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Abstract
Multilayer andmultiplex networks represent a good proxy for the description of social phenomena
where social structure is important and can have different origins. Here, we propose amodel of
opinion competitionwhere individuals are organized according to two different structures in two
layers. Agents exchange opinions according to theAbrams–Strogatzmodel in each layer separately
and opinions can be copied across layers by the same individual. In each layer a different opinion is
dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only
possible stable solution because of the interaction between the two layers. A newmeanfield solution
has been foundwhere both opinions coexist. In afinite system there is a long transient time for the
dynamical coexistence of both opinions. However, the system ends in a consensus state due tofinite
size effects.We analyze sparse topologies in the two layers and the existence of positive correlations
between them,which enables the coexistence of inter-layer groups of agents sharing the same opinion.

1. Introduction

Human interaction often gives rise to different phenomena of collective agreement ranging from common
language or religion to opinion formation. Variousmodels have been proposed [1–4] to describe the process of
social consensus, with the so-called votermodel being one of the simplest andmost studied [5]. It is amodel with
two equivalent states,first introduced to describe competition in biological species [5], and later named as the
votermodel in [6]. Voter dynamics is based on themechanism of imitation, inwhich individuals change their
opinion by imitating their randomly selected neighbors [1, 7, 8]. Themodel has two absorbing states of
consensus (collective agreement in one of the states) and a critical dimension. In dimension d= 1, 2 there is
coarseningwith the unbounded growth of domains of each of the absorbing states. For d 2> , including typical
complex networks, there is no coarsening and the systemonly reaches an absorbing state through finite size
fluctuations. In the infinite system limit, the system remains in an active dynamical state with the two states
coexisting [1, 7].

A populationmodel which aimed to describe the competition of two languageswas proposed byAbrams and
Strogatz (AS) [9]. It turns out that theASmodel is amean-field approximation of an individual basedmodel,
which is amodification of the votermodel [10]. The two options here are two non-equivalent languages which
compete in a bilingual society. The languages are not perceived by the individuals in the sameway, they have
complementary prestiges reflecting the difference in the social status of spoken languages. An additional
parameter, the volatility, was introduced in the lattermodel to indicate the tendency to switch the use of a
language. TheASmodel fits the real aggregated data of endangered languages such asQuechua (in competition
with Spanish), and ScottishGaelic andWelsh (both in competitionwith English) [11, 12].Moreover, as has been
found byVazquez et al [13], the ASmodel can support steady states where both languages coexist for small values
of volatility. Several studies [1, 2, 13–15] have been inspired by the ASmodel, which tests howdifferent
formalization of the interactions—e.g. different network topology—can determine dominance by one state or,
in contrast, when configurations inwhich two states coexist is possible.
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In recent years, similar studies have been performed onmore complex structures: the so-calledmultiplex
networks [16, 17]. Amultiplex network [18–22] consists of two ormore interconnected networks lying in distinct
layers. The layers have the same number of nodes, which are connected to their counterparts across the layers,
and in general have a different connectivity structurewithin them [18, 20]. This framework allows for amore
realistic approach in the study of the interaction of individuals, which can communicate through different types
of channel.Multiplex networks have been used to analyze public transportation systems [23, 24], the spreading
of awareness and infection [25, 26], the dynamics of ecological populations [27, 28], cultural dynamics [29] and
the evolution of social networks [17, 30].

More recently, Diakonova et al [16] demonstrated the irreducibility of amultiplex version of the voter
model. In this approach, amultiplex networkwas considered, where a fraction of nodes and links can be present
in both layers and any change in the state of those nodes in a layer is instantly replicated by the other. This
mechanism affects votermodel dynamics, and significant differences from the classical single layer casewere
found.

Here we propose amodification of the votermodel organized in amultiplex network, where the dynamics
occurring on the nodes is irreducible by nature. Specifically, each node can appear in a different state andmay
receive concurrent social pressures in distinct layers. Additionally, the state of a node in one layer influences its
own state in the other layer. This systempaves theway for new scenarios for the coexistence of opposing options,
which are discussed in this article. Starting frommicroscopic dynamics, we develop ameanfield theory which
shows that in addition to consensus, there is a non-trivial steady state (the non-consensus states), where the two
options coexist simultaneously, emerge and are linearly stable. Our theoretical findings were verified by
numerical simulations, where, however, no-consensus states can lose their stability due tofinite size effects and
the system is eventually driven to consensus. Nonetheless, the time needed for the individuals to consent is
longer than in single-layer networks.We analyze this behavior by developing a probabilisticmacroscopic
description.We show that the coupling of two layers, fully connected, or Erdös–Rényi networks, with two
different preferred options can generate various kinds of coexistence options. In addition, we analyze how the
topology of the two networks and the correlations between layers can influence the distribution of states among
nodes. Specifically, we observe that links overlap the correlation, togetherwith degree-degree correlation
between the layers, promoting the formation of inter-layer groups of nodes in the same state.

2. Competition of options onmultiplex networks

Wepropose here amodel for describing the competition between two abstract options, A andB (they can be
languages, opinions, voting intention, etc) in amultiplex network. Themodel is based on amodification of the
ASmodel with volatility equal to one, and keeping the idea that the two options have different perceived status.
In thismodel social interactions occurwithin distinct layers thatmay have originated fromdifferent contexts
like family or business networks, Facebook or Twitter, etc. Nodes and their counterparts across layers
correspond to the same individuals participating in different networks. Intra-layer links denote the individuals’
connections within each network, while inter-layer links indicate themutual influence of the individuals’ state
across layers (seefigure 1).

We assign a state is
a to each node i (i N1, 2,= ¼ ) in the layerα ( I, IIa = ), such that 1is =a (or 0) if the

node is optionA (or B) in layerα.We also endowprestige Sa to optionA differently in each layer; the
corresponding option B has a complementary prestige S1 - a.We restrict the values of the prestiges to
S 0.5, 1I Î [ ] and S 0, 0.5II Î [ ], in order to guarantee that the two layers do not have the same preferred option.
The state of a node in a layer influences its own state in the other layer with strength γ, where 0 1 g . The
limited values of γ correspond to opposing situations so, 0g = denotes that the two layers are independent,
while 1g = represents a situation inwhich individuals are not influenced by their neighbors.

The dynamical evolution of thismultiplex-organized system is described below. A randomly chosen node i
in one layer can change its option according to the transition probabilities,
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where Gij
a is the adjacencymatrix of layerα, with elements G 1ij =a , if nodes i and j are connected in layerα and

G 0ij =a otherwise, ki
a is the degree of the node i in layerα, andwith is

āwe denote the state of the node i in the
other layer.
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System equation (1) supports steady states of full consensus where all individuals appear to have a single
optionA or B.However, themultiplex structure of thismodel induces a new steady state, which has never been
observed in the classical votermodel, where the two options coexist. In the followingwe present the stability
analysis of these steady states startingwith amean field (MF)description of the dynamics. Then, we build a
theory for the ordering dynamics to analyze the system’s evolution towards a steady state.We also perform a
numerical simulation on complete (all-to-all) and Erdös–Rényi networks in order to verify our theoretical
findings.

3.Meanfield approach andmaster equation

One of the central problems in the analysis of opinion dynamics is understanding the conditions inwhich a
collective agreement occurs. The dynamical evolution of system equation (1) is analyzed bymeans of anMF
approach, where a previously used order parameter for the single-layer networks [13, 31] is employed. The state
of the system is characterized by the option’s polarization (often calledmagnetization) and is defined as the
difference between the fractions Xa of nodes in state 1 (optionA) and the fractions X1 - a of nodes in state 0
(option B). Therefore, for layerαwe obtain the polarization option

m X X X1 2 1, 2= - - = -a a a a( ) ( )

which defines the state of the system and lies in the interval 1, 1-[ ], where m 1= -a denotes thewinning
option B and m 1=a of optionA.

The dynamics of the system is governed by the presence of active links, namely of links connecting nodes in
different states, because the probability of a node switching to another state depends on the density of its active
links. Two types of active link are associatedwith each node: active intra-layer links if the node in layerα does not
consent with its neighbors inα, and active inter-layer links if it has a different state in the different layers. The
density of active intra-layer links in layerα is given by the expression,
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where I, IIa = , δ is Kronecker’s delta and La is the total number of links in layerα. The density of the active
inter-layer links reads
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In the employedMF approximation, each node in a layer is connectedwith all the other nodes of that layer.
Therefore, we can naturally express the densities of intra-layer and inter-layer active links as a function of ma as,

X X m2 1
1

2
1 52r = - = -a a a a( ) ( ) ( )

and

X X X X m m2
1

2
1 . 6I II I II I IIr = + - = -^ ( ) ( )

Figure 1.Agraphical illustration of themultiplex ASmodel. Different layers S S,I II denote the different networks inwhich individuals
participate. Intra-links (solid black lines) correspond to the individuals’ connections within each network, while inter-links (solid
green lines) indicate themutual influence of the strength γ of the individuals’ state across layers.
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In the appendixwe derive themaster equation for the probability Q m t,a( ) that the systemhas polarization
option ma at time t

Q VQ
N

D Q
1

2
, 7t m m m

2¶ = -¶ ¶ + ¶a a a aa a a
[ ] [ ] ( )

where

V S m m

D

1 2 1 ,
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m g r g
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= - +
a a a a
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a ( )( ) ( )
( ) ( )

¯

Wenotice that the influence of each layer on the other appears not only in the potential but also as an
additive term in the diffusion coefficient.We can say that term r̂ controls the diffusion of the two options in the
two layers. The two potentials felt by the two layers have an oppositeminimumbecause of the setting in the
prestiges; for 0g = each layer would reach the full consensus in opposite options.

In the thermodynamic limit the diffusive term is canceled and the potentialV m m,I II( ) defined in
equation (8) has three extrema:

1. Two corresponding to the states of full consensus:

(a) m m, 1, 1I II =( ) ( ) (consensus toA)

(b) m m, 1, 1I II = - -( ) ( ) (consensus to B)

2.One that stands for the non-consensus steady statewhere options A andB coexist and is given by,

m
ab

a

m
ab

b

2 4
,

2 4
, 9

a

b

b

a

I

II

*

*

=
- + -

=
+ - -

( )

where a S1 2 1Ig g= - -( )( ) and b S1 2 1IIg g= - -( )( ) . The stability of the fixed points is analyzed by
imposing V 0m¶ =a and by studying the eigenvalues of the corresponding Jacobianmatrix.Wefind that in the
range of parameters defined by the relation:

a
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a1 1
, 10 
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the steady state of coexistence, given by equation (9), is linearly stable while the state of full consensus is unstable.
Out of this region, instead, the state of coexistence vanishes and the states of full consensus become stable; for
b a

a 1
> -

+
the system consents to optionA, while for b a

a 1
<

-
it consents to B. By substituting b a

a 1
= -

+
in

equation (9)wehave m m 1I II= = , while by substituting b a

a 1
=

-
, m m 1I II= = - . Thismeans that out of the

region expressed by equation (10), the two solutions of full consensus and coexistence coincide. The coexistence
solution varies continuously from−1 to 1 generating a second order absorbing phase transition. The steady
states of full consensus are absorbing, frozen states and the switch probabilities vanish. The steady state of
coexistence, instead, is an active dynamical state (see [32]), where individuals continue switching and the system
visits a set of configurationswhich aremacroscopically equivalent in terms of ordering. Therefore, by varying
parameters according to equation (10)wefind an absorbing transition inwhich the system goes from an active
state to a frozen configuration state.

The complementary of the density of active links, 1 r- a, gives what is called the coherent domain [33],
namely the density of links between nodes in the same state. Figure 2 shows the landscape of steady states of
system equation (9) in the parameter space SIIg - for afixed SI. For 0g = the two layers do not communicate
and themultiplex is reduced to two independent AS systems (see equation (1)). Each layer reaches a steady state
of consensus; however, the states are complementary, i.e. one layer consents to optionAwhile the other consents
to option B. For 1g = , both a and b are equal to zero and each solution of the form m mI II= is a potential stable
solution. The two layers communicate with the stronger possible coupling but the individuals are not affected by
their neighbors (see equation (1)). A randomly chosen node replicates its state from the other layer, resulting in a
frozen steady state where every node has the same state across the layers, while none of the layers reaches
consensus. For other values of γ, the previously found condition equation (10) determines three different
dynamical regimes displayed infigure 2 (for 0 1 g < ). Figure 2(a) shows the polarization optionmI of layer I.
For b a

a 1
> -

+
, the system consents to optionA (the violet area)while option B dominates for b a

a 1
<

-
(the red

area). For the other parameter values the two options coexist (the area enclosed by black curves). The resulting
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density of the connected nodes lying in the same states is presented in figure 2(c), while the density of coherent
nodes between the layers, namely the nodes in the same state in both layers, is depicted infigure 2(d).We verify
the results obtained fromourMF approximation by constructingmultiplex networks of different sizes
composed of complete networks in their layers. In the coexistence regime, the options are distributed between
the nodes in two different ways presented infigure 3. Infigure 3(a), the parameter values allow the existence of
both nodes in different states in the different layers and nodes in the same state across layers. The densities ra
and r̂ of the active links are different from zero. Infigure 3(b), γ is strong enough to drive the system in a steady
state, where the nodes have the same state in both layers.However, smallfluctuations from this steady state are

Figure 2.Density plots of theMF stable solution in the parameter space SII g- . The option polarizationmI of layer I is shown for (a)
S 0.6I = and (b) S S1I II= - ; (c) shows the fraction of nodes in layer I that are in the same state, 1 ;Ir- S 0.6I = ; (d) shows the
fraction of nodes that are in the same state in both layers, 1 ;r- ^ S 0.6I = . Black curves enclose the parameter areawhere two options
coexist and correspond to inequality equation (10); when crossing black lines, inside out, the systemundergoes an absorbing
transition. The pointma refers tofigure 4, while pointsmb andmc refer tofigure 3.

Figure 3.Two different scenarios of coexistence are shown in amultilayer representation for the single realization at the time
t N 104= , with a complete graph ofN=1000 nodes. The three levels refer to: layer II on the top, layer I in themiddle, and on the
bottom the aggregate layer which counts the nodes in the same state in both layers aswell as the nodeswith different states. The violet
and blue colors stand for options A andB, respectively, and the orange indicates nodes with different options in the different layers. In
a( ) the parameters are 0.3g = , S 0.7I = , S 0.3II = . In b( ) the parameters are 0.8g = , S 0.8I = and S 0.2II = . These two scenarios
refer, respectively, to pointsmb andmc in figure 2.
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observed. The intra-layer densities I,IIr of the active links are different from zero, while the inter-layer density r̂
fluctuates with a very small amplitude around zero.

4. Finite size effects inmultiplex networkswith complete layers

Asmentioned above, the coexistence state is an active one, namely the probabilities of switching the state do not
vanish and the systemkeeps fluctuating around thefixed point. Infinite size networks, however, these
fluctuations can drive the system to an absorbing state of full consensus. This is afinite size effect and has been
observed in our stochastic simulations. In our settings, the two layers have opposite prestiges; therefore for

0g = the polarization optionmI would go to 1whilemII would go to−1.
Figure 4 shows the evolution ofmI for different realizations in the case of complete networks of (a)N=500

nodes and (b)N=1000 nodes. In this particular setting of parameters ( 0.2g = , S 0.6I = and S 0.1II = ) the
MF stable solution (the solid horizontal line) denotes a coexistence steady state but the fluctuations due to the
finite size effect bring it to a full consensus in option B, with both m 1= -a . The time the system remains
around theMF solution depends on the size of the system and on the values of the parameters. A different case is
the unbiasedmodel where both the prestiges are equal, S 1 2=a . The potential reduces to

V m m
1

2
11I II

21
2

g= -( ) ( )

and each solution of the form m mI II= is a solution. In this particular settingwe can study the effects purely
induced by themultiplex structure, becausewe can avoid the effect generated by the competition between the
two options in the two layers. From the related theory for single-layer networks [31]we know that in this case the
systemwill reach an absorbing state with a characteristic time that scales withN. In themultiplex networks
considered herewe find by fitting (see figure 5) a factor arising from the inter-layer interaction, c 1

1
g =

g-
( ) , for

which the characteristic time to reach consensus takes the form

N Nc2
1

1
2 . 12t

g
g=

-
= ( ) ( )

This relation is consistent with the studies presented in [31], where the scaling factor is the inverse of the
prefactor of the active links in the diffusion coefficient. The factor N2 results from the total number of nodes in
thewhole two-layer system. From the time evolution expressed in [31], we can approximate t e tr » t

^
-( ) .

Figure 5(a) shows the characteristic time equation (12) for a different size and different γ, using complete
networks. Figure 5(b) shows the evolution of the density r̂ of the active inter-layer links.We can thus conclude
that in the case of equal prestige, themultiplex effect translates into an extension c g( ) in the lifetime of the
coexistence option state.

Figure 4.The evolution of the polarization optionmI is shown for different realizations in complete graphs of (a)N=500 nodes and
(b)N=1000 nodes. The solid horizontal line represents theMF solution corresponding to pointma offigure 2. The other parameters
are 0.2g = , S 0.6I = and S 0.1II = .
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5. Erdös–Rényi networks

Herewe extend the ansatz of [31] by considering Erdös–Rényi networks. In [31], it was found for the density of
active links that the relation m11

2
2r y= -( ) is valid for a complex network ofmean degree ká ña , where

k

k

2

1
y = á ñ -

á ñ -
a

a
.We test this assumption formultiplex networks consisting of different Erdös–Rényi layers of

various size andmean degree, discovering that it is also valid in our case (see figure 6).
Then, the density of intra-layer active links reads

m
1

2
1 . 132r y= -a a a( ) ( )

The inter-layer density, instead, does not depend on the topology of the network. In order to extend the
Fokker–Planck equation (7), for the case of two Erdös–Rényi networks we consider that if a nodewith ka
changes its state at a time step, the polarization option changes by k,d a, with k

k

k N,
2d =a á ñ

a

a
. Since each node has

an inter-layer degree equal to one, the inter-layer change remains
N

2 . Substituting relation 13 in the transition

probabilities expressed in equation (A.1) and the right expression for k,d a, we obtain for the Fokker–Plank
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Previous studies of the votermodel (prestige equal to 1/2) in complex networks [31], have revealed the relation
between the characteristic time it takes to reach the full consensus and the topology of the network. Previously in
[31], for an Erdös–Rényi networkwith amean degree ká ña scaling factorwas found of the form

Figure 5. (a)The characteristic time to reach a full consensus is shown as a function of γ. The solid line represents the relation of
equation (12). (b)Exponential decay is shown as a function of rescaled time τ (solid line tr t^( )). In both figures, the points represent
an average of over 50 realizations for different complete graphs ofN=500, 5000 and 10000 nodes. The prestiges are S 0.5=a .

Figure 6. (a)The density of active links in layer I is shown as a function of the polarization option. Solid lines correspond to
equation (13), while the dots are the average over 50 simulations for two Erdös–Rényi networks ofN=10000 and differentmean
degrees. (b) Shows the time evolution of the average density of inter-layer active links for a fixedmean degree, k 10á ñ =a and different
γ; (c) shows the time evolution of the average density of inter-layer active links for afixed 0.1g = and a differentmean degree. The
time is rescaled by the factor expressed in equation (16), and the solid line corresponds to an exponential decay. The dots represent an
average of 50 realizations for the Erdös–Rényi networks ofN=10000 .
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By imposing 0g = , the diffusion coefficient Da of equation (14) reduces to a one layer case
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( ). Notice that the expressionTER is the inverse of the prefactor of the density of the

active links term. In ourmultiplex extension, by setting Sa
1

2
= we check the same relation for the scaling factor

by considering that the prefactor of the active links term ends up being a one layer termmultiplied by 1 g- ,

c T2 . 16ERt g= ( ) ( )

As in the case of equation (12), a factor two accounts for the total number of nodes N2 . Infigures 6(a) and (b), we
observe the time evolution of the average density r̂ of inter-layer active links for afixedmean degree ká ña and
different values of γ, showing the validity of the assumption expressed by equation (16).

6. Impact of correlation

With a fully connected populationwe have shownhow the coupling of two layers with two different preferred
options can generate various kinds of coexistence options.Here we are interested in how the topology of two
networks and the correlations between layers can influence the distribution of the states among the nodes.
Previously, it was shown that the relation between the layers in a realmultiplex can be characterized by
geometric correlations in hiddenmetric spaces underlying each layer of the system [34–36]. There are two kinds
of correlations: popularity correlations, which are correlations between the degrees the nodes have in the two
layers, and similarity correlations, which control the probability of the links overlapping between layers. To
understand the impact of correlations, we performnumerical simulation using the geometricmultiplexmodel
(GMM) developed in [34].

TheGMM is based on the (single-layer)network construction procedure of theNewtonian 1 [37] and
hyperbolic 2 [38]models. Herewe present the treatment for the 2 version. To construct a network ofN
nodes, first it is requirement of the procedure for each node i= 1,K,N to be assigned its popularity ri and
similarity iq coordinates, and accordingly, to connect each pair of nodes i j, with the probability

p x 1 1 eij
x RT ij

1
2= + -( ) ( )( ) , where xij is the hyperbolic distance between the nodes and R Nln~ . The

connection probability p xij( ) is the Fermi–Dirac distribution, where the temperature parameterT controls the
level of clustering in the network [39]. Themultiplex composed of these single-layer networks allows for radial
and angular coordinate correlations across layers. The level of these correlations is regulated by the parameters

0, 1d Î [ ]and 0, 1n Î [ ], without affecting the single-layer topologies, where δ stands for the radial (also called
popularity) correlation and ν denotes the angular (also called similarity) correlation. The popularity correlation
relates to the probability offinding a nodewith the same degree in the different layers. The similarity correlation
is related to the probability of the links overlapping between layers.

We compare theGMMwith different correlation settings andwith the ERnetworks. In all cases the
multiplex networks are composed of layers ofN=2000 nodeswith amean degree of k 6á ñ = . Themost
significant effect is observed in the distribution of the states between the nodes. The similarity correlation, which
increases the probability of links overlapping between layers, promotes inter-layer groups of nodes in the same
state and connected in both layers, namely coherent islands. If thewhole systemhas a favorite state
(S S1I II¹ - ), finite size effects bring the system to an absorbing state of full consensus, inwhich the coherent
islands of that state increase at the expense of the other. To appreciate the correlation effects, we consider the case
of symmetric prestige. Figure 7 shows the evolution of the polarization optionmII (top row) and the inter-layer
active links r̂ (bottom row) for S S1 0.55I II= - = and 0.3g = . Figures 7(a) and (d) refer to aGMMwith
uncorrelated layers, figures 7(b) and (e) refer to aGMMwith fully correlated layers, whilefigures 7(c) and (f)
refer to the ERnetworks. The behavior of r̂ is significantly different for the correlated and uncorrelated case.
For the ER and uncorrelatedGMM, r̂ fluctuates around theMF solution. Instead, in the strongly correlated
system, the size of the coherent islands grows, generating a slower decay of r̂ . The top rowoffigure 7 shows that
none of the three systems has reached an absorbing state, for which the basic difference lies in the distribution of
the states between nodes.We can conclude that the strongly correlated system is in a state of coexistence of
different coherent islands. This feature becomesmore evident for high values of the coupling, as shown in
figure 8where 0.8g = . In this case, for some realizations, the system reaches full consensus in two different
ways: in the uncorrelated case it is thanks to a singlefluctuation from the finite size effects, while in the fully
correlated case one of the coherent islands grows and incorporates the entire system. Another important
measure reveals how the similarity correlation acts on the distribution of the states between nodes. Infigure 9we
set S 0.5=a , for which neither the layers nor any of the systemhas a favored state (the coupling is 0.3g = ). In
figure 9(a), the system is uncorrelated (i.e. 0d = and 0n = ), infigure 9(b) 1d = and 0n = , infigure 9(c)

0d = and 1n = and infigure 9(d) 1d = and 1n = .CB defines the coherent island in option B, namely the

8

New J. Phys. 19 (2017) 123019 RAmato et al



Figure 7.The polarization option and inter-layer active links.We compare the ERnetworks ((c) and (f))with theGMM ((a), (b) and
(d), (e)) ofN=2000 nodes and the k 6á ñ = mean degree. The power law degree distribution of theGMMhas an exponent of 2.9; (a)
and (d) show the uncorrelated networks, whereas (b) and (e) show fully correlated networks. The parameters of themodel are
S S1 0.55I II= - = and 0.3g = . The top row shows the evolution of the polarization option in layer II, while the bottom row shows
the evolution of inter-layer active links. The different colors stand for the different realizations and the solid black line denotes theMF
solution.

Figure 8.The polarization option and inter-layer active links.We compare the ERnetworks ((c) and (f))with theGMM ((a), (b) and
(d), (e)) ofN=2000 nodes and amean degree of k 6á ñ = . The power law degree distribution of theGMMhas an exponent of 2.9; the
uncorrelated networks and the fully correlated networks are shown in (a) and (d) and in (b) and (e), respectively. The parameters of the
model are S S1 0.55I II= - = and 0.8g = . The top row shows the evolution of the polarization option in layer II, while the bottom
row shows the evolution of the inter-layer active links. The different colors stand for the different single realizations and the solid black
line stands for theMF solution.
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density of links overlaps the nodes in state B in both layers.We notice thatCB increases considerably whenwe set
a similarity correlation ν equal to one. By comparingfigure 9(a)withfigures 9(b) and (c)wenotice that the action
of the popularity correlation alone does not produce significant effects, while the similarity correlation increases
the coherent islands.

7. Conclusion

In this article we studied the consensus and coexistence of two opposing options in a discrete systemorganized
inmultiplex networks. For this purpose, we proposed amodification of thewell-knownASmodel. Individuals
correspond to the nodes of amultiplex and participate in different social networks in distinct layers. Social
interactionwithin a given social context is denoted by intra-layer links, while inter-layer links represent the
tendency tomaintain the same option across different social networks. Although similarmodels have previously
been studied inmultiplex networks [4, 16, 17], the novelty of our study lies in the fact that individuals can have
different options in different layers. This naturally reflects a common situation inwhich an individual can
possess different opinions in different social contexts as a result of consensuswith other individuals in one
context but not in the other.

Our analysis shows that the latter property enriches the systemdynamics and allows not only a consensus on
a single state for both layers, but also for active dynamical states of coexistence for both options. This can be
described by two layers having opposite preferred options, which generate potentials with the opposite
minimum (there is no state that satisfies both layers). Each layer ‘feels’ the other to be an additive noise, so that
even if individuals instantly consent in one layer, they preserve the chance of switching due to the influence of the
other. In theMF approximationwe found a coexistence phase: there is awide range of parameters where the
coexistence of the two options in each layer is in a stable steady state. An absorbing transition exists when going
from this active phase of dynamical coexistence to the absorbing state of consensus. The transition lines are the
ones indicated infigure 2, so that it can be induced by changing the coupling parameter between the layers.
Beyond themeanfield approximationwe need to take into account finite sizefluctuations. Thesefluctuations
can drive the system from the active dynamical state of coexistence to an absorbing state of consensus. In
particular, we considered the case of equally prestigious options, as in the votermodel. For a single decoupled
layer, the characteristic time it takes to reach an absorbing state is proportional to the size of the system [8]. In
our case, indeed, becausewe have additive noise induced by themutual influence between the layers, this
characteristic time also depends on the coupling parameter γ. Therefore, in the presence offinite size
fluctuations, themultiplex structure of our system can affect and lengthen the lifetime of the transient state of
dynamical coexistence.

Meanfield results are verified by numerical simulations inmultiplex networks consisting of complete
graphs, Erdös–Rényi networks and geometricalmultiplex networks. For the Erdös–Rényi networks wefind the
same qualitative findings, but local effectsmodify the transition lines for the absorbing transition and lifetimes of
active states depending on the distribution of degrees in the network.With geometricalmultiplex networks we
examined both the impact of network topology and the correlation between layers on the dynamics.Wefind that
high correlations between layers promote the coexistence of different inter-layer islands of nodes in the same

Figure 9.The density of links between the coherent nodes in state B,CB; (a) the uncorrelated, (b) popularity correlation, (c) similarity
correlation and (d) fully correlated connections are shown. The parameters of the system are S S 0.5I II= = and 0.3g = . The
networks haveN=2000 nodes and amean degree of k 6á ñ = . The power law degree distribution has an exponent of 2.9; the different
colors refer to different realizations.
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state for small values of coupling, while high values of coupling facilitate the achievement of a full consensus
state.
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Appendix

Wederive themaster equation for the probability Q m t,a( )where the systemhas the polarization option ma at
time t. If at a given time step td a node changes its state, the polarization option changes by N2 . The
probabilities of the possible changes in ma are
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Then, the probability of having the polarization option ma at time t, Q m t t, d+a( ) reads

Q W m
N

m Q m
N

t W m
N

m Q m
N

t

W m m Q m t

2 2
,

2 2
,

, , A.2
k
å= +  + + -  -

+ 

a a a a a a a

a a a

a

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( )

where Qa stands for Q m t t, d+a( ).
Substituting the transition probability and considering that t N1 2d = , we find the Fokker–Plank diffusion

equation
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Wecan rewrite the Fokker–Plank equation in the diffusive form
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