds to different cytoplasmic 

proteins (cyclophilin and FK binding protein-12 for CsA and Tac, respectively) inhibiting 

the calcineurin phosphatase. This inhibition prevents the dephosphorilation and 

translocation of a nuclear factor of activated T-cells (NFAT) involved in the transcription 

of several cytokine genes that promote T-cell activation and expansion.8 

 

CsA12 is nowadays almost not prescribed and it is not recommended to switch between 

formulations. Furthermore, CsA is currently being outclassed by Tac due to its better 

efficacy. In fact many different hospitals centers have established a Tac-based 

maintenance therapy during the last decade. 

 

Tacrolimus10 was approved by the regulatory agencies during the mid ‘90s to prevent to 

graft rejection in transplant recipients. Over the last decade tacrolimus has become the 

calcineurin inhibitor of choice for the prevention of rejection in renal transplantation. 

Tacrolimus exerts its immunosuppressive effects by binding to the intracellular protein 

FKBP-12 to form an inhibitory complex that blocks the phosphatase activity of 

calcineurin. A chain of events leads to a complete inhibition of translocation of nuclear 

factor of activated T-cells, thus preventing cytokine gene transcription and, ultimately, 

inhibition of T-lymphocyte activation and proliferation.  The extensive use of tacrolimus 

in renal transplantation, coupled with the potential for non-compliance with a standard 

twice-a-day dosing regimen, has led to the development of a once-daily tacrolimus 

formulation. 

 

CNIs treatment should be initiated immediately before the chirurgical procedures13. The 

most relevant side effects of CNIs are acute and chronic nephrotoxicity, as well as 

neurotoxicity, hypertension, hyperlipidemia, and posttransplantation diabetes.  

 

As the use of CNIs have significantly reduced the outcomes in the early stages of renal 

transplant. Two main studies CAESAR and ELITE-SYMPHONY studied the efficacy and 

safety of CNIs. CAESAR study 14, a multicentric study using 536 de novo transplant 
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patients focused in the use of CsA. Three groups were defined: (1) standard-dose 

cyclosporine, (2) daclizumab induction with low-dose cyclosporine (target CsA C0 50–

100 ng/mL), and (3) daclizumab induction with low-dose cyclosporine, which was 

withdrawn at 6 months. Concomitantly, all groups received MMF and prednisone. The 

conclusions of the study were that CsA withdrawal groups presented a higher frequency 

of BPAR and graft damage, while low-dose CsA was not inferior to standard-dose CsA in 

terms of BPAR or adverse events. 

 

The ELITE-SYMPHONY study 15,16 was also a multicentric study using 1645 renal 

transplant patients. This study focused into four different immunosuppressive 

therapies: (1) standard-dose cyclosporine (target cyclosporine trough, 150–300 ng/mL 

for 3 months, followed by 100–200 ng/mL), (2) daclizumab induction with low-dose 

tacrolimus (target tacrolimus trough, 3–7 ng/mL), (3) daclizumab induction with low-

dose SRL (target sirolimus trough, 4–8 ng/mL), or (4) daclizumab induction with low-

dose CsA (target cyclosporine trough, 50–100 ng/mL). All patients received MMF and 

Prednisone as concomitant therapy. The study showed that Tac treated group had 

better renal function and graft survival compared with the other immunosuppressive 

therapies even after three years of follow-up. Furthermore, SRL treated group 

presented higher adverse events compared to the other treatment groups. The 

conclusion of this study group is that using Tac low-dose provided the best efficacy and 

safety profile in renal transplant. Results of these two previous studies lead to suggest 

by Improving Global Outcomes (KDIGO) group that tacrolimus should be the first-line 

CNI used.13 
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1.1.2. Mycophenolic acid (MPA) 

 

Mycophenolic acid (MPA) is the principal antiproliferative drug used as coadjuvant to 

CNI in the maintenance treatment in renal transplantation. The introduction of MPA in 

the last two decades has manifestly prevailed over the use of azathioprine, especially 

due to the specificity in the inhibition of the T-cell proliferation. 

 

MPA mechanism of action is by inhibiting inosine monophosphate dehydrogenase, a 

vital enzyme in the de novo pathway of guanosine nucleotide synthesis. Inhibition of 

this enzyme prevents the proliferation of most cells that are dependent on the de novo 

pathway for purine synthesis, including lymphocytes. Specifically, the inhibition of 

inosine monophospate dehydrogenase, arrests cell cycle in the S phase.8 

 

MPA was firstly presented as a prodrug Mycophenolate Mofetil (MMF)17 and afterwards 

it was presented in enteric-coated mycophenolate sodium (EC-MPS)18. The 

recommended starting dosage for MMF is one gram given twice daily, and 720 mg given 

twice daily for the enteric-coated mycophenolate sodium that is the equimolar 

equivalent of MMF which may lead to the recommended target exposure AUC between 

30 and 60 mg·h/L.  Principal adverse events related to MPA are urinary tract infection, 

pain, hypertension and diarrhea. 

 

1.1.3. mTOR inhibitors 

 

The mTOR inhibitors sirolimus19 and everolimus20 are macrolide antibiotics that inhibit 

lymphocyte activation and proliferation. Intracellularly, both drugs form a complex with 

FKBP-12 that binds to and modulates the activity of mTOR, a key regulatory kinase in 

cytokine-dependent T-cell proliferation8. The modulation and inhibition of mTOR stops 

the cell-division cycle in the G1-to-S phase. Furthermore, the hematopoietic and 

nonhematopoietic cells-lines are affected by both mTOR inhibitors 

 

The oral dosage of sirolimus19 for patients with low to moderate immunological risk of 

rejection is a loading dose of 6 mg and then a 2 mg daily and for patients with high 
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immunological risk of rejection it is recommended a loading dose of 15 mg and then a 5 

mg daily dose. Everolimus20 dosage is 0.75 mg twice daily without loading dose 

administered in conjunction with CsA and corticosteroids. 

 

Early posttransplant complications in particular the potential to prolong or increase the 

occurrence of delayed graft function, as well as poor wound healing, lymphocele 

formation, pneumonitis, and mucositis, have limited the de novo use of sirolimus21. 

Everolimus presents a similar adverse event profile compared to sirolimus. The principal 

adverse events recorded for mTor inhibitors (Sirolimus and Everolimus) are peripheral 

edema, hypertriglyceridemia, hypertension, hypercholesterolemia, increased 

creatinine, constipation and headache among others 
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2 TACROLIMUS IN RENAL TRANSPLANT  
 

Tacrolimus displays a considerable interpatient and intrapatient variability associated 

with its pharmacokinetics (PK) (ADME: Absorption, distribution and elimination 

(metabolism and excretion) processes), pharmacogenetics, however little is known 

about the magnitude of the pharmacodynamic (PD) variability of tacrolimus. Multiple 

factors have been identified as contributors of variability as a consequence of its 

complex pharmacokinetics. 

 

2.1 Pharmacokinetics 

2.1.1 Absorption 

 
Tacrolimus is a lipophilic drug with rapid absorption, however in many cases it has a 

significant lag time prior to absorption, this causing large variability after its oral 

administration22. Studies in pig mucosa have shown that Tacrolimus is mainly absorbed 

in the duodenum and jejunum 22. Overall, peak concentrations are observed between 

0.5 and 1 hour post-administration, however, slower absorption processes and 

secondary peaks can occur due to variability in either the gastric emptying, that strongly 

impacts the rate and extent of intestinal absorption, or in the dissolution rate at the 

lumen due to its high lipophylicity. In that sense, it should be noted that tacrolimus 

belongs to Class II of the biopharmaceutic classification system, showing low solubility 

and high lipophilicity 23. 

 

2.1.2 First pass effect and bioavailability 

 
Tacrolimus presents a poor and variable bioavailability (Mean value of 25% and ranging 

from 5% to 95%)24. The main contributing factors to this low and variable bioavailability 

are: i) a low solubility, ii) a pre-systemic metabolism through intestinal and hepatic 

CYP3A iii) a drug efflux into the lumen by the PgP of which it is substrate iv) CYP3A and 

PgP genetic polymorphisms. 
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In effect, the P-glycoprotein (Pgp) present in the gut might lower intracellular 

concentrations of tacrolimus in the enterocyte by pumping absorbed drug back out into 

the intestinal lumen25 resulting in variable pass of tacrolimus into systemic circulation. 

In fact, the presence of Pgp in the gut wall and the high affinity of some CYP3A 

substrates to this transporter are postulated to reduce the potential for saturating the 

enzymes, thus increasing first-pass metabolism for compounds which otherwise would 

have saturated CYP3A26. However, the Pgp effect on tacrolimus first pass is yet 

controversial as some pre-clinical studies indicated the non-relationship between Pgp 

and tacrolimus first pass27,28. 

 

Pre-systemic metabolism through intestinal CYP3A is another of the principal causes of 

the observed variability in biovailability. A study in renal transplant patients 29 showed 

that in the absence of ketoconazole, a potent CYP3A inhibitor in the gut and liver, 

tacrolimus first pass metabolism was about 47% higher than in presence of it. This 

confirms the contribution of CYP3A to the extensive and variable metabolism of 

tacrolimus in the gut. 

 

2.1.3 Distribution 

 
Tacrolimus binds extensively to erythrocytes in blood, while in plasma, it is mainly bound 

to α1-acid glycoprotein and to a lesser extent to albumin as well as to other minor 

proteins30–32. Highly variable plasma protein binding has been reported among hepatic 

transplant patients with mean unbound fractions of 0.47%, ranging from 0.07 to 0.89%. 

Distribution to erythrocytes is temperature and concentration-dependent and results in 

blood to plasma ratios ranging from 15 to 35 among patients29.This is the reason why 

whole blood concentrations are used when investigating Tac pharmacokinetics and 

TDM.  

 

Blood distribution and protein binding of tacrolimus vary significantly over the post-

transplantation period, leading to changes in its unbound fraction 32. In fact, the increase 

of tacrolimus whole blood concentrations observed in several studies 33 could be 

attributed to an increase in erythrocyte levels over the post-transplantation period as 
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the clinical condition of the patients improved. Thus, the erythrocyte fraction remains 

the main reservoir for tacrolimus in blood. 

 

2.1.4 Elimination 

 
Elimination of tacrolimus occurs mainly by metabolism in the liver. Tacrolimus is 

considered a restrictive clearance drug. The mean total blood clearance is of 37.5 

ml/min, about 3% of the liver blood flow. Renal clearance is less than 1% of the total 

blood clearance. The  elimination half-life is about 12 h (ranging from 4 to 41 h)34,35. 

 

Metabolism occurs in the liver , through the cytochrome P450, in particular, the CYP3A 

enzymes subfamily24 34 (CYP3A4 and CYP3A5 isoforms). In contrast to cyclosporine, 

CYP3A5 may play a more dominant role in the metabolism of tacrolimus than CYP3A4. 

Among all the formed metabolites in renal and liver transplant patients22,36 (demethyl-, 

demethylhydroxy-, didemethyl-, didemethylhydroxy- and hydroxy-tacrolimus), 

demethyl- and demethylhydroxy tacrolimus are the most prevalent representing the 3% 

and 10 % of the Tacrolimus AUC, respectively 22.  

 

Tacrolimus metabolites are mainly excreted in bile (90 %)34, while the urinary excretion 

is only around 2.4%24. Metabolites blood concentration increases37 when a biliary 

obstruction takes place. 

 

2.2 Pharmacogenetics  

 

During the last years, different SNPs have been found to explain the variability on 

Tacrolimus pharmacokinetics. The CYP3A4 and CYP3A5 subfamilies are the most 

attributed to Tacrolimus metabolism. The two CYP3A isoforms contribute to the high 

variability in the Tacrolimus PK 38. A variation in a single nucleotide (SNPs) at a specific 

position in the genome, may lead in the CYP3A genome to different Tacrolimus 

exposure. 
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A SNP in the CYP3A5 (rs776746) was strongly associated with CYP3A5 protein 

expression. Individuals carrying at least one CYP3A5*1 allele ( wild-type allele) were 

found to express large amounts of CYP3A5 protein, whereas individuals homozygous for 

the CYP3A5*3 allele did not express CYP3A5 protein39. In this sense, kidney transplant 

recipients carrying at least one CYP3A5*1 allele (CYP3A5 expressers) required a higher 

tacrolimus dose to reach the target whole-blood concentration than CYP3A5 non-

expressers (i.e. patients homozygous for the CYP3A5*3 allele) 40–43. Nevertheless, the 

CYP3A5*3/*1 SNP alone does not explain the major variability in Tacrolimus exposure. 

 

The CYP3A4*1B SNP (rs2740574) is another polymorphism also related to tacrolimus 

pharmacokinetics. Although there is a higher dose requirement for patients presenting 

this variant allele, the CYP3A4*1B SNP has not been a consistent finding and the clinical 

applicability is questioned 44. 

 

In the recent years, the CYP3A4*22 (rs35599367; C>T) in intron 6 has an allele frequency 

of around 5 % in Caucasians. The T-variant allele has been linked to reduced CYP3A4 

mRNA expression and lower in vitro CYP3A4 enzyme activity45. CYP3A4*22 is associated 

with reduced kidney function in CNIs-treated kidney transplant patients. Subsequently, 

in 185 cohort of renal patients, Elens et al that patients carrying the T-variant allele 

presented a lower tacrolimus dose requirement than C-homozygous patients46. 

Therefore, CYP3A4*22 is an important marker for identifying reduced metabolism of 

CYP3A4 drugs based on inheritable factors.  

 

In vitro studies showed that the catalytic activity towards Tacrolimus is 1.6-fold higher 

for CYP3A5 than for CYP3A4. Furthermore, in vitro data demonstrated that the 

importance of CYP3A5*3 allelic status is dependent on the concomitant CYP3A4 activity 

and that the relative contribution of CYP3A4 or CYP3A5 to Tac metabolism depends on 

the amount of each counterpart47,48. In this sense, Elens et al showed that the 

CYP3A4*22 SNP is not correlated to the CYP3A5*3 and according to the functional 

defect associated with CYP3A variants, the CYP3A genotypes were classified in 3 

different clusters46,49: 
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- Extensive metabolizers: patients carrying a CYP3A5*1 allele and with the 

CYP3A4*22 CC genotype 

- Intermediate metabolizers: patients either CYP3A5 expressers carrying a 

CYP3A4*22 T-variant allele or CYP3A5 non- expressers with the CYP3A4*22 CC 

genotype 

- Poor metabolizers: patients CYP3A5 non-expressers carrying a CYP3A4*22 T-

variant allele. 

 

For Tacrolimus exposure, extensive metabolizers (EM) require a higher Tac dose than 

intermediate metabolizers (IM) who, at their turn, require higher Tac dose than poor 

metabolizers (PM). The CYP3A4*22 has also been statistically significant when included 

in new dose-algorithm50,51. However, the CYP3A4*22 due its poor prevalence52, in 

particular the poor metabolizers phenotypes, not all research groups could have 

confirmed this finding53. 

 

The Nicotinamide adenine dinucleotide phosphate (NADPH)-CYP oxidoreductase (POR) 

is another SNP related to Tac exposure. Different polymorphism in the POR gene affects 

to the CYP-POR complex leading to alterations in the CYP activity54. Recently, it has been 

described that POR*28 (rs1057868; C>T) may affect the dose-requirements. CYP3A5 

patients carriers of T-allele for POR*28 required a higher dose than patients CYP3A5 

expressers of POR*28 CC homozygous allele55,56. On the other side, the CYP3A5 non-

expressers are not affected by the POR*28 SNP for Tacrolimus  dose-requirement43. 

 

The Pgp ABCB1 3435T variant allele was associated with 2-fold lower levels of Pgp in the 

duodenum, and resulted in 50% higher plasma concentration of digoxin. This effect 

would be explained by less Pgp presence on the apical surface of the membrane would 

remove less drug from the cells, resulting in increased bioavailability. Anglicheau et al 

postulated that these SNPs are associated with Tac PK variations in renal transplant 

recipients57. On the other side, the ABCB1 expression in the brush border of proximal 

tubular epithelial cells and more distally in the renal tubule may contribute to renal 

elimination, whereas ABCB1 expression at the canalicular surface of hepatocytes 

controls excretion into bile58,59.  
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Finally, other new SNP have been described by their influence on Tac metabolism such 

as the human pregnane X receptor (PXR; encoded by NR1I2)60,61, a nuclear transcription 

factor that regulates the expression of CYP3A and ABCB1; the peroxisome proliferator-

activated receptor (PPAR)-a genetic determinant of CYP3A4 activity62; or special sub-

population such as the CYP3A4*1G SNPs in Chinese transplant patients63. 

 

 

2.3 Therapeutic Drug Monitoring of Tacrolimus  

 

An optimal immunosuppressive therapy is essential for the graft survival. The key point 

of immunosuppressive agents, with narrow therapeutic index, such as Tacrolimus, is to 

exhibit the desired therapeutic effect with an acceptable tolerability within a narrow 

range of blood concentrations64. 

 

As it has been previously described, the high variability in TAC PK leads to an increased 

risk of therapeutic failure if these agents are used at the same dose in all the renal 

transplant patients65. Therefore, the principal objective for the clinicians is to achieve 

the optimum equilibrium between therapeutic efficacy and the incidence and severity 

of adverse events. Understanding and acknowledging all individual factors that 

influence Tac pharmacokinetics (i.e. patient’s age, body weight, pharmacogenomics, 

concomitant medication, biochemical factors) can help to find the correct Tacrolimus 

dose for each patient thus reducing the adverse events.  

 

During the last two decades, the high correlation between Tacrolimus blood 

concentrations and clinical outcomes have supported the use of therapeutic drug 

monitoring (TDM)64. 

 

TDM is universally applied to guide tacrolimus dosing. In most transplant centers 

tacrolimus (predose) concentrations are measured frequently, especially in the early 

phase after transplantation. Target concentrations have been empirically defined from 

multiple ranges from 5 to 12 ng/mL35. Therefore, the time that patients are exposed to 
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sub- or supratherapeutic tacrolimus concentrations is therefore likely to be limited. In 

most cases, TDM helps to correct any (genetically, biochemical or demographic) inter-

individual differences in drug exposure.  

 

However, pharmacodynamic variability due to either genetic or other factors should not 

be dismissed, although, low attention has been focused on it yet. In daily clinical 

practice, transplant physicians are confronted with patients who experience toxicity 

despite having tacrolimus concentrations within what is considered the therapeutic 

window. Likewise, certain patients may reject their grafts at (supra)therapeutic 

tacrolimus concentrations, while others do not reject at lower exposure. The genetics 

of the pharmacodynamics of tacrolimus have hitherto been less well-investigated than 

the genetics of tacrolimus pharmacokinetics. 

 

Multiple studies stress the importance of between- and within-patient variability in 

Tacrolimus disposition, related to pharmacokinetics PK and pharmacogenetics PG64,66. 

However, the relationship between Tacrolimus whole blood concentrations and efficacy 

or toxicity has not yet been fully established. In any case, TDM is a key factor to maintain 

Tacrolimus exposure within therapeutic range, thus avoiding chronic under or over 

exposure, that is essential for graft survival and limiting adverse events64.  

 

The best measure of Tacrolimus exposure is the area under the curve (AUC) which 

correlates the best with all outcomes. However, it requires an intensive sampling so that 

is very difficult to be implemented in the clinical routine and very difficult to be 

financially justified67. 

 

As consequence, two different valid and major strategies for monitoring Tracrolimus 

exposure have been currently applied in the hospital transplant units: trough 

concentrations (C0) monitoring or limited sampling strategy (LSS). 

 

- Different clinical studies have demonstrated a variable but high correlation 

between Tacrolimus trough concentrations (C0) and Tacrolimus AUC values. 

Thus, supporting the use of C0 as surrogate of Tacrolimus exposure. 
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Nevertheless, some limitations may apply to this approximation, the high inter-

individual and intra-individual variability associated with C0, as well as, its 

tendency to increase with post-transplantation time. 

 

- Another strategy consists on the estimation of AUC from a limited sampling 

strategy (from 2 to 4 blood samples during the first 8 hours post-dose). Several 

authors have validated their own sampling strategies (cites) based on at least 

one sample close to the trough concentration (C0 or C8), and one sample close 

the peak concentration (C1, C2, C3). 

 

Due to its practicality and cost-effectiveness, the C0 strategy is nowadays the most 

common used in the clinical practice. 

 

However, TDM remains an incomplete tool. It requires achieving the steady state 

conditions before applying any dose change which may have already passed three days, 

depending on Tac half-life. Understanding which covariates influence Tac PK would be 

the first step through dose individualization. In fact, it is important to quantify the 

influence of each covariate on Tac PK variability.  To better adjust and predict Tacrolimus 

exposure new PK tools, such as population pharmacokinetics (PPK), have been 

developed to provide information on typical PK parameter values and variability 

associated with these values within the population. Furthermore, PPK models can offer 

how specific patient covariates such as age, weight or genotype influence the PK of a 

drug. 

 

The main alternative is to use a PPK model in a Maximum A Posteriori Bayesian (MAPB) 

forecasting technique to estimate total drug exposure based on a limited number of 

drug–concentration measurements generally taken in the first few hours of the dosing 

interval, for patient convenience. The prerequisite for efficient Bayesian estimation is 

the availability of an accurate pharmacokinetic model to obtain unbiased and precise 

estimates of the individual and population parameters. 
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3 PHARMACOMETRICS 
 
The term Pharmacometrics first appeared in 1982, and since then its importance in 

making decisions and optimizing in drug development and pharmacotherapy, has been 

widely recognized. Nowadays pharmacometrics is defined as the science of developing 

and applying mathematical and statistical methods to characterize, understand and 

predict drugs’ pharmacokinetics and pharmacodynamics, biomarkers and outcomes68. 

In a clinical scenario pharmacometrics can contribute to design safe and effective dosing 

regimens for use in a patient population. In the last decades, the advent of population 

pharmacokinetic-pharmacodynamic modeling approaches has represented a major 

development for this discipline. 

 

3.1 Population Pharmacokinetics 
Population pharmacokinetics is defined as the study of variability in drug concentrations 

between individuals under the same standard dosage regimen68. Population 

pharmacokinetics seeks to identify the measurable pathophysiologic factors that cause 

changes in the dose-concentration relationship and the extent of these changes so that, 

if such changes are associated with clinically significant shifts in the therapeutic index, 

dosage can be appropriately modified. 

 

In classical pharmacokinetic studies a sufficient number of samples must be collected 

for the PK analysis to be performed on an individual subject basis, whether the aim of 

the analysis is simply the computation of noncompartmental parameters or it is the 

estimation of the parameters from a PK model through nonlinear regression or other 

numerical analyses techniques. This is unfeasible when only sparse data are available 

such as in the case of traditional therapeutic drug monitoring, with dose assessment 

following the collection of few concentrations. Development of nonlinear mixed effects 

models for pharmacokinetic data has supposed to be a significant contribution for 

pharmacometrics. These models were firstly developed by Sheiner and Beal69–71 and 

implemented in NONMEM® and subsequent softwares. This has enhanced the ability to: 

i) evaluate sparse data, ii) pool rich and sparse data, iii) pool data from different studies, 
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subject, doses, and other experimental conditions and iv) simulate new circumstances 

of drug product use. 

 

On the other hand, classical PK analysis require two steps as follows: firstly, the 

individual PK parameters by non-compartmental or compartmental analysis must be 

estimated and then, a statistical analysis should be performed to know the mean 

tendency of PK parameters in the population as well as the associated variability. In a 

second step, a multivariate analysis is required to find potential correlations between 

plausible covariates and the calculated PK parameters. Apart from the fact that rich data 

are required, the principal disadvantages of the two-step analysis are, overestimation 

of variability associated with the PK parameters and no discrimination between inter- 

and intra-patient variabilities. 

 

Although these methods have been used for a long-time, they have been replaced by 

one-step population PK analysis. A population PK analysis allows: 

 

• To estimate the typical value of the PK parameters from the study population 

• To quantify the magnitude of the variability related to these PK parameters 

between the study subjects. 

• To identify demographic (body weight, age, sex), pathophysiological (hepatic or 

renal function), pharmacogenetics (Single Nucleotide Polymorphism), or 

concomitant drug-related factors that may influence or explain the variability 

found between the study subjects. 

• To quantify the magnitude of the unexplained or error variability in the study 

population (within individual day-to-day or week-to-week kinetic variability 

and/or that due to errors in dosage or concentration measurements). 

 

Many mathematical-statistical methods have been developed to build PPK models to be 

later implemented in the clinical practice for therapeutic drug monitoring. These 

methods can be classified, from a statistical point of view, based on the distribution of 

the PK parameters, as parametric or non-parametric. Parametric methods assume a 
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normal or log-normal distribution of the PK-parameters, whereas non-parametric 

methods do not make any assumption with regard to the data distribution 

 

NONMEM®72 is one of the most commonly used  NONlinear Mixed Effects Modelling 

tool in population pharmacokinetic — pharmacodynamic (PK/PD) analysis. The software 

was developed by the NONMEM® Project Group at the University of California, San 

Francisco. The fit of drug concentrations (or dependent variable) and independent 

variable data by models is performed using nonlinear regression methods. Furthermore, 

mixed effects refer to the model parametrization that combines fixed and random 

effects. In particular, the fixed effects (THETA) correspond to the PK parameters as well 

as the regression coefficients of the covariates included in the model to describe part of 

the unexplained interindividual variability. On the other hand, the random effects 

correspond to the unexplained interindividual variability (ETA) reflecting the difference 

between an individual’s parameter value and the population value, and also to the 

variability (EPSILON) reflecting the difference between the observed data for an 

individual and the model’s prediction (also known as residual error)73,74. The nonlinear 

mixed effects modeling allows the simultaneous analysis of the data to determine the 

fixed (PK parameters) as well as the random effects (interindividual variability and 

residual error). 

 

3.1.1 Maximum a Posteriori Bayesian Estimation 

 
The population pharmacokinetic analysis, provides prior information about values of 

typical PK parameters and variability associated with them and about the predictive 

factors of such variability within the target population. It has shown to be a useful tool 

to better predict Tacrolimus exposure in each patient when compared to weighted 

nonlinear least squares regression methods. The process starts by considering the 

population PK parameters provided by the model as prior information. Then, new data 

from the patient is considered and the individual a posteriori PK parameters are 

predicted by using the Maximum A Posteriori Bayesian (MAPB) forecasting technique. 

This can be feasible from a limited number of drug–concentration measurements as 

required in the clinical setting. MAPB estimation has been increasingly used in the past 
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decades for estimating individual pharmacokinetic parameters. MAPB analysis is 

derived from Bayes theorem, that introduced the concept that prior information can be 

combined with new observed data75. The fitting procedure minimizes the square 

difference between the measured concentration and its estimate (weighted by the 

reciprocal of its variance) and at the same time minimizing the squared difference 

between each population PK parameter and each MPA Bayesian posterior estimate for 

that patient (weighted by the variance of the model parameter values). Thus, the best 

overall fit to both types of data will get the MPA Bayesian posterior model for each 

individual patient. The credibility of the two types of data will determine where the fit 

will go. A precise analytical assay will pull the fit towards the patient’s data. A very 

uniform population model will pull the individual parameters towards the population 

prior parameters. Moreover, for individuals with scarce data, the estimates of the 

individual’s parameters will be weighted more by the population parameters than the 

influence of their data. The individual parameters will shrink then towards the 

population values, this phenomena called as shrinkage. The extent of shrinkage has 

consequences on individual predicted parameters and individual predicted 

concentrations. Then, optimal study designs and analytical assays will be the 

prerequisites to achieve robust population pharmacokinetic models for unbiased and 

precise Bayesian estimation when minimum one observation per patient is available. 

 

𝐵𝑂𝐹 =  ∑ ⌊
(𝐶𝑜𝑏𝑠 − 𝐶𝑒𝑠𝑡)2

𝑉𝑎𝑟 𝐶𝑜𝑛𝑐 𝑒𝑠𝑡
⌋ + ∑ ⌊

(𝑃𝑂𝑃 𝑝𝑎𝑟 − 𝑃𝑖𝑝𝑎𝑟)2

𝑉𝑎𝑟 𝑃𝑂𝑃 𝑝𝑎𝑟 𝑒𝑠𝑡
⌋ 

 

Despite of this, the major advantage of MAPB estimation with respect to weighted 

nonlinear regression methods, is the flexibility to calculate individual pharmacokinetic 

parameters from limited and sparse blood samples. Pre-specified time-points for 

concentration measurements are not mandatory, this making the logistics easier in the 

outpatient setting. MAPB estimation is the most common method used in TDM for dose 

individualization. In addition, MAPB estimation is also commonly used to design optimal 

(OSS) or limited sampling strategy (LSS). A LSS is the best combination of concentration-

time points which will provide the most accurate estimation of one or more individual 

PK parameters or exposure indices (AUC)76 when compared to full sampling strategies. 
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3.2 Tacrolimus Population PK Models 

 

Several Tac population pharmacokinetic models developed using the non-linear mixed 

effects methods have been reported in adult renal transplant patients (See Table 

below).  Zhao et al 79 have revised and externally evaluated some of them. This allowed 

to compare models differing in i) analytical methods used for measurement of 

concentrations used to develop the model, this being a relevant aspect to be taken into 

account when a published model is going to be applied as support during the TDM ii) 

number of Patients/samples included iii) identified covariates as predictors of 

interindividual variability, among other aspects.  

Up until now, the majority of them were based on a two-open compartment model with 

first order absorption. Some models tried to better characterize the delayed absorption 

process of Tac using transit compartment models (i.e. Erlang distribution model). Most 

of the models included inter-occasion variability associated with the main PK 

parameters to better describe PK variability of parameters from one occasion to 

another. In general, the models achieved to include all well-known clinically plausible 

covariates such as demographical (age, weight, fat free mass), biochemical 

(hematocrit33), the type of Tac formulation77, CYP3A5 41,42,78 and CYP3A446,79,80 

genotype, which may explain the Tac PK variability. Some of them also considered the 

inclusion of post-transplant time (POD) although this variable is considered as a 

surrogate for many time-dependent factors such as albumin, HCT, corticosteroids dose, 

among other confusing factors. The dose-dependency in clearance was also 

incorporated in two of the revised models (posar les dues cites) by Zhao et al79,. Although 

the real cause of non-linearity could not be elucidated it was rather related to the POD 

alterations in absorption due to recovery of gastrointestinal function, the activity of P-

glycoprotein, and CYPA3 or concentration dependent–binding to erythrocytes among 

others.  

 
Analyzing all the information which they provide, the most relevant aspects (model type, 

population PK parameters and model variability explanation) are highlighted in the table 

below. It is worth noting that the most influential covariate in all of them when assayed 



  FRANC ANDREU SOLDUGA 

29 
 

was the genetic polymorphisms of CYP3A. The prediction-based and simulation-based 

performances were evaluated for all the models. The population prediction error 

calculation as accuracy measure allowed to know the credibility of using the population 

PK parameters as priors and normalized prediction distribution errors (npdes), indicated 

the feasibility of the model to be used for new scenario simulations.  

 
According to these results, so far, the population PK model that was reported by Storset 

et al33 was superior to the others regarding to prediction capability but did not show 

appropriate capability to be used for simulations. It is worth noting that this model 

included the most relevant well-known clinically covariates, thus indicating, that dosage 

of Tac based on hematocrit, CYP3A5 polymorphism and demographic characteristics (fat 

free mass and/or age) could lead to a better Tacrolimus exposure. 

 

Therefore, further investigation is still required to better explain interindividual 

variability and to identify the confusing factors leading to the well-known POD influence 

in Tac PK. 
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. 

No. of Patients Pharmacokinetic model PK Parameters Model Variability 

Benkali et al61 

32 model building 
Absorption: Erlang model with 3 transit compartments. 

Disposition: 2-Compartment model with first-order elimination 

ktr = 6.5 h-1 

CL/F = (θ1/HCT) L/h 

θ1 =863 

V1/F = 147 L 

V2/F= 500L (fixed) 

Q/F = 60 L/h 

IIV ktr = 15 % 

IIV CL/F = 30 % 

IIV V1/F=26% 

IIV Q/F = 63 % 

IOV ktr =24% 

IOV CL/F=27% 

IOV V1/F = 71 % 

Prop RE = 10 % 

Add RE = 1.5ng/mL  

Benkali et al81 

29 model building 

+ 

12 external 

evaluation 

Absorption: Erlang model with 3 transit compartments. 

Disposition: 2-Compartment model with first-order elimination 

ktr = 3.3 h-1  

CL/F = θ1 (1 + θ2)CYP3A5 L/h 

θ1 = 19  

θ2 = 1.15  

V1/F = 486 L  

K12 = 0.13 h-1  

K21 = 0.09 h-1  

CYP3A5 = 0 for CYP3A5 non-

expresser 

CYP3A5 = 1 for CYP3A5 expresser  

IIV ktr = 52 % 

IIV CL/F = 35 % 

IIV V1/F=53% 

IIV K12 =54% 

Prop RE=8% 

Add RE = 0.7ng/mL  
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of Patients Pharmacokinetic model PK Parameters Model Variability 

Woillard et al82 

73 model 

building 

Absoprtion: Erlang model with 3 transit compartments. 

Disposition: 2-Compartment model with first-order elimination  

ktr = (θ1 θ2
FORM) h-1  

θ1 = 3.34  

θ2 =1.53  

CL/F = θ3 ((HCT/35)θ4 (θ5
CYP3A5) L/h 

θ3 =21.2  

θ4 =–1.14  

θ5 =2.0  

V1/F= θ6 (θ7 FORM) L 

h6 =486  

h7 = 0.29  

V2/F = 271 L  

Q/F = 79 L/h  

FORM = 0 patient received Advagraf®; 

FORM = 1; patient received Prograf® 

CYP3A5 = 0 for CYP3A5 non-expresser, CYP3A5 = 1 for 

CYP3A5 expresser  

IIV ktr = 24 %  

IIV CL/F = 28 % 

IIV V1/F=31% 

IIV V2/F = 60 % 

IIV Q/F=54% 

IOV ktr =33% 

IOVCL/F=31% 

IOV V1/F=75% 

Prop RE=11.3% 

Add RE = 0.71ng/mL  
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of Patients Pharmacokinetic model PK Parameters Model Variability 

Musuamba et al83 

65 model 

building 

Absorption: first order + lag time 

Disposition 2-Compartment model + first order elimination 

ka = 0.45 h-1  

Lag time = 0.1 h  

CL/F = θ1 + CYP3A5 + ABCB1 + (HCT/21) θ2 L/h  

θ1 = 16.3  

θ2 =20.6  

V1/F = 86.4 L  

V2/F = 1115 L  

Q/F = 58.2 L/h  

Where CYP3A5 = 0 for CYP3A5 non-expresser 

CYP3A5 = 15.4 for CYP3A5 expresser 

ABCB1 = 0 for CC-GG-CC non-carriers 

ABCB1 = 7.6 for CC-GG-CC carriers 

IIV ka =91% 

IIV Lag time = 61 % 

IIV CL/F = 32 % 

IIV V1/F = 55 % 

IIV V2/F=48% 

Prop RE = 13% 

Add RE = 0.88ng/mL  
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of 

Patients 
Pharmacokinetic model PK Parameters Model Variability 

Zuo et al79 

161 

(Chinese) 

Absorption: first-order absorption 

Disposition: 1-Compartment model with first order elimination 

ka = 3.09 h-1 (fixed) 

CL/F = θ1 (HCT/27.9) θ2 CYP3A L/h 

θ1 = 26.6 

θ2 = -0.451 

Vd/F = 1090 L 

- CYP3A = 1.21 for CYP3A5*1/*1 or CYP3A5*1/*3 + 

CYP3A4*1/*1G or CYP3A4*1G/*1G genotype; 

- CYP3A = 0.982 for CYP3A5*1/*1, CYP3A5*1/*3 or 

CYP3A4*1/*1 genotype; 

 - CYP3A = 0.77 for CYP3A5*3/*3, CYP3A4*1/*1G or 

CYP3A4*1G/*1G genotype; 

- CYP3A = 0.577 for CYP3A5*3/*3 or CYP3A4*1/*1 

genotype 

IIV CL/F = 24.2 % 

IIV Vd/F = 58.5 % 

Prop RE = 19.8 % 

Add RRE = 1.47 ng/mL  
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of Patients Pharmacokinetic model PK Parameters Model Variability 

Han et al84 

102 
Absorption: first-order absorption 

Disposition: 1-Compartment model with first order elimination 

ka = 3.43 h-1 

Lag time = 0.25 h (fixed) 

CL/F= θ1 (1 + θ2 (POD-9.6)) θ3 CYP3A5 L/h 

θ1 = 21.9 

θ2 = 0.0119 

θ3 = 0.816 

Vd/F = 205 L 

- CYP3A5 = 1 for CYP3A5 non-expresser 

- CYP3A5 = 0 for CYP3A5 non-expresser 

 

IIV CL/F = 40.9 %  

IIV ka =112%  

IIV Vd/F=59.1% 

Prop RE = (2 = 3.75) 

POD: Post-Operative Days 
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of 

Patients 
Pharmacokinetic model PK Parameters Model Variability 

Storset et al33 

69 

Absorption: first-order absorption, with a lag- time. A study- 

specific absorption rate and lag time improved the data fit 

of substudy 2  

Disposition: 2-Compartment model with and first-order 

elimination. 

F = [θ1 + (1 - θ1)/(1+POD/θ2)-θ3)]· [1 + θ4/(1 + POD/ θ5)-θ6)]  

·[ θ7 + (1 - θ7)/(1 + AGE/ θ8)θ9] · CYP3A5  

θ1 = 2.04 (Fmax,early) 

θ2 = 2.5 (Fearly,50) 

θ3 = 9.4 (HillFearly)  

θ4 = 0.28 (Fmax,late) 

θ5 = 31 (Flate,50) 

θ6 = 2.5 (HillFlate) 

θ7 = 0.43 (Fmin,age–females) or 0.66 (Fmin,age–males)  

θ8 = 47 (Fage,50) 

θ9 = -14 (HillFage) 

ka = 1.18 h-1
 

ka, sub-study 2 = 0.38 h-1
 

Lag time = 0.22 h 

Lag time, substudy 2 = 0.81 h 

CL/Fn = θ10 ·(FFM/60)0.75 L/h 

θ 10 = 20.5 

V1/Fn = θ11 ·(FFM/60) L 

θ 11 = 107 L 

IIV V1/Fn=14% 

IIV V2/Fn=52% 

IIV Q/Fn=86% 

IIV θ6 (HillFlate) = 113% 

Corr (CL/Fn, Q/Fn) = 

0.74  

IOV Fn=16% 

IOV ka =60% 

Prop RE = 16.7 % 

Study 2 factor = 0.56 

Study 3 factor = 0.72  
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V2/Fn = θ12 ·(FFM/60) L 

θ12 = 424 

Q/Fn = θ13 ·(FFM/60)0.75 L/h 

θ13 = 37.3 

 

Where CYP3A5 = 0.51 for CYP3A5 expresser 

CYP3A5 = 1 for CYP3A5 non-expressers. 

See details on paper for Bioavailability (F) coefficients 

Tacrolimus whole blood values were standardised to a HCT value of 45 % (see 

paper for details). 

FFM: Fat free mass, POD: Post-Operative Days 
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of 

Patients 
Pharmacokinetic model PK Parameters Model Variability 

Asberg et al85 

69 

Absorption: first-order absorption, with a lag- time 

Disposition: 2-Compartment model with and first-order 

elimination. 

F = 0.63 (CYP3A5 expressers) 

F = 1(CYP3A5 non-expressers) 

ka = 1.04 h-1 

Lag time = 1.0 h (first week) 

Lag time = 0.15 h (week 2–4) 

Lag time = 0.59 h (after first month) 

CL/F = θ1 (FFM/59)0.75 L/h (CYP3A5 expressers) 

θ1 = 26.7 

CL/F = θ2 (FFM/59)0.75 L/h (CYP3A5 non-expressers) 

θ2 = 21.2 

V1/F = θ3 (BMI/26) L  

θ3 = 177 

V2/F = θ4 (FFM/59) L 

θ4 = 3707 

Q/F = θ5 (FFM/59)0.75 L/h 

θ5 = 19.5 

Inter-Quartile Ranges provided: 

 

F = 0.12 

ka =1.27 

Lag time = 1.55 (first week) 

Lag time = 0.46 (week 2–4) 

Lag time = 0.57 (after first month) 

CL/F = 13.2 (CYP3A5 expressers) 

CL/F = 11.0 (CYP3A5 non-

expressers) 

V1/F = 295 

V2/F = 7736 

Q/F = 32.3 

FFM: Fat free mass, BMI: Body Mass Index 
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Table 2. Summary of the Most Relevant Published Tacrolimus Population Pharmacokinetic Models. (cont.) 

No. of Patients Pharmacokinetic model PK Parameters Model Variability 

Bergmann et al86 

173 

Absorption: first-order absorption, with a lag- time 

Disposition: 2-Compartment model with and first-order 

elimination. 

ka = 0.35 h-1 

Lag time = 0.44 h 

CL/F = θ1 · θ2CYP3A5 · (1 + θ3 (HCT - 0.33)) · (WT/70)0.75 · (1 + θ4 (POD - 22.7)) L/h 

θ1= 25.5 

θ2 = 1.60 

θ3 = –1.01 

θ4 = –0.21 

V1/F = θ5 (1 + θ6 (PredCmax,unbound - 155.5)) L 

θ5 = 113.0 

θ6 = 0.28 

V2/F = 1060 L 

Q/F = 67.9 L/h 

CYP3A5 = 0 for CYP3A5 non-expresser, otherwise CYP3A5 = 1; 

POD max at 90 days; PredCmax,unbound is Cmax free prednisolone (nmol/L) 

IIV ka = 47.6 % 

IIV CL/F = 29.5 % 

IIV V1/F = 46.8 % 

IIV V2/F = 89.4 % 

IOV CL/F = 29.9 % 

IOV V1/F = 126.5 % 

Corr (V1/F, ka) = 0.677 

Corr (V1/F, V2/F) = –0.049 

Corr (ka, V2/F) = –0.013 

Prop RE = 18.3 % 

FFM: Fat free mass; BMI: Body Mass Index; WT: Body Weight; POD: Post-Operative Days;  
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HYPOTHESIS 

 

The calcineurin inhibitor Tac is used to prevent acute rejection after renal transplant. 

Unfortunately, the clinical use of Tac is complicated by its considerable toxicity, narrow 

therapeutic window, and high interindividual pharmacokinetic variability. 

 

Therapeutic drug monitoring is commonly applied to individualize Tac therapy in renal 

transplant recipients using trough concentrations. When concentrations are out of the 

target range, the physicians roughly estimate what should be the appropriate change of 

dose. Despite trough concentrations are the most used exposure parameters, the AUC 

correlates better with the clinical outcomes. In the clinical setting, an AUC tiered-dosing 

is not feasible, thus an alternate approach is that based on limited-sampling strategy by 

means of Bayesian prediction. In this sense, the use of a PPK model can assist for the 

first dose calculation at the start of treatment but also for dose adaptation based on 

predefined target by means of MAPB forecasting technique, supporting TDM. 

 

Several Tacrolimus PPK models have been published that includes the CYP3A5 

polymorphism to explain part of the interindividual variability. However, recent 

discovery of new SNPs has led to further investigations on that file aiming to reduce the 

unexplained interindividual variability in Tacrolimus exposure. 
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OBJECTIVES 

 

The main objective of the present work was to design a population-based Bayesian 

prediction tool for initial dose calculation and dose adaptation during the post-

transplant period through: 

 

1. Characterizing the Tacrolimus population PK using an intensive sampling and 

confirming the best limiting sampling strategy to be applied during dose 

adaptation. 

2. To deeply Investigate in tacrolimus pharmacogenetic predictors of 

interindividual variability 

3. Implementing new genetic information as well as other clinical factors to 

generate a refined population pharmacokinetic model reducing unexplained 

variability. 

  



  FRANC ANDREU SOLDUGA 

41 
 

LIST OF ORIGINAL ARTICLES 
 

To answer the previous objectives, this thesis was focused on the three original 

contributions listed below.  

 

1. Development of a Population PK Model of Tacrolimus for Adaptive Dosage 
Control in Stable Kidney Transplant Patients. Franc Andreu, Helena Colom, 
Josep M Grinyo, Joan Torras, Nuria Lloberas. Therapeutic Drug Monitoring. 
Volume 37, Number 2, 2015. IF=2.376; Q2 
 

2. The combination of CYP3A4*22 and CYP3A5*3 SNPs determine tacrolimus dose 
requirement after kidney transplantation. Nuria Lloberas, Laure Elens, Ines 
Llaudó, Ariadna Padullés, Teun van Gelder, Dennis A. Hesselink, Helena Colom, 
Franc Andreu, Joan Torras, Oriol Bestard, Josep M. Cruzado, Salvador Gil-Vernet, 
Ron van Schaikh and Josep M. Grinyó. Pharmacogenetics and Genomics. 
Accepted 07 June 2017. IF=2.184; Q2 
 

3. A new CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target 
concentrations: A population approach. Franc Andreu, Helena Colom, Laure 
Elens, Teun van Gelder, Ronald H. N. van Schaik, Dennis A. Hesselink, Oriol 
Bestard, Joan Torras, Josep M. Cruzado, Josep M. Grinyó, Nuria Lloberas. 
Clinical Pharmacokinetics. Online from 03 January 2017. IF=5.216; Q1 
 

  



  FRANC ANDREU SOLDUGA 

42 
 

 

 

 

 

 

 

 

 

Chapter II 

 

DEVELOPMENT OF A POPULATION PK MODEL OF 

TACROLIMUS FOR ADAPTIVE DOSAGE CONTROL IN 

STABLE KIDNEY TRANSPLANT PATIENTS 
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Chapter III 

 

THE COMBINATION OF CYP3A4*22 AND CYP3A5*3 SNPS 

DETERMINE TACROLIMUS DOSE REQUIREMENT AFTER 

KIDNEY TRANSPLANTATION 
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Chapter IV 

 

A NEW CYP3A5*3 AND CYP3A4*22 CLUSTER 

INFLUENCING TACROLIMUS TARGET CONCENTRATIONS: A 

POPULATION APPROACH 
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Chapter V 

 

GENERAL DISCUSSION 
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Nowadays, Tacrolimus, a calcineurin inhibitor is the cornerstone of most 

immunosuppressive protocols for renal transplant. Tac is usually combined with 

proliferation inhibitors such as mycophenolate. Although some efforts to find good 

biomarkers for individualizing immunosuppressive therapy have been done87, 

physicians still rely on pharmacokinetic exposure measures, usually based on 

therapeutic drug monitoring to individualize doses based on predefined target values. 

 

As it has been reported there is a good correlation between tacrolimus exposure and 

the clinical outcomes and this has supported the use of therapeutic drug monitoring64. 

However, Tac has low therapeutic index and large inter and intraindividual PK 

variabilities. After many investigations, much is yet to know about dosages at the early 

stages after transplantation and changes of them with time. Its high PK variability leads 

to an increased risk of therapeutic failure88, particularly at the early stages of transplant. 

On the other hand, from our research we learned that tacrolimus trough concentrations 

correlated with total exposure is yet controversial being most desirable to implement 

an AUC tiered-dosing. This is not feasible in the clinical setting; thus, an alternate 

approach is that based on limited-sampling strategy by means of Bayesian prediction. In 

this sense, the use of a PPK model can assist for the first dose calculation at the start of 

treatment but also for dose adaptation based on predefined target by means of MAPB 

forecasting technique, supporting TDM   

 

Several PPK models have been reported describing the Tac PK and quantifying its 

variability. In addition, the most relevant predictive factors of the PK variability including 

demographic, clinical and genetic variables have been identified. However further 

investigations, particularly on the influence of genetic polymorphisms are still required. 

At the time the aims of the current work were planned, none of the existing models had 

been externally evaluated, however a recent publication of Zhao et al. has shown that 

among all the existing models only one can be recommended for prediction. Models 

included the CYP3A5 polymorphism as the most influential covariate followed by 

haematocrit and post-organ transplantation. Previous evidence of new a CYP3A4 SNPs 

which is not correlated with the CYP3A5 led to further investigations to identify possible 



  FRANC ANDREU SOLDUGA 

80 
 

genetic combinations as better predictors of interindividual variability to be considered 

for initial dose calculations and later for dose adaptations. 

 

To fulfill these purposes, the first step of our work was to characterize the PK behavior 

of Tac by developing a population PK model from data from an intensive sampling design 

and in turn allowed to establish a limited sampling strategy. It is worth noting that the 

intensive sampling also enabled a more physiological description of the delayed 

absorption process reported for Tac in transplant patients24. Of note, Tac shows a rapid 

absorption due to its high lipophilicity (log P= 3.3)88, but delayed absorption can occur 

due to reduced gastrointestinal motility after transplantation. Some models have also 

been focused to obtain the most effective simplified blood sampling strategy to better 

predict Tac exposure. Nevertheless, no studies got in the clinical and efficient application 

of their respective models through the external validation, although recently Zhao et al. 

89 have addressed this issue.  

 

The requirement of confirming the best sampling strategy and necessity of aims of the 

current thesis are focused on this line, our first study90 provided a clinically applicable 

PPK model that helped, to quantify inter- and intra-patient variability and to identify the 

characteristics that may influence the PK of tacrolimus. Full PK Tac profiles in renal 

transplant patients were best described by a two-compartment model with first-order 

absorption kinetics and lag time given by three delayed-transit compartments. PPK 

studies including transit models to describe the absorption process are scarce in the 

literature. Probably, due to the lack of sufficient data required for modelling the Tac 

absorption phase. In our first model90, up to three transit compartments were included 

in a sequential way, coinciding with those estimated by Benkhali et al61 with the Erlang 

distribution model. The Ktr value of our study (Ktr=3.61 h-1 and n=3) was also similar to 

the value reported by Benkhali et al61 (Ktr=6.5±0.4 h-1). This transit-compartment model 

provided a good description of the absorption process and adequate precision in the 

parameters estimates (RSE<10%). The population CL value found in this first study 

(16.5±1.8 L/h) was comparable with previous studies (13.2-40.5 L/h91, 33±11.3 L/h92, 

29±0.2 L/h78 and 28±4 L/h61). This should be expected given that similar populations 
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were included in all these studies. The estimated total distribution volume was 535.92 

L, also in line with other studies was indicative of extensive tissue distribution. 

 

The low observed IIV associated with CL, Ka and MT was in accordance with the 

uniformity of the population in the present study. Inclusion of the IOVCL significantly 

improved the model and reduced the IIV. These results agree with other clinical 

population PK models reported recently in the literature61,63,78,82,93,94. The magnitude of 

the IOV associated with CL was 29% lower than IIVCL and similar with respect to the IOVCL 

values reported (28%61, 35%82 and 40%78). The estimated value of IOVCL warns about the 

inconvenience of the dose adjustment based on observations from more than one 

previous occasion. Although the structural model showed a low shrinkage linked to CL, 

the small sample size and the homogeneity of the patient group did not allow us to 

include genotype or other demographical or biochemical covariates into the model. 

 

To determine which was the best sampling strategy to assess exposure during TDM, a 

LSS was applied for this first model. Thus, one sampling point at predose showed an 

acceptable estimation of the AUC0–12h and better accuracy than Benkali et al61 with a 

narrower bias of 6.78% (from -16.26% to 30.06%) vs 3% (from -51% to 110%) and 

imprecision (1.42% vs 19%). Then, one sampling time at C0 would be a good LSS and this 

can make the logistics easier in the outpatient setting. 

 

At the same time, further investigations culminated in new promising CYP3A SNPs, such 

as CYP3A1*B and CYP3A4*22 that demonstrated to influence TAC exposure variability. 

Despite our attempts in that sense, the few number of patients included in our first 

Population PK model development, prevented the inclusion of the most relevant 

genetics variables as predictors of variability in the model. This was the start point to 

propose a new pharmacogenetic study to identify the most relevant findings postulated 

in the literature related to Tac exposure.  

 

The primary objective of the second paper95 was to evaluate the combined influence of 

CYP3A4*22 and CYP3A5*3 SNPs on the PK of Tac during the first post-transplant year. 

We demonstrated that Tac PK, assessed by the dose needed to reach adequate drug 
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exposure, was influenced by both CYP3A4*22 and CYP3A5*3 SNPS. In addition, we 

demonstrated the utility of defining genotype clusters according to CYP3A genotype49 

to predict differential dose-adjusted Tac C0.  

 

CYP3A5*3 allelic status remained the most significant parameter explaining the 

observed differences, in accordance with the greater involvement of that isoenzyme in 

the oxidative metabolism of Tac 96. Furthermore, in vitro data demonstrated that the 

importance of CYP3A5*3 allelic status is dependent on the concomitant CYP3A4 activity 

and that the relative contribution of CYP3A4 or CYP3A5 to Tac metabolism depends on 

the amount of each counterpart47,48. 

 

This study confirmed as well the importance of recently reported CYP3A4*22 SNP46,97 

which patients required lower Tac doses to reach the target C0 when compared with 

CYP3A4*1/*1 patients in de novo kidney transplant patients. The CYP3A4*22 effect was 

observed in our study at early time-points (i.e. 5-7 days after transplantation) but 

additionally, showed that differences were still present at months 3 and 6 after renal 

transplantation. This was in accordance with the retrospective analysis of Tactique trial 

which showed that the CYP3A4*22 allele was important to identify patients at risk of 

supra-therapeutic exposure98.  

 

In addition, we demonstrated the utility of defining three genotype clusters (Poor, 

Intermediate and Extensive metabolizers by Elens et al.46) according to CYP3A genotype 

to predict differential dose-adjusted Tac C0. In fact, the CYP3A genotype classification 

according to both allelic status (i.e., CYP3A4*22 and CYP3A5*3 SNP) increased the 

strength of this association. Patients classified as extensive metabolizers showed a lower 

mean Tac exposure during the entire study period, which might over time lead to sub-

therapeutic exposure. It could have consequences in the development of donor-specific 

anti-HLA antibodies. 

 

Our results indicated that the consideration of the combined CYP3A4 and CYP3A5 

genotype could help to better predict Tac exposure during the first 6 months of renal 

transplant and might assist Tac dose optimization. Extensive metabolizers had a 47% 
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decreased Tac dose-adjusted C0 when compared to intermediate metabolizers. In 

contrast, poor metabolizers had a 36% higher Tac dose-adjusted C0 when compared to 

intermediate. These observations indicated that dose adjustment based on CYP3A 

combined polymorphisms could increase the number of patients within the therapeutic 

target concentrations, specifically during the first months after transplantation. This 

dosage fine-tuning has the ultimate potential to improve the graft outcome of 

transplantation by minimize the drug exposure-related toxicity and sub-therapeutic 

exposure. Supporting this hypothesis, in this second study it was observed that the risk 

of a supra-therapeutic C0 (>15 ng/mL) was significantly higher for poor metabolizers 

(45.3%) than for extensive metabolizers (0%) at day 5-7 after transplantation. In 

addition, a significant delay in reaching the target Tac C0 was observed in extensive 

metabolizers. About 29.7% of these patients had infra-therapeutic C0 (<5 ng/mL) levels 

at day 5-7. 

 

In summary, this second study showed that the CYP3A4*22 and CYP3A5*3 alleles are all 

independently associated with Tac exposure during the first year after transplantation. 

Poor metabolizers patients related to the cluster of CYP3A4*1/*22 and CYP3A5*3/*3, 

had lower dose requirements to achieve the target concentrations. It provides proofs 

for implementation of the combined CYP3A4 and 5 genotype status when deciding on 

the initial Tac dose. 

 

This information provided by the second study with a bigger cohort of renal transplants 

patients, lead to joint these new data with those from intensive sampling patients of the 

first cohort. Combining data from both studies allowed to refine the previous model 

taking it as starting point. 

 

In the third study99 three different Tac subpopulation CLs according to the new 

combined CYP3A genotype cluster49,95 (poor, intermediate and extensive metabolizers) 

were estimated as previously mentioned. The three values of CL (20.5±1.2, 12.5±0.6 and 

9.1±0.6 L/h for extensive, intermediate and poor metabolizer patients, respectively) 

were estimated with good precision (RSE<10%). The extensive and intermediate CL 

values were in line with those reported in the literature (21.2, 19, 21.2 and 17.9 L/h for 
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CYP3A5 non-expressers; and 23.2, 40.8, 26.7 and 21.9 L/h for CYP3A5 expressers for 

82,84,85,93, respectively). As expected, the lowest value was observed for poor 

metabolizers, reflecting the effect of CYP3A4*22 allele carriership. A value of 526L was 

considered for peripheral distribution volume according to the first study90 where the 

extensive sampling design allowed a robust estimation of this parameter. The base 

model showed, like our first model, a low (<20%) shrinkage linked to CL that suggests an 

exact distribution of the variability associated with CL with no major bias to initiate the 

covariate inclusion. The inclusion of IOV significantly improved the model and was 

similar to that reported in our previous model as well as in other studies [29% 90, 35% 82 

and 40% 78]. No statistical significance was found when two different additive 

components were tested accounting for the bioanalytical error. 

 

The novel CYP3A cluster as predictor of Tac CL highly contributed to a better description 

of the IIV with a reduction of a 37.4% with respect to the base model. As mentioned in 

the second study, the CYP3A5 genotype has been commonly proved as a strong factor 

influencing Tac CL61,78,100 and the CYP3A4*22 as described by Elens et al. 101 also 

influences Tac CL despite the fact that other study from Moes et al could not 

demonstrate the CYP3A4*22 effect probably due to their relatively small sample size of 

Tac-treated subgroup100. Thus, merging both CYP3A polymorphisms in a new cluster, 

defining three subpopulations, improved and confirmed the characterization of the Tac 

elimination process. 

 

To improve model predictability, patients were also categorized per age (<63 or ≥63 year 

old). The inclusion of age in the Tac CL resulted in a statistically significant drop of the 

IIV. Our model is the first including age to be considered for Tac dosing. This result was 

in accordance with findings from Jacobson et al102 which CNI troughs concentrations 

were more than 50% higher in older than young adults. In contrast, Åsberg et al 85 tested 

the inclusion of the age assuming a linear decline of CL in patients older than 50 years, 

but the covariate was not retained in their final model. 

 

Hematocrit refined our model fit by linearly standardizing whole-blood concentrations 

to a hematocrit of 45%. This strategy, firstly reported by Størset et al. 33, was applied to 
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our data allowing to better predict whole-blood concentrations closer to the observed 

data by removing the variability in whole-blood concentrations due to the extent of 

hematocrit binding. This resulted in an appropriate model for dose adjustment based on 

whole-blood concentrations that overcomes the inconveniences associated with free 

concentrations monitoring which can be highly time consuming and occasioning larger 

costs. However, similarly to other models reported the body weight did not resulted 

statistically significant. 

 

Until now, there are no PPK models in the literature using the combination of the cluster 

of CYP3A5*3 and CYP3A4*22 polymorphisms, age and hematocrit to describe Tac PKs. 

According to the results obtained in this refined PPK model and assuming hematocrit 

values around the 34%, the extensive metabolizers showed CL values around 2.25-fold 

higher than poor metabolizers, meanwhile the intermediates had CLs around 1.37–fold 

higher compared to poor metabolizers. 

 

The internal validation techniques used (VPC, PPC and NPDE) confirmed the predictive 

capability of both models, although a slightly over-predicted variability was found for 

non-predose concentrations in the second model. The predictive capability was also 

confirmed by respective external validations in both models using different C0 Tac 

concentrations. When compared to other previously reported externally validated 

models, both models indicated an acceptable bias and imprecision of 0.37 ng/mL and 

0.38; and bias 1.17 ng/mL and imprecision 1.64 values for the first and second model, 

respectively. The median errors of 6.1% and 20.1% for future predictions were found 

similar to described by Åsberg et al 85. These results confirmed the power of both models 

for predicting individual Tac CL values using pre-dose concentrations using for the 

second model the individual levels of hematocrit, the age and the CYP3A5*3 and 

CYP3A4*22 SNPs of each patient. 

 

Størset et al successfully used a computerized dose individualization improving target 

Tac concentrations after renal transplant without including CYP3A genotyping103. 

However, Shuker et al104 was not able to increase the number of patients in Tac 

therapeutic range early after transplantation. In this study, a PPK model with Bayesian 
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prediction was not applied for the dose prediction suggesting that the inclusion of CYP 

genotype in a PPK model might improve Tac dose optimization 105. A very limited 

number of PPK studies99,106 have included a CYP genotype combination in their models 

and their relationship between CYP genotype, dose requirement and its clinical value 

still remains to be proven107. More precisely, the improvement obtained in PK levels 

considering the CYP genotype might not have a relevant impact on its long-term clinical 

endpoints which might become controversial104. On the other hand, a high Tac IIV has 

been recently proven as a risk factor for adverse events 108,109. This might be a key point 

that using a well  

 

In this third study, 60% of extensive, intermediates and poor metabolizers were within 

the target minimum concentration in accordance with the percentages out of the 

therapeutic interval obtained second study obtained. Simulations showed that CYP3A 

extensive cluster may require about 2-fold higher doses compared to poor metabolizers. 

Moreover, intermediates may require about 1.5-fold higher doses compared to poor 

metabolizers. These dose recommendations confirm the results from the second study95 

of this thesis describing that poor metabolizers showed a higher percentage of patients 

with supra-therapeutic C0, (C0>15 ng/mL) compared with extensive metabolizers. Our 

results simulated that, to minimize the percentage of patients falling outside the 

therapeutic range, different Tac initial doses of 4, 3 and 2 mg every 12 hours for 

extensive, intermediate and poor metabolizers, respectively should be considered for a 

hematocrit levels around the 34% in all the cases. 

 

This final refined model including all explained genetic, demographic and biochemicals 

covariates could be a useful tool to demonstrate a better dose optimization using MAPB 

analysis compared to the actual empirical dosage. Next step would be to perform an 

external evaluation to prove that the model can predict adequately the AUC as a better 

surrogate marker of efficacy. A clinical trial is ongoing to prove if the Tac dose 

adjustment by PPK modelization is better than the actual clinical routine of tac TDM. 
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Chapter VI 

 

CONCLUSIONS 

 

1. A Tacrolimus population PK model was designed to characterize accurately the 
population absorption phase as well as quantify the inter and intra-individual 
variability. 

2. The first population PK model led to obtain an optimal sampling strategy using 
only trough concentrations for dose tailoring through Bayesian prediction. 

3. The CYP3A4*22 and CYP3A5*3 alleles are all independently associated with Tac 
exposure during the first year after transplantation. Proofs that a combined 
CYP3A4 and 5 genotype cluster is of relevant importance when deciding on the 
initial Tac dose. 

4. Poor metabolizers patients related to the cluster of CYP3A4*1/*22 and 
CYP3A5*3/*3, had lower dose requirements to achieve the target 
concentrations. The risk of a supra-therapeutic C0 (>15 ng/mL) was significantly 
higher for poor metabolizers (45.3%) than for extensive metabolizers (0%) at day 
5-7 after transplantation. 

5. Extensive metabolizers patients related to the cluster of CYP3A4*1/*1 and 
CYP3A5*1/*3, had higher dose requirements to achieve the target 
concentrations. A 29.7% of extensive metabolizers patients had a risk of infra-
therapeutic C0 (<5 ng/mL) levels at day 5-7 after transplantation. 

6. A new refined PPK model was developed using the combination of the cluster of 
CYP3A5*3 and CYP3A4*22 polymorphisms, age and hematocrit to describe 
Tacrolimus pharmacokinetics. Three different Tac subpopulation CLs according 
to the new combined CYP3A genotype cluster (poor, intermediate and extensive 
metabolizers) were identified. 

7. The CYP3A extensive metabolizers patients may require about 2-fold higher 
doses compared to poor metabolizers. Moreover, intermediate metabolizers 
may require about 1.5-fold higher doses compared to poor metabolizers. 
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