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Abstract

Multilayer and multiplex networks represent a good proxy for the description of social phenomena
where social structure is important and can have different origins. Here, we propose a model of
opinion competition where individuals are organized according to two different structures in two
layers. Agents exchange opinions according to the Abrams—Strogatz model in each layer separately
and opinions can be copied across layers by the same individual. In each layer a different opinion is
dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only
possible stable solution because of the interaction between the two layers. A new mean field solution
has been found where both opinions coexist. In a finite system there is a long transient time for the
dynamical coexistence of both opinions. However, the system ends in a consensus state due to finite
size effects. We analyze sparse topologies in the two layers and the existence of positive correlations
between them, which enables the coexistence of inter-layer groups of agents sharing the same opinion.

1. Introduction

Human interaction often gives rise to different phenomena of collective agreement ranging from common
language or religion to opinion formation. Various models have been proposed [ 1-4] to describe the process of
social consensus, with the so-called voter model being one of the simplest and most studied [5]. It is a model with
two equivalent states, first introduced to describe competition in biological species [5], and later named as the
voter model in [6]. Voter dynamics is based on the mechanism of imitation, in which individuals change their
opinion by imitating their randomly selected neighbors [1, 7, 8]. The model has two absorbing states of
consensus (collective agreement in one of the states) and a critical dimension. In dimension d = 1, 2 there is
coarsening with the unbounded growth of domains of each of the absorbing states. For d > 2, including typical
complex networks, there is no coarsening and the system only reaches an absorbing state through finite size
fluctuations. In the infinite system limit, the system remains in an active dynamical state with the two states
coexisting[1, 7].

A population model which aimed to describe the competition of two languages was proposed by Abrams and
Strogatz (AS) [9]. It turns out that the AS model is a mean-field approximation of an individual based model,
which is a modification of the voter model [10]. The two options here are two non-equivalent languages which
compete in a bilingual society. The languages are not perceived by the individuals in the same way, they have
complementary prestiges reflecting the difference in the social status of spoken languages. An additional
parameter, the volatility, was introduced in the latter model to indicate the tendency to switch the use ofa
language. The AS model fits the real aggregated data of endangered languages such as Quechua (in competition
with Spanish), and Scottish Gaelic and Welsh (both in competition with English) [11, 12]. Moreover, as has been
found by Vazquez et al [13], the AS model can support steady states where both languages coexist for small values
of volatility. Several studies [1, 2, 13—15] have been inspired by the AS model, which tests how different
formalization of the interactions—e.g. different network topology—can determine dominance by one state or,
in contrast, when configurations in which two states coexist is possible.
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In recent years, similar studies have been performed on more complex structures: the so-called multiplex
networks [16, 17]. A multiplex network [ 18—22] consists of two or more interconnected networks lying in distinct
layers. The layers have the same number of nodes, which are connected to their counterparts across the layers,
and in general have a different connectivity structure within them [18, 20]. This framework allows for a more
realistic approach in the study of the interaction of individuals, which can communicate through different types
of channel. Multiplex networks have been used to analyze public transportation systems [23, 24], the spreading
of awareness and infection [25, 26], the dynamics of ecological populations [27, 28], cultural dynamics [29] and
the evolution of social networks [17, 30].

More recently, Diakonova et al [ 16] demonstrated the irreducibility of a multiplex version of the voter
model. In this approach, a multiplex network was considered, where a fraction of nodes and links can be present
in both layers and any change in the state of those nodes in a layer is instantly replicated by the other. This
mechanism affects voter model dynamics, and significant differences from the classical single layer case were
found.

Here we propose a modification of the voter model organized in a multiplex network, where the dynamics
occurring on the nodes is irreducible by nature. Specifically, each node can appear in a different state and may
receive concurrent social pressures in distinct layers. Additionally, the state of a node in one layer influences its
own state in the other layer. This system paves the way for new scenarios for the coexistence of opposing options,
which are discussed in this article. Starting from microscopic dynamics, we develop a mean field theory which
shows that in addition to consensus, there is a non-trivial steady state (the non-consensus states), where the two
options coexist simultaneously, emerge and are linearly stable. Our theoretical findings were verified by
numerical simulations, where, however, no-consensus states can lose their stability due to finite size effects and
the system is eventually driven to consensus. Nonetheless, the time needed for the individuals to consent is
longer than in single-layer networks. We analyze this behavior by developing a probabilistic macroscopic
description. We show that the coupling of two layers, fully connected, or Erdos—Rényi networks, with two
different preferred options can generate various kinds of coexistence options. In addition, we analyze how the
topology of the two networks and the correlations between layers can influence the distribution of states among
nodes. Specifically, we observe that links overlap the correlation, together with degree-degree correlation
between the layers, promoting the formation of inter-layer groups of nodes in the same state.

2. Competition of options on multiplex networks

We propose here a model for describing the competition between two abstract options, A and B (they can be
languages, opinions, voting intention, etc) in a multiplex network. The model is based on a modification of the
AS model with volatility equal to one, and keeping the idea that the two options have different perceived status.
In this model social interactions occur within distinct layers that may have originated from different contexts
like family or business networks, Facebook or Twitter, etc. Nodes and their counterparts across layers
correspond to the same individuals participating in different networks. Intra-layer links denote the individuals’
connections within each network, while inter-layer links indicate the mutual influence of the individuals’ state
across layers (see figure 1).

We assign a state o' to eachnodei (i = 1, 2, ...N)inthelayer o (v = 1, II), such that 6f = 1(or0) if the
node is option A (or B) in layer . We also endow prestige S, to option A differently in each layer; the
corresponding option B has a complementary prestige 1 — S,. We restrict the values of the prestiges to
S; € [0.5, 1]and Sy € [0, 0.5], in order to guarantee that the two layers do not have the same preferred option.
The state of a node in a layer influences its own state in the other layer with strength , where 0 < v < 1. The
limited values of -y correspond to opposing situations so, v = 0 denotes that the two layers are independent,
while v = 1represents a situation in which individuals are not influenced by their neighbors.

The dynamical evolution of this multiplex-organized system is described below. A randomly chosen node i
in one layer can change its option according to the transition probabilities,

& 1 al a o a
Pi,AHB =0 -1 —=SH|1 — a § Gq 0 + (1 - 0'15),
i j=1

N

1 ! _
Plpa=(1- V)SO,FZ GI‘?Ug + y0i,s (D
i j=1

where G; is the adjacency matrix of layer o, with elements Gjj = 1,ifnodesiandjare connected inlayer v and
Gji = Ootherwise, k;" is the degree of the node i in layer o, and with o we denote the state of the node i in the
other layer.




10P Publishing

NewJ. Phys. 19 (2017) 123019 R Amato etal

Figure 1. A graphical illustration of the multiplex AS model. Different layers S;, Sy; denote the different networks in which individuals
participate. Intra-links (solid black lines) correspond to the individuals’ connections within each network, while inter-links (solid
green lines) indicate the mutual influence of the strength v of the individuals’ state across layers.

System equation (1) supports steady states of full consensus where all individuals appear to have a single
option A or B. However, the multiplex structure of this model induces a new steady state, which has never been
observed in the classical voter model, where the two options coexist. In the following we present the stability
analysis of these steady states starting with a mean field (MF) description of the dynamics. Then, we build a
theory for the ordering dynamics to analyze the system’s evolution towards a steady state. We also perform a
numerical simulation on complete (all-to-all) and Erd6s—Rényi networks in order to verify our theoretical
findings.

3. Mean field approach and master equation

One of the central problems in the analysis of opinion dynamics is understanding the conditions in which a
collective agreement occurs. The dynamical evolution of system equation (1) is analyzed by means of an MF
approach, where a previously used order parameter for the single-layer networks [13, 31] is employed. The state
of the system is characterized by the option’s polarization (often called magnetization) and is defined as the
difference between the fractions X, of nodes in state 1 (option A) and the fractions 1 — X, of nodes in state 0
(option B). Therefore, for layer o we obtain the polarization option

my =Xq — (1 — X,) =2X, — 1, 2)

which defines the state of the system and lies in the interval [—1, 1], where m, = — 1 denotes the winning
option Band m, = 1ofoption A.

The dynamics of the system is governed by the presence of active links, namely of links connecting nodes in
different states, because the probability of a node switching to another state depends on the density of its active
links. Two types of active link are associated with each node: active intra-layer links if the node in layer « does not
consent with its neighbors in «, and active inter-layer links if it has a different state in the different layers. The
density of active intra-layer links in layer v is given by the expression,

1 N N
Po = Z Z Gz?(l - 60’?,0;’)) (3
2L i34

where o = I, II, §is Kronecker’s delta and L* is the total number of links in layer a.. The density of the active
inter-layer links reads

1N
= — 1 — 651,0). 4
PL NiE:I( o) 4

In the employed MF approximation, each node in a layer is connected with all the other nodes of that layer.
Therefore, we can naturally express the densities of intra-layer and inter-layer active links as a function of m,, as,

o= 21 = X) = (1 = i) 5)
and

1
p =X+ Xy — 2X Xy = 5(1 — mymy). (6)
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In the appendix we derive the master equation for the probability Q (m,, t) that the system has polarization
option m,, at time ¢

1
01Qa = — O, [0, VQul + =03, [DaQul, 7
iQ o[Om,VQal + —203, Do Qal ™)

where
8m”V - (1 B 7)(250’ - l)pa + P)/(m('l - ma)>
Dy=01—vp, + 0. (8)

We notice that the influence of each layer on the other appears not only in the potential but also as an
additive term in the diffusion coefficient. We can say that term p, controls the diffusion of the two options in the
two layers. The two potentials felt by the two layers have an opposite minimum because of the setting in the
prestiges; for v = 0 each layer would reach the full consensus in opposite options.

In the thermodynamic limit the diffusive term is canceled and the potential V (i, my;) defined in
equation (8) has three extrema:

1. Two corresponding to the states of full consensus:
(@) (my, my) = (1, 1) (consensus to A)
(b) (my, my) = (—1, —1) (consensus to B)

2. One that stands for the non-consensus steady state where options A and B coexist and is given by,

7—2-1-\/%\/(1!)——4

+2 — \/gx/ab — 4
my = . , )

wherea = (1 — )28 — 1) /vyand b = (1 — 4)(2Sy — 1) /7. The stability of the fixed points is analyzed by
imposing 0,V = 0 and by studying the eigenvalues of the corresponding Jacobian matrix. We find that in the
range of parameters defined by the relation:

a a

<b <

X X T > (10)
a—1 a+1

the steady state of coexistence, given by equation (9), is linearly stable while the state of full consensus is unstable.
Out of this region, instead, the state of coexistence vanishes and the states of full consensus become stable; for
b>— %H the system consents to option A, while for b < ﬁ it consents to B. By substituting b = ——"—in

a+1
equation (9) we have m; = my = 1, while by substituting b = ﬁ, my = my = — 1. This means that out of the
region expressed by equation (10), the two solutions of full consensus and coexistence coincide. The coexistence
solution varies continuously from —1 to 1 generating a second order absorbing phase transition. The steady
states of full consensus are absorbing, frozen states and the switch probabilities vanish. The steady state of
coexistence, instead, is an active dynamical state (see [32]), where individuals continue switching and the system
visits a set of configurations which are macroscopically equivalent in terms of ordering. Therefore, by varying
parameters according to equation (10) we find an absorbing transition in which the system goes from an active
state to a frozen configuration state.

The complementary of the density of active links, 1 — p, , gives what is called the coherent domain [33],
namely the density of links between nodes in the same state. Figure 2 shows the landscape of steady states of
system equation (9) in the parameter space v — S" for afixed S'. For v = 0 the two layers do not communicate
and the multiplex is reduced to two independent AS systems (see equation (1)). Each layer reaches a steady state
of consensus; however, the states are complementary, i.e. one layer consents to option A while the other consents
to option B. For v = 1, both a and b are equal to zero and each solution of the form m; = my is a potential stable
solution. The two layers communicate with the stronger possible coupling but the individuals are not affected by
their neighbors (see equation (1)). A randomly chosen node replicates its state from the other layer, resultingin a
frozen steady state where every node has the same state across the layers, while none of the layers reaches
consensus. For other values of , the previously found condition equation (10) determines three different
dynamical regimes displayed in figure 2 (for 0 < v < 1). Figure 2(a) shows the polarization option iy of layer L.
Forb > — a%_l, the system consents to option A (the violet area) while option B dominates for b < ﬁ (thered

area). For the other parameter values the two options coexist (the area enclosed by black curves). The resulting

4
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Figure 2. Density plots of the MF stable solution in the parameter space Si; — <. The option polarization m; of layer I is shown for (a)
Sy = 0.6and (b) S; = 1 — Sy;;(c) shows the fraction of nodes in layer I that are in the same state, 1 — p; S; = 0.6; (d) shows the
fraction of nodes that are in the same state in both layers, 1 — p,; S; = 0.6. Black curves enclose the parameter area where two options
coexist and correspond to inequality equation (10); when crossing black lines, inside out, the system undergoes an absorbing
transition. The point m, refers to figure 4, while points 1, and m, refer to figure 3.

Figure 3. Two different scenarios of coexistence are shown in a multilayer representation for the single realization at the time

t/N = 10*, with a complete graph of N = 1000 nodes. The three levels refer to: layer I on the top, layer I in the middle, and on the
bottom the aggregate layer which counts the nodes in the same state in both layers as well as the nodes with different states. The violet
and blue colors stand for options A and B, respectively, and the orange indicates nodes with different options in the different layers. In
(a) the parametersare v = 0.3, §; = 0.7, Sy = 0.3.In (b) the parametersare v = 0.8, S; = 0.8 and S;; = 0.2. These two scenarios
refer, respectively, to points m1, and m, in figure 2.

density of the connected nodes lying in the same states is presented in figure 2(c), while the density of coherent
nodes between the layers, namely the nodes in the same state in both layers, is depicted in figure 2(d). We verify
the results obtained from our MF approximation by constructing multiplex networks of different sizes
composed of complete networks in their layers. In the coexistence regime, the options are distributed between
the nodes in two different ways presented in figure 3. In figure 3(a), the parameter values allow the existence of
both nodes in different states in the different layers and nodes in the same state across layers. The densities p,
and p, ofthe active links are different from zero. In figure 3(b), vis strong enough to drive the system in a steady
state, where the nodes have the same state in both layers. However, small fluctuations from this steady state are
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Figure 4. The evolution of the polarization option 1 is shown for different realizations in complete graphs of (a) N = 500 nodes and

(b) N = 1000 nodes. The solid horizontal line represents the MF solution corresponding to point m, of figure 2. The other parameters
are y = 0.2, §; = 0.6 and S;; = 0.1.

observed. The intra-layer densities p; |; of the active links are different from zero, while the inter-layer density p,
fluctuates with a very small amplitude around zero.

4. Finite size effects in multiplex networks with complete layers

As mentioned above, the coexistence state is an active one, namely the probabilities of switching the state do not
vanish and the system keeps fluctuating around the fixed point. In finite size networks, however, these
fluctuations can drive the system to an absorbing state of full consensus. This is a finite size effect and has been
observed in our stochastic simulations. In our settings, the two layers have opposite prestiges; therefore for

~ = 0 the polarization option m; would go to 1 while my; would go to —1.

Figure 4 shows the evolution of my for different realizations in the case of complete networks of (a) N = 500
nodes and (b) N = 1000 nodes. In this particular setting of parameters (y = 0.2, S = 0.6 and S = 0.1) the
MEF stable solution (the solid horizontal line) denotes a coexistence steady state but the fluctuations due to the
finite size effect bring it to a full consensus in option B, with both m, = — 1. The time the system remains
around the MF solution depends on the size of the system and on the values of the parameters. A different case is
the unbiased model where both the prestiges are equal, S, = 1/2. The potential reduces to

1
Vi= 57(7”1 — myp)? (11)

and each solution of the form m; = my; is a solution. In this particular setting we can study the effects purely
induced by the multiplex structure, because we can avoid the effect generated by the competition between the
two options in the two layers. From the related theory for single-layer networks [31] we know that in this case the
system will reach an absorbing state with a characteristic time that scales with N. In the multiplex networks
considered here we find by fitting (see figure 5) a factor arising from the inter-layer interaction, c(7y) = ﬁ, for

which the characteristic time to reach consensus takes the form

T = ZN; = 2Nc (7). (12)
|

This relation is consistent with the studies presented in [31], where the scaling factor is the inverse of the
prefactor of the active links in the diffusion coefficient. The factor 2N results from the total number of nodes in
the whole two-layer system. From the time evolution expressed in [31], we can approximate p, (t) ~ e /T,
Figure 5(a) shows the characteristic time equation (12) for a different size and different -y, using complete
networks. Figure 5(b) shows the evolution of the density p, of the active inter-layer links. We can thus conclude
that in the case of equal prestige, the multiplex effect translates into an extension ¢ (7y) in the lifetime of the
coexistence option state.
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Figure 5. (a) The characteristic time to reach a full consensus is shown as a function of . The solid line represents the relation of
equation (12). (b) Exponential decay is shown as a function of rescaled time 7 (solid line p, (¢/7)). In both figures, the points represent
an average of over 50 realizations for different complete graphs of N = 500, 5000 and 10000 nodes. The prestiges are S, = 0.5.
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Figure 6. (a) The density of active links in layer I is shown as a function of the polarization option. Solid lines correspond to

equation (13), while the dots are the average over 50 simulations for two Erdos—Rényi networks of N = 10000 and different mean
degrees. (b) Shows the time evolution of the average density of inter-layer active links for a fixed mean degree, (k,) = 10 and different
7; (¢) shows the time evolution of the average density of inter-layer active links for a fixed v = 0.1 and a different mean degree. The
time is rescaled by the factor expressed in equation (16), and the solid line corresponds to an exponential decay. The dots represent an
average of 50 realizations for the Erdés—Rényi networks of N = 10000 .

5. Erdos—Rényi networks

Here we extend the ansatz of [31] by considering Erdos—Rényi networks. In [31], it was found for the density of
active links that the relation p = %1/1( 1 — m?)isvalid for a complex network of mean degree (k,), where

Y= ko) =2 WWe test this assumption for multiplex networks consisting of different Erd6s—Rényi layers of
(ka> —1
various size and mean degree, discovering that it is also valid in our case (see figure 6).

Then, the density of intra-layer active links reads
1
%zg%a—dy (13)

The inter-layer density, instead, does not depend on the topology of the network. In order to extend the

Fokker—Planck equation (7), for the case of two Erdos—Rényi networks we consider that if a node with k,,
2k,

(ka)N
an inter-layer degree equal to one, the inter-layer change remains % Substituting relation 13 in the transition

changes its state at a time step, the polarization option changes by £ 6 ,, with & , = . Since each node has
probabilities expressed in equation (A.1) and the right expression for =& ,, we obtain for the Fokker—Plank
equation 8,Q, = — 0, [0, VQ,] + ﬁafn [D, Q] the following terms
8mav =(1- ’7)(28 - l)Pa + ’V(md — Mq),
_ k)
T k)

(I = Mo, + 0. (14)

Previous studies of the voter model (prestige equal to 1/2) in complex networks [31], have revealed the relation
between the characteristic time it takes to reach the full consensus and the topology of the network. Previously in
[31], for an Erdés—Rényi network with a mean degree (k) a scaling factor was found of the form

7
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SR (s VR s
((k) + D((k) —2)

Byimposing v = 0, the diffusion coefficient D, of equation (14) reduces to a one layer case

= % P, = Ei—;zz/J (1 — p?). Notice that the expression Tgp is the inverse of the prefactor of the density of the

active links term. In our multiplex extension, by setting S, = % we check the same relation for the scaling factor
by considering that the prefactor of the active links term ends up being a one layer term multipliedby 1 — =,

T = 2¢(y) Tgr. (16)

As in the case of equation (12), a factor two accounts for the total number of nodes 2N'. In figures 6(a) and (b), we
observe the time evolution of the average density p, of inter-layer active links for a fixed mean degree (k) and
different values of -, showing the validity of the assumption expressed by equation (16).

6. Impact of correlation

With a fully connected population we have shown how the coupling of two layers with two different preferred
options can generate various kinds of coexistence options. Here we are interested in how the topology of two
networks and the correlations between layers can influence the distribution of the states among the nodes.
Previously, it was shown that the relation between the layers in a real multiplex can be characterized by
geometric correlations in hidden metric spaces underlying each layer of the system [34—36]. There are two kinds
of correlations: popularity correlations, which are correlations between the degrees the nodes have in the two
layers, and similarity correlations, which control the probability of the links overlapping between layers. To
understand the impact of correlations, we perform numerical simulation using the geometric multiplex model
(GMM) developed in [34].

The GMM is based on the (single-layer) network construction procedure of the Newtonian S! [37] and
hyperbolic H? [38] models. Here we present the treatment for the H? version. To construct a network of N
nodes, first it is requirement of the procedure for each nodei =1, ..., N'to be assigned its popularity r;and
similarity ; coordinates, and accordingly, to connect each pair of nodes i, j with the probability
plxi) =1 / (1 4 exr®i—R) where x;jis the hyperbolic distance between the nodesand R ~ In N. The
connection probability p(x;) is the Fermi-Dirac distribution, where the temperature parameter T controls the
level of clustering in the network [39]. The multiplex composed of these single-layer networks allows for radial
and angular coordinate correlations across layers. The level of these correlations is regulated by the parameters
6 € [0, 1]and v € [0, 1], without affecting the single-layer topologies, where ¢ stands for the radial (also called
popularity) correlation and v denotes the angular (also called similarity) correlation. The popularity correlation
relates to the probability of finding a node with the same degree in the different layers. The similarity correlation
is related to the probability of the links overlapping between layers.

We compare the GMM with different correlation settings and with the ER networks. In all cases the
multiplex networks are composed of layers of N = 2000 nodes with a mean degree of (k) = 6. The most
significant effect is observed in the distribution of the states between the nodes. The similarity correlation, which
increases the probability of links overlapping between layers, promotes inter-layer groups of nodes in the same
state and connected in both layers, namely coherent islands. If the whole system has a favorite state
(S; = 1 — Sp), finite size effects bring the system to an absorbing state of full consensus, in which the coherent
islands of that state increase at the expense of the other. To appreciate the correlation effects, we consider the case
of symmetric prestige. Figure 7 shows the evolution of the polarization option my; (top row) and the inter-layer
activelinks p, (bottomrow)for S§; = 1 — Sy = 0.55and vy = 0.3. Figures 7(a) and (d) refer to a GMM with
uncorrelated layers, figures 7(b) and (e) refer to a GMM with fully correlated layers, while figures 7(c) and (f)
refer to the ER networks. The behavior of p, is significantly different for the correlated and uncorrelated case.
For the ER and uncorrelated GMM, p, fluctuates around the MF solution. Instead, in the strongly correlated
system, the size of the coherent islands grows, generating a slower decay of p, . The top row of figure 7 shows that
none of the three systems has reached an absorbing state, for which the basic difference lies in the distribution of
the states between nodes. We can conclude that the strongly correlated system is in a state of coexistence of
different coherent islands. This feature becomes more evident for high values of the coupling, as shown in
figure 8 where v = 0.8. In this case, for some realizations, the system reaches full consensus in two different
ways: in the uncorrelated case it is thanks to a single fluctuation from the finite size effects, while in the fully
correlated case one of the coherent islands grows and incorporates the entire system. Another important
measure reveals how the similarity correlation acts on the distribution of the states between nodes. In figure 9 we
set S, = 0.5, for which neither the layers nor any of the system has a favored state (the couplingis v = 0.3).In
figure 9(a), the system is uncorrelated (i.e. ¢ = 0 and v = 0), in figure 9(b) § = land v = 0, in figure 9(c)

6 = 0andv = landinfigure 9(d) 6 = 1and v = 1. Cy defines the coherent island in option B, namely the
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Figure 7. The polarization option and inter-layer active links. We compare the ER networks ((c) and (f)) with the GMM ((a), (b) and
(d), (e)) of N = 2000 nodes and the (k) = 6 mean degree. The power law degree distribution of the GMM has an exponent of 2.9; (a)
and (d) show the uncorrelated networks, whereas (b) and (e) show fully correlated networks. The parameters of the model are

S =1 — Sy = 0.55and v = 0.3. The top row shows the evolution of the polarization option in layer II, while the bottom row shows
the evolution of inter-layer active links. The different colors stand for the different realizations and the solid black line denotes the MF
solution.
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Figure 8. The polarization option and inter-layer active links. We compare the ER networks ((c) and (f)) with the GMM ((a), (b) and
(d), (e)) of N = 2000 nodes and a mean degree of (k) = 6 . The power law degree distribution of the GMM has an exponent of 2.9; the
uncorrelated networks and the fully correlated networks are shown in (a) and (d) and in (b) and (e), respectively. The parameters of the
modelare S§; = 1 — Sy = 0.55and y = 0.8. The top row shows the evolution of the polarization option in layer II, while the bottom
row shows the evolution of the inter-layer active links. The different colors stand for the different single realizations and the solid black
line stands for the MF solution.
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Figure 9. The density of links between the coherent nodes in state B, C; (a) the uncorrelated, (b) popularity correlation, (c) similarity
correlation and (d) fully correlated connections are shown. The parameters of the system are §; = Sy; = 0.5and v = 0.3. The
networks have N = 2000 nodes and a mean degree of (k) = 6. The power law degree distribution has an exponent of 2.9; the different
colors refer to different realizations.

density of links overlaps the nodes in state B in both layers. We notice that Cy increases considerably when we set

asimilarity correlation v equal to one. By comparing figure 9(a) with figures 9(b) and (c) we notice that the action
of the popularity correlation alone does not produce significant effects, while the similarity correlation increases

the coherent islands.

7. Conclusion

In this article we studied the consensus and coexistence of two opposing options in a discrete system organized
in multiplex networks. For this purpose, we proposed a modification of the well-known AS model. Individuals
correspond to the nodes of a multiplex and participate in different social networks in distinct layers. Social
interaction within a given social context is denoted by intra-layer links, while inter-layer links represent the
tendency to maintain the same option across different social networks. Although similar models have previously
been studied in multiplex networks [4, 16, 17], the novelty of our study lies in the fact that individuals can have
different options in different layers. This naturally reflects a common situation in which an individual can
possess different opinions in different social contexts as a result of consensus with other individuals in one
context but notin the other.

Our analysis shows that the latter property enriches the system dynamics and allows not only a consensus on
asingle state for both layers, but also for active dynamical states of coexistence for both options. This can be
described by two layers having opposite preferred options, which generate potentials with the opposite
minimum (there is no state that satisfies both layers). Each layer ‘feels’ the other to be an additive noise, so that
even if individuals instantly consent in one layer, they preserve the chance of switching due to the influence of the
other. In the MF approximation we found a coexistence phase: there is a wide range of parameters where the
coexistence of the two options in each layer is in a stable steady state. An absorbing transition exists when going
from this active phase of dynamical coexistence to the absorbing state of consensus. The transition lines are the
ones indicated in figure 2, so that it can be induced by changing the coupling parameter between the layers.
Beyond the mean field approximation we need to take into account finite size fluctuations. These fluctuations
can drive the system from the active dynamical state of coexistence to an absorbing state of consensus. In
particular, we considered the case of equally prestigious options, as in the voter model. For a single decoupled
layer, the characteristic time it takes to reach an absorbing state is proportional to the size of the system [8]. In
our case, indeed, because we have additive noise induced by the mutual influence between the layers, this
characteristic time also depends on the coupling parameter +y. Therefore, in the presence of finite size
fluctuations, the multiplex structure of our system can affect and lengthen the lifetime of the transient state of
dynamical coexistence.

Mean field results are verified by numerical simulations in multiplex networks consisting of complete
graphs, Erdos—Rényi networks and geometrical multiplex networks. For the Erds—Rényi networks we find the
same qualitative findings, butlocal effects modify the transition lines for the absorbing transition and lifetimes of
active states depending on the distribution of degrees in the network. With geometrical multiplex networks we
examined both the impact of network topology and the correlation between layers on the dynamics. We find that
high correlations between layers promote the coexistence of different inter-layer islands of nodes in the same
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state for small values of coupling, while high values of coupling facilitate the achievement of a full consensus
state.
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Appendix

We derive the master equation for the probability Q (m,,, t) where the system has the polarization option m,, at
time . Ifata given time step 6t a node changes its state, the polarization option changes by 2/N. The
probabilities of the possible changes in m,, are

2
W(ma — My + N) = [(l - ’Y)Sapn + %(1 - m(y)(l + m(y):l)

W(ma — Mo — %) = [(1 =AU = S)p, + %(1 + ma)(1 — ma)],
Wmg, — my)=1— (1 —v)p, — 701- (A.1)
Then, the probability of having the polarization option m, attime t, Q(m,, t + 0t) reads
gl 3 m ol 1) o2 m e
p N N N N
Jr”W(ma — M) Q(Mays, 1), (A.2)

where Q,, stands for Q (m,, t + 6t).
Substituting the transition probability and considering that 6 = 1/2N, we find the Fokker—Plank diffusion
equation

—o.dlta - ypa- — w2+ Ly — my Lo Hla-pa-m
&Qa—ama{[z(l NA = 281 = m)+—(ma ma>]Qa}+Nama{[2(1 NA = my)

+ %(1 - m&mﬁ,)]Qa}- (A.3)
We can rewrite the Fokker—Plank equation in the diffusive form
1
atQa = _8m(‘[8mQVQa] + _arznn [Da Qa]) (A4)
2N
where
O,V =1 =m1Q2S = Dp, +v(ma — my) (A.5)
and
Dy =0 =vp, + 0. (A.6)
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