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Abstract

Currently, thanks to the Internet anyone has access to a large amount of data and
for this reason it is essential to create new systems that help to understand that
information in a little time. Recommender Systems are engines which allow to
filter the information depending on people’s interests. There are different kinds of
Recommenders and each of them has a different purpose. In this project, a case of
use of a Collaborative filtering Recommender System is introduced employing every
interaction users do while surfing the Stilavia web site as data input. In order
to carry out this task, some scoring functions are required to generate a model.
This model will be extrapolated throughout the whole dataset space thanks to a
Machine Learning algorithm called Alternating Least Squares (ALS) that is available
in a library of the Apache Spark framework. Lastly, the results of each scoring
function will be tested and evaluated employing a statistic estimator.

Keywords: Recommender systems, Data analysis, Collaborative filtering,
Predictions, Machine learning, Business Intelligence.

Resumen

Hoy en día, cualquier persona tiene acceso a una gran cantidad de datos gracias
a Internet y por ello es necesario crear nuevos sistemas que ayuden a digerir esa
información en poco tiempo. Los Sistemas de Recomendación son motores que
permiten filtrar la información dependiendo de los intereses de las personas. Exis-
ten varios tipos y cada uno de ellos tiene un objetivo distinto. En este proyecto, se
presenta un caso de uso de un Sistema de Recomendación tipo Collaborative Filter-
ing en el que se usa como entrada de datos todas las interacciones producidas por
los usuarios que navegan por la página web Stilavia . Para ello es necesario definir
varias funciones de puntuación para poder generar así un modelo. Este modelo
se extrapolará para todo el espacio del conjunto de datos gracias a un algoritmo
de Machine Learning llamado Alternating Least Squares (ALS) el cual se encuentra
disponible en una librería del framework Apache Spark. Finalmente, se evaluarán
los resultados para todas las funciones de puntuación conocidas utilizando un
estimador estadístico.

Palabras clave: Sistemas de recomendación, Análisis de datos, Filtrado
colaborativo, Predicciones, Aprendizaje automático, Inteligencia de negocio.



Resum

Actualment, qualsevol persona té accés a una gran quantitat de dades gràcies
a Internet i, per aquest motiu, és necessari crear nous sistemes que ens perme-
tin digerir aquesta informació en poc temps. Els Sistemes de Recomanació són
motors que ens ajuden a filtrar la informació depenent de l’interès de cada per-
sona. Existeixen diversos tipus i cadascun d’ells té un objectiu diferent. En aquest
projecte, es presenta un cas d’ús d’un Sistema de Recomanació de tipus Collabora-
tive Filtering que utilitza com a entrada de dades totes les interaccions produïdes
pels usuaris que naveguen per la pàgina web Stilavia. Per dur a terme aquesta
tasca, és necessari definir diferents funcions de puntuació per poder generar així
un model. Aquest model s’extrapolarà per tot l’espai del conjunt de dades util-
itzant un algoritme de Machine Learning anomenat Alternating Least Squares (ALS)
el qual es troba disponible a una llibreria del framework Apache Spark. Finalment,
s’avaluaran tots els resultats per a totes les funcions de puntuació fent servir un
estimador estadístic.

Paraules clau: Sistemes de recomanació, Anàlisi de dades, Filtrat col·laboratiu,
Prediccions, Aprenentatge automàtic, Intel·ligència de negoci.
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"Our destiny exercises its influence over us even when, as yet, we have
not learned its nature: it is our future that lays down the law of our today."

—Friedrich Nietzsche, Human, All Too Human: A Book for Free Spirits
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Chapter 1

Introduction

Some time ago, when a company was looking for a way to understand the data
they are producing, they had to ask for external services in order to find out rele-
vant information that helps them to make strategic decisions about its own busi-
ness. These services consisted of a group of employees whose job was to carry
out an in-depth investigation based on analysing data manually with the purpose
of discovering regular patterns and trends applying statistic methods. This ana-
lytical study took considerable time, effort and the results were not immediate.
In addition, it represented a significant cost to the company because they had
to pay intermediary companies periodically, as data are constantly changing and
new reports were required. Over the time, technology has evolved and currently
analysing data is automated and developed by computers. Thanks to databases
and Big Data technologies, this task has become simpler every time and the results
are obtained quickly and efficiently depending only on its own IT department and
not in an external company. This investigation area has suffered a vertical integra-
tion, going from an external service, to being integrated in the main business.

Data analysis is an essential process that enables to know how the business is go-
ing. It allows to discover which are the strengths and weaknesses of the business
process, even to learn if there are unexpected trends that can be taken into account
especially when starting an advertising campaign. Businesses can take advantage
of this information maintaining the good service in everything which is already
working properly and enhancing what is not running as intended. In order to find
trends and regular patterns in customers’ behaviour or tastes, there exists some
engines called Recommender Systems which its aim is basically to find correla-
tions in data. Combining these systems with the analysis task is key as they are
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Chapter 1. Introduction 2

able to predict what the customers are likely to prefer in the future studying all
the available data.

1.1 Motivation

Stilavia is an E-commerce website that offers clothes, shoes and accessories that
can be bought in Spain and United Kingdom. They have available a stylist wizard
that helps users to find products that best fit them. In order to do this, there is a
section where users can fill in a profile adding information about their hair, eyes
and skin colour. Later, they can express their opinion about different parts of their
body they want to enhance or reduce. From this information, the system is able
to recommend products based on the users’ physical appearance and their body
aspirations.

Sometimes recommending products taking into account only users’ features is
not enough to encourage buying the recommended products. For this reason,
setting up a new recommender system which analyses all the interactions users
do during their visit could be the key to increase the volume of sales and achieve
loyal users which are essential in this kind of websites. Analysing the actions
users do when surfing the site is useful as their tastes can be used particularly
in marketing strategies. It makes sense to recommend those products users have
visited several times.

1.2 Objectives

The main objectives of this project are basically three: (1) creating a recommender
system employing implicit feedback and applying it to two different concepts
(Products and Product Box), (2) defining different scoring functions for this recom-
mender system and, finally, (3) evaluating these scoring functions and discussing
which of them obtains better results.

1.3 Planning and organization

Figure 1.1 shows the period of time in which the project was developed. It starts
on the 12th of September and ends on the 26th of January. The diagram displays
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the different tasks that have been done during this time classifying them in three
stages: Documentation, Code and Thesis.

Figure 1.1: Project tasks planning employing a Gantt diagram.
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The first task that was carried out is the Documentation stage. It includes tasks
that are related to learn the main concepts of the technologies that are going to
be used in later stages. Learning about the technology before using it is essential
as it avoids wasting time on developing features that they do not support. Some
technologies that were checked out are: Elasticsearch and Kibana as tools that help
visualizing data. Several academic papers were studied during two weeks in order
to acquire further knowledge about some Recommender Systems. Finally, Pyspark
was chosen as the default Big Data framework. At the end of the Documentation
stage, some scoring functions were analysed in order to have some options that
could be used in the next stage.

Once this stage was complete, the main task was the development of the software.
While the code was being developed, some drafts of the dissertation were also
written in order to gather all the details of what was being done. This was a good
decision as at the moment of writing the final dissertation these drafts were really
useful.

1.4 Notation and terminology

During the section 4.1, which is focused on the analysis of the project, the same
set of variables and functions are used to achieve a greater understanding of the
problem that is going to be solved later. Here is available a list that contains the
symbols and descriptions:

Symbol Description

u User
p Product
U Set of users
P Set of products
L Subset of U × P
s(L) Function that returns all the scores
s̄(u, p) Real score of user u on product p
e Event
Eu,p Set of all possible events
w Event’s weight
w(e) Function that returns the weight of an event
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Symbol Description

τ(e) Function that returns the type of an event
Se Generic event scoring function
t Time
m Curve slope
Sig(x) Sigmoid Function that normalizes a score between 0 and 1
N Number of users
M Number of products
RN×M Rating or scoring matrix
Q Products’ matrix in Matrix Factorization
T Users’ matrix in Matrix Factorization
K Number of features in Matrix Factorization method
k Number of folds in a K-Folds Cross Validation method

1.5 Dissertation structure

The project is divided into 6 different chapters and each of them is going to be
briefly described in the following lines:

• Chapter 1 - Introduction: This chapter explains the background, motivation
and the objectives of this project. In addition, there is a schedule where the
period of time when every task was developed is shown. Finally, it also
includes a section that introduces the notation that is used when analysing
the problem in Chapter 4.

• Chapter 2 - Recommender Systems: This chapter explains one of the states
of the art of this project. Basically, here it is introduced every type of rec-
ommender system including which is the objective of every different recom-
mender and a short discussion about the advantages and disadvantages that
they produce while being used.

• Chapter 3 - Apache Spark: This chapter talks about the second state of the
art of the project which is the framework Apache Spark. First, it explains
this software history in order to know the reasons why it was created, next
a data type specially developed for this framework is widely explained, and
finally the available libraries and the architecture are discussed.
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• Chapter 4 - Collaborative filtering for implicit feedback for Stilavia site: This
chapter contains the main purpose of the project as it explains the analysis,
design and implementation of the project itself. In the analysis section the
problem is mathematically defined in order to be solved, then, in the design
section appears the existing system architecture and also all the reasons for
choosing a specific technology instead any other. Lastly, in the implementa-
tion section it is explained the solution that is carried out to solve the given
problem.

• Chapter 5 - Results: This chapter includes all the output obtained in the
evaluation stage using different tables and charts.

• Chapter 6 - Conclusion: Finally, this chapter sums up the whole project
giving the conclusions about the project, adding some personal opinions
and offering advice about what could be added in the implementation stage
in a future work.

After the 6 main chapters, there is available a compilation of the websites and
books that have been used and visited in order to achieve the implementation. At
the end there are also 3 appendices that include further details about the informa-
tion used during the project development.



Chapter 2

Recommender systems

Currently, there is a wide range of items available on-line to choose from and con-
sequently, a lot of users spend several hours in front of a screen deciding which are
the most suitable items for them. Recommender systems have become very pop-
ular in nowadays applications, as they solve this challenge helping users make
decisions in order to obtain personal and high-quality recommendations. These
engines are used in different areas and suggest items such as videos (Youtube),
movies (Netflix), music (Spotify), news (Google News), books (Amazon), restau-
rants (Tripadvisor) and so on.

This chapter is organized as follows: Section 2.1 discusses the main objectives of
a recommender systems and explains the two different ways in which data could
be obtained; Section 2.2 introduces the different types of recommender systems;
Section 2.3 focuses on the strengths and weaknesses of each type of recommender
system.

2.1 Goals of recommender systems

Recommender systems suggest items to users depending on their needs, tastes
and preferences. It is a useful and powerful tool that allow users to filter through
a considerable number of items.

Such applications need to pick up information about every user to know about
their interests or habits. The information collected, which is completely crucial to
make recommendations, comes from the feedback users generate when interacting
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with the platform. This feedback can be acquired in two different ways: explicitly
and implicitly.

On the one hand, explicit feedback means that the platform needs to ask users
directly their opinion, for example using surveys or simply, rating or scoring some
items using a numerical scale. On the other hand, implicit feedback requires to
observe and track users behaviour to record information such as clicks, purchases,
mouse movements, how much time users spend watching a specific page or even,
demographic data.

In explicit feedback, ratings indicate users preferences, likes or dislikes. An exam-
ple could be a typical scale from 1 to 5, namely a five-level Likert scale, where 1
means "totally dislike" and 5 "really like". However, in implicit feedback, numer-
ical values represent the level of confidence which can describe the frequency of
actions or the amount of times a certain action is done by a user.

After selecting a way to collect data and before developing this kind of systems,
it is important to keep in mind which are the main goals to achieve. The most
common goals are explained below.

First of all, relevance is the most important objective of recommender systems
because they are supposed to recommend items which are relevant to users. Users
are more likely to consume items they find interesting.

Secondly, serendipity which refers to recommend items which are unexpected and
completely appropriate for the user. Recommender systems must surprise users
suggesting items that they do not know they might appeal. The surprise factor
is key and it could enhance the expected profit of a business if its aim is selling
products.

Thirdly, novelty which is basically the ability of suggesting new items. These sys-
tems usually recommend items relying on what users have not seen yet. This
technique is very helpful but it becomes inefficient when the system tends to re-
peat recommendations. This problem can also reduce the items diversity.

Lastly, diversity draws attention to the fact that the system should recommend
very different products to the same user. This factor is directly related to novelty
because it is necessary to offer innovative items in order to keep users attention.
However, there is the drawback that users might get bored and will stop using the
application.

Making a great recommendation depends primarily on these goals so that, if all of
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them are taken into account, the consequences will be very positive. For example,
the number of loyal users could grow as well as the traffic in the platform or
maybe, the amount of sales.

2.2 Types of recommender systems

Recommender systems are generally divided into three distinct groups which are
based on different approaches. They are called Collaborative filtering, which
makes recommendations using past experiences of similar users; Content-based
filtering, which suggests items taking into account only the taste of the user and
the items’ characteristics; and Hybrid recommender systems, which is a combina-
tion of the two previous methods.

2.2.1 Collaborative filtering

The main objective of Collaborative filtering is to employ users’ information to
predict which items a user is likely to prefer relying on similar users, which are
also known as peer users, or similar items. In this case, information about items
is not required to make recommendations. These two approaches are commonly
known as user-based Collaborative filtering and item-based Collaborative filtering.

In respect of the user-based strategy, users are considered like-minded if they have
been interested in the same items. This kind of recommender system assumes
that if users have had the same tastes until now, they are unlikely to change in the
future. So, image that there is a dataset about music. For example, if user X and
user Y have a similar purchase history and user X has recently bought a song that
user Y has not listened to, the main idea is to recommend that song to user Y.

Furthermore, in item-based approaches the main idea is to find similarities be-
tween items and not between users. Two items are similar if a large amount of
users have expressed the same opinion about them. Using as reference the previ-
ous example, if many people who have bought song 1, including user X, tend to
buy song 2 and user X has not bought it, the aim of this strategy is to recommend
song 2 to user X. This idea was invented by Amazon and nowadays they employ
it when users add products to their shopping cart or while users are watching a
product in particular.

Collaborative filtering for implicit feedback is focused on past users’ behaviour,
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that is, their past transactions or actions carried out in the platform.

These transactions can also be converted to ratings aggregating weights depend-
ing on the type of action users have triggered. Unfortunately, it is impossible to
know what items users dislike because of the absence of negative feedback. It is
reasonable to believe users do not like that items which they did not interact with.
However, this is not completely true because the user may not have know of their
existence. Actually, there are no procedures to specify displeasure for an item.

In addition, some actions cannot reflect users’ preferences, such as buying an item
as a gift or staying a long time watching the same item because they have fallen
asleep.

To summarize, explicit feedback is the most precise method to know users’ opin-
ions because it is obtained directly from them. Although implicit feedback has
some drawbacks, such as the lack of negative opinions and the existence of data
which does not represent users’ tastes, there is no mechanism to recognise and
filter these data.

In section 2.3.1, the advantages and disadvantages of this method will be dis-
cussed.

2.2.2 Content-based filtering

Content-based filtering is a non-collaborative method that recommend items based
only on the content, not on users’ opinions. Content refers to items’ descriptions
or characteristics that could be introduced in the system manually or extracted
automatically looking for keywords in a document or media. The aim is to figure
out the items which match the users’ interests best. For this reason, this technique
creates a profile for every user in order to indicate their interests for each item
characteristics.

The typical examples of content-based recommenders are systems that recom-
mend new textual documents such as articles, web sites, blogs or books. In this
case, it is necessary to scan all the document in order to identify which are the
attributes of each item looking for keywords. This is a challenging task because it
is necessary to find a correlation between words

Supposing there is a dataset, this time about movies. In this case the possible
keywords or characteristics might be metadata such as the genre, the author, the
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actors, etc. For instance, if one user have watched every episode of the Star Wars
saga, this user is likely to prefer science-fiction movies, other films created by
George Lucas or perhaps, any movie where Harrison Ford appears.

In section 2.3.2, the advantages and disadvantages of this method will be dis-
cussed.

2.2.3 Hybrid recommender systems

The two previous recommendation approaches can be combined in order to achieve
the best of both worlds. The process of combining those methods is called hy-
bridization. Hybrid recommender systems create a robust model that improves
the performance of each recommender system overcoming some of the problems
they have. This kind of systems allows the obtaining of more accurate recommen-
dations.

There are many possible implementations to create a hybrid recommender system
as there are multiples ways to combine the recommendation techniques together.
There is no clearly defined structure for implementing hybrid systems because
each of them is different and unique.

In section 2.3.3, the advantages and disadvantages of this method will be dis-
cussed.

2.3 Advantages and disadvantages of recommender systems

Each type of the commented recommender systems has its own strengths and
weaknesses. However, there is a setback that these three methods have in com-
mon which is called cold start and it generally occurs when the system has been
set up. This issue implies that there are not enough data to recommend items
consequently, recommendations will not make sense and will be surely wrong.

In the case of Collaborative filtering, it usually happens when there is no infor-
mation of similar users or a new item is introduced. Nevertheless, Content-based
filtering methods suffer this problem because of the lack of content or information
about items.

Below, the advantages and disadvantages of each type of recommender are going
to be discussed individually.
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2.3.1 Collaborative filtering

Collaborative filtering methods are valued for their simplicity but they do not
work properly in all situations. The main challenge of this method is that data is
sparse due to the fact that people only express their opinion on a small fraction of
the large wide range of available items. This is one of the reasons why this kind of
systems suffers from the cold start problem. Nevertheless, this problem does not
happen when data is collected implicitly, unless users give approval to collect the
data they produce, because any user can give their opinion whenever they feel.

Finding a right recommendation for people with non-mainstream tastes is ex-
tremely difficult. This situation is known as Long tail phenomenon and is also a
consequence of the data sparsity. It is trivial to recommend popular items because
they are rated by many people but, when items have only little feedback, namely
niche items, the task becomes very complex.

Figure 2.1: Long tail function shows that most people have mainstream tastes.

Figure 2.1 shows a Long tail function plotted in two different colours. To the right
in orange, there is the long tail referring to niche items which represent 80% of the
total items; to the left, there are items that most people like or rate which represent
the remaining 20%. It is commonly said that this 20% of items generates 80% of
sales or benefits. For this reason, businesses are interested in selling items that are
more market demanded. However, the real meaning of long tail is that benefits
would be higher if businesses focused on the 80% of rare items.

Collaborative filtering has some advantages as well, for example this system does
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not require information about items because it does not use the item information
to make recommendations. Therefore, it is not necessary to update the description
or characteristics of the available items, which is time-consuming.

In addition, the fact that recommendations are not defined through items’ de-
scription means that they are personalized according to other users’ experiences.
Hence, the possibility of finding out a surprising and interesting suggestion is
quite high.

Finally, a major appeal of Collaborative filtering is that it is domain free and so it
can cope with difficult data aspects that other techniques cannot identify.

2.3.2 Content-based filtering

Content-based filtering does not depend on users’ preferences, therefore recom-
mendations are more objective and are focused on the item itself. New items can
be suggested as soon as their information or attributes are available. However, the
system is not effective at suggesting recommendations for new users because they
do not have any history of their preferences to rely on.

Sometimes, this method provides obvious and irrelevant recommendations be-
cause the use of the items’ characteristics. For example, if a user has never watched
horror films the system will not recommend any film of that genre to them. This
fact reduces the diversity of the recommended items leaving behind one of the
main goals of recommender systems.

2.3.3 Hybrid recommender systems

As discussed in the previous section 2.2.3, this kind of systems could be more
effective in some cases using each approach, Collaborative filtering and Content-
based filtering, separately.

This approach can be implemented in various ways and, in all of them, some of
the common problems of recommender systems disappear, such as sparsity or
cold start.





Chapter 3

Apache Spark

Due to the growth of data, some of the usual tools used for Big Data applications
have become obsolete and old-fashioned as they cannot manage such a quantity
of data efficiently. Apache Spark appeared just in time improving the existent
methods and providing new innovative features. Currently, Apache Spark has
become one of the most used frameworks in this area.

This chapter is organized as follows: Section 3.1 introduces the popular frame-
work Apache Spark explaining mainly which is the main reason of its creation;
Section 3.2 focuses on an object structure that is key in Spark framework; Section
3.3 provides a high-level overview of what components Apache has available; Sec-
tion 3.4 explains which architecture Spark uses including a brief discussion of its
components.

3.1 History

Apache Spark is an open source cluster computing framework originally devel-
oped in 2009 in UC Berkeley’s AMPLab, which it started being a simple research
project. It was first open sourced in 2010 and it was in 2013 when the project was
transferred to Apache Software Foundation as a top-level project. Since its cre-
ation, many people have been interested in being part of it helping freely, so that a
community was created with the purpose of contributing in each release. Nowa-
days, this community is very active and the number of contributors is growing as
time goes by. Some of the major contributors to Spark include Databricks, Yahoo!
and Intel.

15
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The researchers of UC Berkeley had been working on Hadoop MapReduce and
they realized this kind of operation was inefficient for iterative and interactive
computing jobs because of the high-latency. Spark was created to overcome this
problem as it was lightning-fast and general purpose. It was thought as an al-
ternative or enhancement of Hadoop MapReduce rather than a replacement of
it.

This big data processing platform explores data interactively, when before its cre-
ation, people were waiting minutes or even hours processing data. Spark is faster
because it holds intermediate results in memory instead of writing them to disk,
which is time-consuming, and also because of its efficient fault recovery. If this
engine cannot store the whole dataset in memory, the system has no choice but
to store the remaining data on disk. In comparison with Hadoop MapReduce,
Spark applications run up to 100 times faster in memory and even 10 times faster
even when running on disk. That was possible thanks to the concept of Resilient
Distributed Dataset (RDD) that will be explained in detail in section 3.2.

This engine let programmers write parallel computations using a set of high-level
operators without having to bother about work distribution or fault tolerance.

Spark is written in Scala Programming Language and runs on Java Virtual Ma-
chine (JVM) environment and lets programmers write applications in different
languages as it offers APIs for Scala, Java, Python and R, among others.

MapReduce is a programming model for large scale parallel and distributed pro-
cessing in clusters. As it was earlier pointed out, one of the most popular open-
source implementation is Hadoop. As its name suggests, there are two basic pro-
cedures in MapReduce which are map and reduce, and they are supposed to be
written by the programmer. This kind of operations allows the handling of a big
amount of data that is difficult to fit in memory. Actually, there are two more
extra phases transparent to programmers which are splitting and shuffling. The
first one is executed before the mapping procedure whereas the second is carried
out after mapping and before the reducing phase.

The splitting phase divides the input dataset into pieces of information following
a specific criteria. After that, the map procedure takes those pieces and transforms
them into a series of key/value pairs producing a set of intermediate key/value
pairs. Then, the shuffling phase groups all the intermediate values, associated
with the same key, together. This new key/value pairs are going to be the input
of the reduce procedure. Finally, the reduce function, iterates through the values
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that are associated with a specific key, it merges together these values and lastly,
it produces a single output which could be just zero.

A typical example of MapReduce is a simple application that counts the number
of occurrences of each word in a given input set. In figure 3.1, there are shown the
different phases of performing that example using the MapReduce framework.

Figure 3.1: Description of MapReduce Programming Model performing a word
count application.

First of all, data is divided into portions in order to speed up work. Each partition
is going to be parallelized in different mappers or machines. Arrows symbolize
parallelization. In this case, the dataset is composed by a text so that, it will be
splitted up into sentences. Hence, keys will be words and values will represent
the frequency in which that words appear in the analysed sentence.

Next, each sentence will be processed by a mapper and shuffled by key for the
purpose of grouping all values of the same word.

Lastly, the reducing phase makes an aggregation of each group of values produc-
ing an unique number. There will be as many numbers representing the number
of occurrences as distinct keys.
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3.2 Resilient Distributed Datasets

Resilient Distributed Dataset or RDD is the core concept in Spark framework. For-
mally, it is defined as a read-only collection of records partitioned across multiple
machines or nodes. It can be created through different deterministic operations:
(1) parallelizing an existing collection, (2) obtaining data in stable storage like a
file system or (3) transforming a new RDD.

These type of structures allows programmers to reuse data persisting intermediate
results in memory, tp control partitions in order to optimize memory and, finally,
to manipulate data using a wide set of operations.

RDD supports two types of operations: transformations and actions. Transfor-
mations return a new RDD. Some examples of transformation functions are map,
filter, reduceByKey, aggregateByKey and groupByKey. However, actions evaluate,
return the result value and let the system materialize the RDD. Some examples of
action operations are collect, reduce, count, max, min first and take.

Despite the fact that RDD are immutable, RDD can be modified with a transfor-
mation that will return a new RDD while the original RDD will remain the same.
Transformations are lazy which is to say that they are applied only once they
are materialized. Lazy evaluation helps with the optimization of the overall data
processing workflow. RDDs keep the information about how it was derived in a
transformations queue. When it is time for materialization, each transformation of
that queue, which was previously optimized, is applied sequentially to the RDD
and then, it is materialized with an action operation. Consequently, if a partition
of an RDD is lost, this object has enough information to be able to recreate and
recompute that partition in a short time. Hence, recovery does not need to main-
tain a material replica of the RDD or to take a snapshot of the whole application,
which is an advantage.

Next, there is again the example of a word count application where a RDD is
transformed in order to build a dataset composed by pairs of (String, Int). RDD
is created in the first line through a file system using the function textFile. Then,
some transformations are applied to this RDD such as flatMap which splits the
text into sentences, map which creates a new key/value pair that assigns a value
to each key or word and finally reduceByKey, that sums all values by key. This
last operation is an action responsible for materializing the RDD and it returns
how many times each word appears. After materialization, the RDD is stored into
a new file using the function saveAsTextFile.
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t e x t _ f i l e = sc . t e x t F i l e ( " hdfs : / / . . . " )
counts = t e x t _ f i l e . flatMap ( lambda l i n e : l i n e . s p l i t ( " " ) ) \
. map( lambda word : ( word , 1 ) ) \
. reduceByKey ( lambda a , b : a + b )
counts . saveAsTextFi le ( " hdfs : / / . . . " )

Finally, only two aspects of RDD can be controlled by the programmer: persistence
and partitioning. It can be chosen which RDD to keep in memory in order to
be faster or even, it can also be indicated how to distribute each element across
machines. By default, RDDs are persisted in memory but the system can spill
them if there is not enough RAM.

3.3 Spark Ecosystem

The Spark core is focused on the RDD abstraction and it has different tasks to
schedule such as memory management, fault recovery and interacting with stor-
age system. As shown in 3.2, there are additional libraries that are part of the
Spark ecosystem and support extra features related to Big Data analytics and Ma-
chine Learning areas. These libraries are the following:

Spark SQL

Spark SQL is a module that works with structured data and it allows querying
data via SQL, as well as different variants of it, providing a programming abstrac-
tion called DataFrames.

Spark Streaming

Basically, this component enables programmers to process real-time streaming
data. Is a powerful library designed to provide the same fault tolerance char-
acteristics and scalability as Spark Core.
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MLlib

MLlib, an acronym for Machine Learning library, is composed by different com-
mon learning algorithms and utilities, such as classification, regression, clustering,
collaborative filtering and so on. It has quickly emerged as an essential piece in
mining Big Data for actionable insights.

GraphX

GraphX is a library designed to manipulate graphs and performing graph-parallel
computations. It includes a huge collection of graph algorithms and builders with
the intent to simplify graph analytic tasks.

Figure 3.2: Components of Apache Spark.

3.4 Spark Architecture

Spark uses a master/slave architecture where the main coordinator is called driver
program which runs the main process of the application creating the SparkCon-
text1.

The objective of the driver program is to divide the application into small pieces
of work called tasks. Each task is going to be send to one executor, therefore the
driver program needs to talk to the cluster manager, also known as master, to
decide which executor to send that task to. Executors are slaves processes that
are able to run a specific task or tasks. In Spark environment slaves are called
workers.

1SparkContext represents the connection to a Spark cluster.
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Figure 3.2 shows the main components of Spark architecture that are going to be
analysed individually.

Driver program

As mentioned above, the driver program runs the application creating a Spark-
Context instance that connects to a cluster of workers and coordinates them the
execution of certain tasks. It has a web UI2, typically running in port 4040, that
displays information about running tasks, executors and storage usage.

Cluster manager

The cluster manager is an external service that represents the master and acquires
the resources of the cluster. Spark can support three types of cluster managers:
Standalone manager, Mesos and YARN.

The Spark Standalone manager is included with the Spark distribution and it
makes easy to set up a cluster because it is resilient to worker failures. It can run
on Linux, Windows, or Mac OSX. Standalone mode is the easiest way to configure
a cluster manager if programmers have never used this framework before.

Apache Mesos is a distributed system kernel that can manage resources for appli-
cation and support Docker containers. This cluster manager can also run Hadoop
MapReduce and service applications. It has APIs for Java, Python, and C++ but
can only run on Linux or Mac OSX.

Hadoop YARN3 is a distributed computing framework for job scheduling and the
resource manager in Hadoop 2. It can run on Linux and Windows.

The following line of code allows to start a standalone master server:

./ sbin/ s t a r t−master . sh

2UI: User Interface.
3YARN: Yet Another Resource Negotiator.
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Worker Node

A worker node represents a slave that can run application code in the cluster and
posses the executor process. Programmers are able to set up how many workers
there are and which master each worker is associated to.

The following line of code allows the starting of one or more workers and con-
necting them to the master:

./ sbin/ s t a r t−s lave . sh <master−spark−URL>

The master’s URL refers to the master’s web UI which is http://localhost:8080 by
default.

Executors

Each application has its own executors and its main objective is to run tasks and
keep data in memory or disk storage across them.

In following figure, it is shown how the components of Spark interrelate among
each other:

Figure 3.3: Overview of Spark architecture.
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Collaborative filtering for implicit
feedback for Stilavia site

After having read the two previous chapters, which introduce the main topics
related to the project, it is the right time to focus on the application itself.

This chapter is organized as follows: Section 4.1, in essence, explains what the
project is about, mentioning what the system is used for and which problems it
solves; Section 4.2 focuses on the technologies used to develop the project; Sec-
tion 4.3 provides an explanation about the development of the project including
algorithms that are key in the process.

4.1 Analysis

The main objectives of E-commerce platforms are basically two: (1) engaging users
and (2) selling products. The idea of attracting people is essential in such applica-
tions to make the platform more popular and to attract new users. Some of these
new users could become loyal users, who are always faithful to the website and
generate a regular activity in the website. Regarding selling products, this is also a
very important objective because business are interested in increasing the amount
of sales, which is to say, achieving more profit.

Some businesses have chosen to integrate recommender systems to their websites
as a remarketing tool in order to achieve these two goals. These engines help users
to find out items to purchase depending on their tastes. The Stilavia’s website has

23
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available items that are products related to fashion, such as clothes, shoes and
accessories.

The Stilavia’s recommender system needs to collect and record information from
the website to know something about users to make custom recommendations.
This information is generated when users surf the web application. Then, numer-
ous web events are triggered because they are interacting continuously with some
of the website elements.

An event is an action indicating that something has happened like a mouse click
or a keystroke. In this case data is collected implicitly which is a way of collecting
data that was explained in detail in section 2.1. because the system is observing
users’ behaviour and is not asking users for extra information.

In Stilavia’s website there are different types of events grouped according to their
purpose. The table 1 in Appendix A shows all the types of events that the website
is able to record with the purpose of tracking users’ actions.

The most relevant actions or events are those that are related to users and products
such as buying a product called BUY_PRODUCT, sharing a product composed
by FACEBOOK_SHARE, TWITTER_SHARE and PINTEREST_SHARE, saving a
product in a wish list called SAVE_PRODUCT or simply, viewing a product called
POV_PA-GE_VIEW.

There is another concept called product boxes, these boxes contain a set of prod-
ucts with common features. The most relevant events to recommend these boxes
are seeing a product box called PRODUCT_BOX_VIEW, clicking in a product box
called PRODUCT_BOX_HIT and showing a product box PRODUCT_BOX_IMPRE-
SSION.

The following figures are examples of charts that have been obtained during a
prior data analysis with the purpose of showing how the data is distributed. Each
figure has a caption explaining what the bar charts are showing.

In figure 4.1 it can be seen that the most triggered event is PRODUCT_BOX_IMPRE-
SSION that denotes a click in a set of products. The figure shows which day had
the highest number of interactions, in this case the 27th of December.

On the other hand, figure 4.2 shows what is the daily hour when users interact
more with the Stilavia site. It can bee seen that at 16:00 the site produces more
events. On the other hand, after 00:00 the number of interactions decrease due to
people will probably be sleeping.
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Figure 4.1: Number of events that have been triggered daily during 30 days
grouped by type.

Figure 4.2: Number of events that have been triggered hourly during 24 hours
grouped by type.

As it is said in chapter 2.1, scores are crucial to determine which products are likely
to be preferred by one user. When recommender systems collect data implicitly,
scores need to be worked out by the programmer.

Next, the context of the problem is introduced to provide a successful understand-
ing of the different scoring functions s that are immediately analysed afterwards.
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Given U a set of users, P a set of products and s the score of user u on product p.

s : U × P→ [0, 1]

The score s is a real number that represents users’ affinity or, in other words,
their level of confidence in one product. The value is bounded between 0 and 1
and its meaning depends on the score’s function purpose. In addition, as stated
before, s is calculated from the events triggered by users when interacting with
the platform.

Let L be a subset of U × P which is the space where the score s will be defined.

L ⊂ U × P

Note that in the real world, users usually interact with some products, not with all
of them. For this reason, a high proportion of scores in s(L) are null whereas, the
rest are real scores defined as s̄(u, p). In order to extrapolate the scoring function
throughout the rest of U × P space, Collaborative Filtering (CF) methods will be
used.

s(L) =

{
s̄(u, p), when (u, p) ∈ L
0, otherwise

4.1.1 Scoring functions

First of all, some different scoring functions will be introduced. The first purpose
is to sum all weights associated to each event type only if this kind of event has
happened.

∑
τ∈{τ(e)|e∈Eu,p

wτ

where e is the event, Eu,p is the event set of one user for one product, w is a real
number that denotes the event’s weight and, lastly, τ representing the type of
event such that τ ∈ {b, sh f b, shpt, shtw, s, v}.

One of the advantages of using this function is the fact that the score is already
bounded between 0 and 1; and as long as the sum of all weights is 1, that dimen-
sioning would be unnecessary. Therefore, there are more downsides to consider
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such as the lack of information due to the fat that the amount of events is not
taken into account, which is a big mistake because a recurring event usually re-
flects users’ interests; and finally, its limited flexibility.

The next step is to create a new function Se, where the way of scoring events is
completely different. This new approach solves the flexibility problem that was
mentioned previously.

∑
e∈Eu,p

Se(e)

Firstly, the aim is to take into account how many events have happened of each
type:

Se1(e) = w(τ(e))

A disadvantage of this alternative is that the score is not bounded; however, a
Sigmoid function could be used in order to bound it.

Sig(x) =
1

1 + e−x

where x will be the non-dimensioned score.

Actually, Se1 is a simplified formula that can be expressed in the same way as the
first purpose

∑
τ∈{τ(e)|e∈Eu,p

w(e) · (#{e|e ∈ Eu,p, τ(e) = e})

where the second factor represents the amount of events for a specific type. The
problem was that the equation was too long and it was decided to work with the
shortest version for convenience.

Now, if one user triggered more than one event of the same type, the score will
increase depending on its weight and it is always bounded between 0 and 1 thanks
to the Sigmoid function.

Secondly, the aim is to take also into account when the event was triggered. The
longer since it has happened, the less relevant it will be.

Se2(e) = 2 · (1− 1
1 + e−t·m )

where t is the distance of time in days between the time when the event happened
and the current time (now) and m is the curve slope bounded between 0 and 1.
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The reason number 2 appears in the formula is that this is an inverted Sigmoid
function and it lies within the interval [0, 1]. The slope m is really important
because it figures out what is the expiration date of events. This means that, if
the value is set to 0.07, the weight will decrease to 50% about 20 days since it
happened.

Once these two scoring functions have been defined, a combination can be done
to obtain a new one that considers the amount of events of each type and the time
when they happened.

Se3(e) = Se1(e) · Se2(e)

The previous scoring functions are also applied to product boxes. There is no
problem to apply the same process to different data, because as said in section
2.3.1, this kind of recommender system1 is domain free, which means that it does
not matter what data are used since all of them can be represented and treated as
numbers.

4.1.2 Matrix factorization

For simplicity, the following information only refers to products because the pro-
cess applied to product boxes is exactly the same.

Supposing there are N users {u1, u2, ...uN}, M products {p1, p2, ...uM} and, after
applying a scoring function, sij that denotes the score of user ui on item pj. Let
RN×M be a rating matrix where each row represents a user and each column a
product. The main problem of this matrix is that is sparse because users only
interact with a small quantity of products.

RN×M =


0.8 0 · · · 0
0 0.1 · · · 0.13
...

...
. . .

...
0.75 0 · · · 0.35


Collaborative filtering helps to predict the missing scores based on the known
scores. One of the key points of this kind of recommender system is that they use

1Collaborative filtering recommender systems.
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Matrix Factorization to simplify the problem. This method splits R into two ma-
trices: TN×K for users and QK×M for products, where K is the number of features.
These features are abstract factors that represent users and products in a feature
space. They are carried out by the method itself and are invisible to program-
mers. The reason this method is used instead of preserving the whole matrix R is
basically because it is efficient in memory and consequently, in time. Supposing
now that there is the same number of users and products so the dimension of R is
N × N. Using Big O notation, this problem has order of O(N2) time complexity;
however, storing T and Q is O(N · k) transforming the quadratic order to lineal.
The only drawback is that the product of T and Q is an estimation of R, which is
to say, of U × P.

R ' T ×Q

Some of the most popular algorithms that can be applied to learn these two ma-
trices are Alternating Least Squares (ALS) or Stochastic Gradient Descent (SGD).

4.2 Design

This section is focused on the application’s design, firstly discussing the system
architecture and its preconditions, and finally, explaining why the technologies
which have been used to develop the recommender system have been chosen in-
stead of other possible alternatives.

4.2.1 System architecture

Before explaining the system architecture, it is important to mention some of the
preconditions or assumptions that have been taken into account to make some
decisions. Previously, Stilavia had defined different Java applications built through
the Spring framework and its data were stored in a MariaDB database. Among
those applications, there is a process that is responsible for carrying out the task of
collecting and storing the events triggered every day by users in an Elasticsearch
database. Events are collected every day just when they happen and are stored
as JSON elements in that database. The fields of the JSON structure provides
information about the event and its context, such as its name, the time when the
event was triggered or, even, what is the name of the browser used by the user.
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For further details, check Appendix B.

Figure 4.3: Application’s pipeline.

Figure 4.3 shows the whole process or pipeline that the application follows to
provide recommendations to users since their first interaction with the Stilavia
website. The process can be summarized as follows: (1) data storage, (2) data
processing, (3) data analysis and, finally, (4) prediction.

As it was said above, the data storage was previously developed. This part is key
because it makes the recording of events possible, which is to say, it generates
data to analyse. Next, there are two applications whose responsibility is, in broad
terms, to generate a prediction model from these data and then, to be able to
suggest predictions to users.

In order to do this, the first application which is a batch2 process reads the col-
lected events querying the database, transforms the information using map reduce
operations, generates a prediction model, then compresses the model as a zip-file
and, last but not least, stores it in local storage as well as in a file cloud repository.
The model is uploaded in the cloud because it is always a good idea to have avail-
able the previous models as a historical register to compare them with the current
ones or just to reuse them in the future.

When the zip-file is uploaded in the cloud, the batch application sends a HTTP3

POST4 request to the second application enclosing the name of the zip-file, which
contains the model in the body. The second application is a web API5 playing

2A batch process is a program or application that runs in background because it does not need
any user interaction.

3HyperText Transfer Protocol.
4Request method supported by the HTTP protocol that a web server accepts and stores data

enclosed in the body of the request message.
5Application Programming Interface.
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the server role that is always waiting for petitions of the batch application. Figure
4.4 shows the interaction between both applications using a time-line. There are
different possible options to send the model to the second application, such as
enclosing directly the file in the body or following a polling6 strategy which is
time-consuming and computationally expensive. Nevertheless, a POST request
enclosing the zip-file name has been chosen because of the speed and basically,
because the main purpose of the HTTP methods is to handle text instead of files,
as its name suggests. The model can be downloaded from the cloud as soon as the
body of the request is read by the web API. After downloading the model, there
are only two tasks to be done: making predictions and showing them to users.

Figure 4.4: Communication between the batch and the web API application.

These applications are divided into two different modules due to the fact that the
system only needs to generate a model per day. It was decided that generating and
uploading models in a short time period it is not worthwhile. Thus, having the
part of generating the model isolated as a batch process allows the simplification
of the application executing it once a day while the prediction web API is ready
to be used all time.

4.2.2 Decisions about technology

As indicated above, after collecting and storing data there are two important appli-
cations that enable to generate models and make predictions: the batch application
and the web API.

The batch application is written in Python and uses the Apache Spark framework

6Strategy that consists of asking periodically if a resource is ready to be read by other applica-
tions.
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to generate the prediction models. This decision was chosen because both can be
integrated easily in notebooks, which are a good tool for testing data, and also
because the code can be exported simply as a Python script after the testing stage.
For generating predictions models there are other alternatives, such as Hadoop.
Altohugh Apache Spark is assembled on Hadoop, it is a high-level framework
that disposes of a complete API including many operations, which Hadoop does
not have available, and a library dedicated specially to Machine Learning called
MLlib. This library has defined useful algorithms to make predictions, such as the
Alternating Least Squares. File cloud repository used to store models is Amazon
S37 as they offer a very helpful API and for a cheap price, that is also an important
factor to taken into account when making decisions.

The web API is written in Java using the Spring Framework as the rest of the appli-
cations of Stilavia’s project. It is a useful framework for building web applications
in Java and it is easy to integrate as well as the batch application.

4.3 Implementation

As it was said in subsection 4.2.1, events are daily recorded in an Elasticsearch
database. All this events have to be managed by the batch program, so the way
in which the batch program accesses to this information is reading them from the
Elasticsearch database executing a DSL8 query. This query uses a filter in order
to return only the key/value pairs related to product and product box events.
Those pairs are the input of the Apache Spark module, whose responsibility is to
parallelize and transform those pairs next. Once the information is parallelized or,
in other words, distributed throughout this module, the relevant and useful keys
are extracted due to there is extra information about events which is not essential
to make predictions. The required fields to recommend products are: the session
which provides information about who did the event, so about the user, event
name, product id and finally, the timestamp to know how old the event is. On
the other hand, when the application is looking for boxes recommendations, the
application makes use of the same fields except the product id that is replaced by
the id of the product box.

After filtering the events by key, it is necessary to apply a MapReduce operation

7Amazon Simple Storage Service (S3) is an online file storage web service offered by Amazon
Web Service.

8DSL: Domain Specific Language.
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in order to obtain a tuple (user id, product/product box id, score, time). The oper-
ations applied are basically three: map, groupBy and collect. The map operation
allows to get only some specific keys, which are the keys mentioned in the pre-
vious lines, from the filtered list of events and then these events are grouped by
user and product id. Next another map operation is required in order to work out
the scores for every product as they do not exist in the system and, finally, this
information is materialized using the collect operation. The first three elements
of this tuple are used to build the U × P matrix, whereas the time field is used
in the Sigmoid function used to dimension the scores obtained by the selected
scoring function. As it was mentioned at the end of subsection 4.1.2, there exists
two methods that fills in this sparse matrix: ALS and SGD. In this case, the ALS
algorithm was chosen as the algorithm is available in the Apache Spark MLlib
library along with other interesting functions. The ALS algorithm is an iterative
algorithm that helps to complete matrices using a ridge regression9.

This procedure is also applied to boxes so the application generates two models:
one product oriented and the other box oriented. Just after their creation, these
two models and a user hash table are zipped and saved in the local storage system
as well as uploaded in Amazon S3 cloud storage. The user hash table is required
because the ALS algorithm needs users to be represented as numbers but in the
Elasticsearch database are stored as hash codes which are composed by numbers
and strings. Hence, relating each hash code to one integer using a mapping table
has been done in order to solve this drawback.

While the bash application is running, the server side, which is the web API ap-
plication, is waiting for petitions in background. The server downloads the last
uploaded zip in Amazon S3, unzips it and, finally, charges the two models in
its own Spark context. Having the models loaded in the server side allows to
make predictions defining two main functions: one that predicts products and the
other boxes. These functions are internally defined by Spark and are used in the
Stilavia’s web site with the purpose of displaying first in their site the products or
boxes that users are likely to prefer.

Finally, the performance of the recommender system is evaluated measuring the
average error using the MSE 10 validator. To apply this measure a cross-validation
method called K-folds is used. First of all, this method divides the resulting

9Ridge regression is a method that seeks to reduce the MSE by adding some bias and, at the
same time, reducing the variance.

10Mean Squared Error is a statistic term usually used to evaluate recommender systems in order
to measure the accuracy of the predicted scores.
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dataset into k equal sets. Then, one of the k slices is used for testing and the
(k − 1) remaining are used for training. In other words, there is always a slice
hidden for the training set because its responsibility is to learn those unknown
values. When the training set has learned those values it is time to compare them
with the original values stored in the test set using the MSE formula:

MSE =
1
|R| ·

N

∑
i=1

M

∑
j=1

(s̄ij − sij)
2 (4.1)

where R is the cardinality of the set of the known scores, N is the number of users,
M is the number of items (products or product boxes), s̄ is the predicted score and
s the real score.

This process is going to be applied to every slice producing a list of MSE errors.
Next, the average of this error list is done adding all values and dividing it by the
total number of slices, that is, k. This methodology is know as K-folds because the
process is repeated k times. Figure 4.5 shows the k-folds cross validation process.
This method is applied so many times because there is not enough information to
assume the result is correct applying it only once. Repeating the process ensures
the result is right and it was not obtained by chance.

Figure 4.5: K-folds Cross Validation method employed to evaluate how good is
the resulting model.
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Results

The purpose of this last chapter is showing the results of the implementation
that has been carried out during this semester. The results are divided into two
sections: (1) evaluation of the Product Recommender System (PRS) and (2) evalu-
ation of the Product Box Recommender System (PBRS). In order to evaluate PRS
and PBRS in different contexts, two different set of weights have been employed.
The set of weights used are shown in the following table:

Set parameters Type of events Event name Weights

Set 1

Product

BUY_PRODUCT 0.7

FACEBOOK_SHARE 0.3

TWITTER_SHARE 0.3

PINTEREST_SHARE 0.3

SAVE_PRODUCT 0.5

POV_PAGE_VIEW 0.1

MINIVIEW 0.1

Product box
PRODUCT_BOX_VIEW 0.3

PRODUCT_BOX_HIT 0.8

PRODUCT_BOX_IMPRESSION 0.1

Table 5.1: Set of parameters used in the evaluation stage.

35



Chapter 5. Results 36

Table 5.1 – continued from previous page

Set parameters Type of events Event name Weights

Set 2

Product

BUY_PRODUCT 0.1

FACEBOOK_SHARE 0.7

TWITTER_SHARE 0.7

PINTEREST_SHARE 0.7

SAVE_PRODUCT 0.1

POV_PAGE_VIEW 0.5

MINIVIEW 0.5

Product box
PRODUCT_BOX_VIEW 0.7

PRODUCT_BOX_HIT 0.1

PRODUCT_BOX_IMPRESSION 0.4

These weights were decided by the staff of Stilavia and each set has a completely
different purpose. The first set is focused on buying products whereas the second
one is focused on engaging users.

The following table shows the generic names that have been given to the different
family of scoring functions for easier reading:

∑
e∈Eu,p

Se(e)

Scoring function Equation

S1 Se1(e) = w(τ(e))

S2 Se2(e) = 2 · (1− 1
1+e−t·m )

S3 Se3(e) = Se1(e) · Se2(e)

Table 5.2: Scoring functions employed in the evaluation stage.

As it was said in section 4.1 the scoring function S1 takes into account only the
types of events, the scoring function S2 takes into account only the time when the
events have been triggered and, finally, the scoring function S3 is a combination of
the two previous functions. The value of k used in these equations has been 0.07.
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To sum it up, there are two systems, PRS and PBRS, each system employs two
different set of parameters, Set 1 and Set 2, and each Set uses three scoring func-
tions, S1, S2 and S3. So at the end, the result consists of twelve tables, six for PRS
and another six for PBRS. In order to achieve a better understanding each table
goes along with a line chart and a brief discussion. In this chapter only the re-
sults obtained using the scoring function S3 are shown as it is the most complete
and useful scoring function. For further details about the results of the scoring
functions S1 and S2 go to Appendix C.

In addition, to evaluate both systems, 5.000 events have been collected. These
events were triggered from the 1st of December until the 14th of January.

Once the parameters have been set, the accuracy of the ALS algorithm is tested.
The rank value denotes the number of features that the Matrix Factorization
method is using when building the users’ matrix T and the products’ matrix Q.
The larger the value rank is, the more complex the resulting model will be. For
this reason, a K-folds Cross Validation method is used where the k value is 10,
so the method will split data in 10 folds. The number of iterations that the ALS
algorithm has employed to obtain the models is 10. It has been executed using
16 different rank values using the testing set in order to see the trend in MSE,
standard deviation (SD) and execution time. In addition, in order to evaluate the
training set the algorithm has been executed again. This time, it has been em-
ployed only 1 fold and the whole dataset as testing set. As the testing and training
set are using the entire dataset there has not been any change in SD and execution
time, therefore it has not been necessary to record them.

It is said that a phenomenon known as Overfitting takes places when the testing
MSE exceeds excessively the training MSE. It means that the ALS algorithm pro-
duces useless models as it has started to memorize data instead of learning from
it.

5.1 Results of PRS

This section shows the PRS results using the scoring function S3 for each set of
parameters, Set 1 and Set 2.
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Scoring function Parameter set Test

S3 Set 1

Rank MSE SD Time (s)

6 0.243 0.003 5.031

10 0.242 0.003 4.62

26 0.243 0.003 5.69

36 0.243 0.003 6.749

Train

Rank MSE

6 0.243

10 0.238

26 0.232

36 0.232

Table 5.3: Evaluation of PRS using the scoring function S3, which takes into ac-
count the types of events and the time when they were triggered, and the param-
eter Set 1, which its purpose is focused on buying products.

Figure 5.1: Training and testing MSE trend of PRS using the scoring function S3
and the parameter Set 1.
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Looking at chart 5.1, it can be seen how the training and testing MSE values
are very close. Although the rank value grows the MSE value remains almost the
same, so the rank value does not affect the error. There is a given rank value where
the testing MSE starts to exceed the training MSE but the difference between them
is not excessive to consider the Overfitting phenomenon. In this case, there is no
optimal rank value as the ALS is working properly for each of the tested values.

Scoring function Parameter set Test

S3 Set 2

Rank MSE SD Time (s)

6 0.242 0.003 5.627

10 0.242 0.004 5.144

26 0.241 0.004 6.323

36 0.244 0.002 7.395

Train

Rank MSE

6 0.242

10 0.237

26 0.234

36 0.233

Table 5.4: Evaluation of PRS using the scoring function S3, which takes into ac-
count the types of events and the time when they were triggered, and the param-
eter Set 2, which its purpose is focused on engaging users.
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Figure 5.2: Training and testing MSE trend of PRS using the scoring function S3
and the parameter Set 2.

Chart 5.2 shows basically the same situation as in chart 5.1. There is no optimal
rank value as the algorithm produces good results for each value of rank.

As can be seen in tables 5.3 and 5.4, there is almost no difference between using
the first set of parameters or the second one as the MSE is very similar. However,
the algorithm works a little bit faster at the beginning of the process while it runs
using the first set of parameters. The standard deviations are very low and it
means that the resulting models are stable.

At the end of the analysis, it was concluded that the amount of events employed
are not enough to build up a model that reduces the MSE value. As can be seen
in tables 5.3 and 5.4, the MSE values are very close due to the fact that the events
employed are neither varied nor descriptive nor significant.

5.2 Results of PBRS

This section shows the PBRS results using the scoring function S3 for each set of
parameters, Set 1 and Set 2.
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Scoring function Parameter set Test

S3 Set 1

Rank MSE SD Time (s)

6 0.059 0.012 4.03

10 0.072 0.011 4.04

26 0.133 0.013 4.186

36 0.156 0.009 4.282

Train

Rank MSE

6 0.174

10 0.176

26 0.187

36 0.190

Table 5.5: Evaluation of PBRS using the scoring function S3, which takes into
account the types of events and the time when they were triggered, and the pa-
rameter Set 1, which its purpose is focused on buying products.

Figure 5.3: Training and testing MSE trend of PBRS using the scoring function S3
and the parameter Set 1.
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As can be seen in chart 5.3 how the testing MSE is under the training MSE. This
situation is unlikely but possible, the reason could be that the testing set employed
is too small and it could cause the model to fit better than the training set by
random chance.

Scoring function Parameter set Test

S3 Set 2

Rank MSE SD Time (s)

6 0.071 0.016 4.619

10 0.117 0.015 4.632

26 0.223 0.017 4.529

36 0.254 0.013 4.824

Train

Rank MSE

6 0.131

10 0.129

26 0.142

36 0.140

Table 5.6: Evaluation of PBRS using the scoring function S3, which takes into
account the types of events and the time when they were triggered, and the pa-
rameter Set 2, which its purpose is focused on engaging users.



Chapter 5. Results 43

Figure 5.4: Training and testing MSE trend of PBRS using the scoring function S3
and the parameter Set 2.

Looking at chart 5.4, it can be seen how the testing MSE is increasing forming a
little parabola while the training MSE is keeping the same value as the rank value
grows. In this case, the Overfitting phenomenon takes place as the testing MSE
exceeds excessively the training MSE just when the rank value is around 10. The
optimal rank value before "overlearning" is near 4.

Tables 5.5 and 5.6 show the increase of the execution time when the rank value
grows. The first set of parameters works better than the second one as the MSE
values are lower. The standard deviation is almost 0 which means that the models
are stable.

After analysing the two previous charts, 5.3 and 5.4, it can be concluded that there
is no optimal rank value in chart 5.3 whereas in chart 5.4 is around 4. This first
situation is not usual but it is possible and one of the possibles solutions could be
increase the amount of data of the testing set.





Chapter 6

Conclusion

This chapter reports the conclusions that resulted from this project. It is divided
into two sections: Conclusions and Future work and Conclusions about the project. The
former summarises which were the goals of the project, discussing whether all of
them have been achieved or not and then exposes some future work that could
be used to extend the implementation. Finally, the latter introduces my personal
conclusions after finishing this project.

6.1 Conclusions and Future work

Looking back, the main objectives of this project were basically to create a rec-
ommender system employing implicit feedback applied to two different concepts,
define different scoring functions and, finally, evaluate them using a statistical es-
timator. All this stages have been achieved one after the other setting small targets.
This software is already running in the production stage of Stilavia, the pipeline
followed works successfully at the technical level. In addition, the batch appli-
cation software can be applied to many cases of use if they have the same data
pattern.

Defining the scoring functions was not an easy task as it needs to represent users’
tastes in just one number between 0 and 1. These numbers also known as scores
are worked out employing the interactions that users produce in the Stilavia site.
Generally, users change their tastes over time because some new products appear
or just because they have changed their mind. So, apart from knowing which are
the type of interactions that users do when surfing the site it is also important to
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take into account how much time has passed since these interactions occurred. At
the end, three scoring functions were defined S1, which only takes into account the
types of the events, S2 that takes into account the time when the events happened
and, lastly, S3 that takes into account both factors. Although is logical thinking
that the third scoring function is the most complete equation, the rest scoring
functions have also been included in order to acquire a better understanding of
each equation and its results.

After evaluating the implementation, it can be noticed that building up a model
depends on a set of different parameters such as the rank. In order to find the op-
timal parameters, it is necessary to keep a balance between the number of features
the Matrix Factorization method makes use, also called rank value, and the MSE
produced. It is also important to identify when the algorithm is not able to learn
more or when the algorithm has learned too much, also known as Overfitting.
These situations affect the efficiency of the recommender system.

During the evaluation stage it has been mentioned that the weights of Set 1 and
Set 2 were chosen by the staff of Stilavia focusing on different purposes: buying
products and engaging users. It would be a great idea to find out which are the
optimal set of weights that minimize the MSE value.

There is a kind of parameters that cannot be learned from a regular training pro-
cess which are called hyperparameters, for example Set 1, Set 2 and rank. Hyper-
parameters affect directly the model complexity and its ability of learning. The
way in which these special parameters are learned depends on the set of numbers
where they belong. If parameters are natural numbers such as the rank value, the
process consists of using a K-folds Cross Validation method employing different
rank values as it has been done in the evaluation stage. However, when the pa-
rameters are real numbers such as Set 1 and Set 2 this task becomes challenging.
The prior method does not work for this kind of numbers as there are infinite val-
ues to choose from. Hence, other more complicated techniques, such as Stochastic
Gradient Descent, are required.

Furthermore, it could be useful to evaluate if the recommender has helped to
achieve Stilavia’s objectives that are buying products or engaging users. As it is
said in the first paragraph, the batch application is a generic application as it does
not depend on the input data. However, the web API is focused on the case of use
of the project and it would be a great idea to create a framework gathering all the
implementation together.
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Last but not least, the data analysis follows a batch process that means that data
is not processed in real time. Transforming this application in a streaming process
would be a fantastic idea in order to obtain the results as they are captured.

6.2 Conclusions about the project

During the Bachelor of Science in Computer Engineering, I have heard many
teachers talking about Big Data but I never had the opportunity for checking by
myself how working in this area would be like. For this reason, I was really in-
terested in doing this project as it was a good opportunity to introduce myself in
this world that is becoming popular on these days.

This project has helped me to face up the magnitude of Big Data as I was em-
ploying the implicit feedback to develop the Recommender Systems. The first
time I developed a Recommender System was in a university course but the feed-
back employed was collected explicitly, so the users were giving ratings directly
to some items. Creating a Recommender System employing implicit feedback is
more challenging than employing explicit feedback. The reason for this lies in
the rating, while in the explicit feedback the programmer is reiciving numbers
as ratings, implicit feedback is the programmer who has to create ratings from
the users’ interactions. This information is more complicated to gather up and it
requires to study which are the most interesting interactions and how important
they are. As this kind of Recommender is not very common, I had to read some
academic papers in order to understand them. In addition, my supervisor and
my co-supervisor explained me some concepts when I didn’t understand them
properly.

Regarding the technologies that have been used, I believe that Spark is a useful
tool in Big Data world as it helps to work with a large amount of data without
being worried about parallelizing them as it is managed by the framework itself.

Finally, I would like to say that I am proud to have been able to finish the project
and I can honestly say that, although is not an easy field, I would like to learn
more about it and I will probably keep on studying about it in the future.
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Types of events

There are different kinds of events, which are grouped in the following table:

Event Name Description

USER_SETTINGS_PROFILE

USER_SETTINGS_PASSWORD

USER_LOGIN

USER_REGISTER

USER_LOGOUT

User settings

FACEBOOK_SHARE

PINTEREST_SHARE

TWITTER_SHARE
Share in social networks

INSTAGRAM_BUTTON

FACEBOOK_BUTTON

TWITTER_BUTTON

PINTEREST_BUTTON

Stilavia’s social media

PRODUCT_BOX_VIEW

PRODUCT_BOX_HIT

PRODUCT_BOX_IMPRESSION
Product boxes options

Table 1: Types of events
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Table 1 – continued from previous page

Event’s Name Event’s Description

KEEP_ALIVE Active session

SAVE_PRODUCT

UNSAVE_PRODUCT

BUY_PRODUCT

COMBINE_PRODUCT

STYLIST_COMMENTS

OTHER_COLORS

Product options

BACK_EXPLORER

MINIVIEW

PREVIOUS_PRODUCT

NEXT_PAGE

PREVIOUS_PAGE

FIRST_CATEGORY

SECOND_CATEGORY

MY_GARMENTS

NEXT_PRODUCT

Navigation

WIZARD_PAGE_VIEW

WIZARD_COLOR_PAGE_VIEW

POV_PAGE_VIEW

EXPLORER_PAGE_VIEW

OTHER_PAGE_VIEW

HOME_PAGE_VIEW

USER_LOGIN_PAGE_VIEW

Page views

REMOVE_FILTER

OCCASION_FILTER

TYPE_FILTER

SIZE_FILTER

BRAND_FILTER

COLOR_FILTER

PRICE_FILTER

Filter content
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Table 1 – continued from previous page

Event Name Description

CHANGE_UFV

CHANGE_UFV_WIZARD

EYE_CHANGE_COLOR_WIZARD

HAIR_CHANGE_COLOR_WIZARD

SKIN_CHANGE_COLOR_WIZARD

EYE_CHANGE_COLOR_EXPLORER

HAIR_CHANGE_COLOR_EXPLORER

SKIN_CHANGE_COLOR_EXPLORER

User’s features





JSON structure

Here there is an example of an event stored in the Elasticsearch database. For ease
of reading the JSON structure, some keys that have as value other keys have been
hidden.

" _source " : {
" uuid " : "34 ju51a7−bfbc−4c58−a5da−44367d248b80 " ,
" eventType " : " PageViewEventType " ,
" eventName " : "POV_PAGE_VIEW" ,
" eventAttr " : {
" contextUserFeatureValues " : [ ] ,
" productCompanion " : {
" product " : { } ,
" productSet " : [ ] ,
" productColorCompanionList " : [ ] ,
" brand " : {

" id " : 261 ,
"name" : " Gant " ,
" u r l " : " h t tps :// i 1 . z t a t . net/brand/brandlogogantga . jpg " ,
" seoKeywordId " : 8592

} ,
" productFeatures " : [ ] ,
" productFeatureProductProductFeatureValueMap " : [ ] ,
" productFeatureValueUserMap " : [ ] ,
" productDetailMap " : [ ] ,
" detailUserMap " : [ ] ,
" categoryChain " : { } ,
" oc cass ions " : [ ] ,
" f a m i l i e s " : [ ] ,
" candidateProductFeatures " : [ ] ,
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" appl i cab leProductFeatures " : [ ] ,
" a p p l i c a b l e D e t a i l s " : [ ] ,
" s c o r e s " : [ ] ,
" images " : [ ] ,
" productAt t r ibutes " : [ ] ,
" favori tedTimes " : 0 ,
" provider " : { } ,
" providerCompany " : {

" id " : 6 ,
"name" : "ZALANDO" ,
" u r l " : " ht tp :// corporate . zalando . com " ,
" shippingCondit ionsI18nIndexId " : 56 ,
" shippingCostsI18nIndexId " : 79 ,
" shippingCondit ions " : " Plazo de devolución de 100 días " ,
" shippingCosts " : " Envío y devolución GRATUITOS"
} ,
" mostPresentColor " : { }
}

} ,
" productId " : 257 ,
" targetProduct Id " : nul l ,
" i18nEventContext " : { } ,
" t imeEventContext " : { } ,
" appl icat ionEventContext " : {

" contextName " : " a p p l i c a t i o n _ c o n t e x t " ,
" s t i l a v i a A p p l i c a t i o n " : { }

} ,
" userEnt i tyEventContext " : { } ,
" userFeaturesEventContext " : { } ,
" deviceEventContext " : { } ,
" acquis i t ionEventContext " : { } ,
" mdcEventContext " : {

" contextName " : " mdc_context " ,
" userHash " : nul l ,
" sessionHash " : " AGm3s4t6qDKb0exI "

} ,
" webLocationEventContext " : { } ,
" sessionGenderEventContext " : { } ,
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" @timestamp " : "2016−12−12T02 : 0 8 : 3 2 . 3 7 8 " ,
" @timestampUtc " : "2016−12−12T01 : 0 8 : 3 2 . 3 7 8 " ,
" timestamp " : 1481504912378 ,
" timestampUtc " : 1481501312378
}
}





Results employing other scoring
functions

This is an extension of chapter 5. Here there are the results of PRS and PBRS
applying the remaining scoring functions, S1 and S2, for each set of parameters,
Set 1 and Set 2.

.1 Results of PRS

Scoring function Parameter set Test

S1 Set 1

Rank MSE SD Time (s)

6 0.241 0.004 4.966

10 0.242 0.003 4.96

26 0.243 0.004 5.942

36 0.243 0.004 7.106

Table 2: Evaluation of PRS using the scoring function S1, which takes into account
the types of events, and the parameter Set 1, which its purpose is focused on
buying products.
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Table 2 – continued from previous page

Scoring function Parameter set Train

S3 Set 1

Rank MSE

6 0.243

10 0.238

26 0.234

36 0.232

Figure 1: Training and testing MSE trend of PRS using the scoring function S1 and
the parameter Set 1.

Looking at chart 1, it can be seen how the training and testing MSE ramain the
same as the rank value grows. There is a given rank value where the testing MSE
exceeds the training MSE but the difference is too small to consider Overfitting.
This means that although the model is becoming complex the algorithm learns the
same. There is no optimal rank value as it does not affect the accuracy of the ALS
algorithm.
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Scoring function Parameter set Test

S1 Set 2

Rank MSE SD Time (s)

6 0.242 0.003 4.806

10 0.242 0.003 4.836

26 0.244 0.003 5.856

36 0.243 0.04 6.684

Train

Rank MSE

6 0.241

10 0.239

26 0.233

36 0.231

Table 3: Evaluation of PRS using the scoring function S1, which takes into account
the types of events, and the parameter Set 2, which its purpose is focused on
engaging users.

Figure 2: Training and testing MSE trend of PRS using the scoring function S1 and
the parameter Set 2.
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Chart 2 is showing the same situation as in chart 1. There is no optimal rank value
as all of them produces similar MSE values.

The algorithm is not learning too much. These results do not make sense and
the reason might be because the data that have been employed are useless or not
enough to obtain better models.

Scoring function Parameter set Test

S2 Set 1

Rank MSE SD Time (s)

6 0.56 0.019 4.491

10 0.559 0.019 4.806

26 0.561 0.022 5.713

36 0.563 0.015 6.967

Train

Rank MSE

6 0.408

10 0.402

26 0.385

36 0.378

Table 4: Evaluation of PRS using the scoring function S2, which takes into account
when the events were triggered, and the parameter Set 1, which its purpose is
focused on buying products.
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Figure 3: Training and testing MSE trend of PRS using the scoring function S2 and
the parameter Set 1.

Chart 3 shows how the testing MSE exceeds the training MSE causing Overfitting
for all the rank values. The algorithm has "overlearned" and it does not obtain any
useful model.

Scoring function Parameter set Test

S2 Set 2

Rank MSE SD Time (s)

6 0.544 0.018 5.089

10 0.545 0.016 4.998

26 0.547 0.016 5.974

36 0.551 0.017 7.187

Table 5: Evaluation of PRS using the scoring function S2, which takes into account
when the events were triggered, and the parameter Set 2, which its purpose is
focused on engaging users.
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Table 5 – continued from previous page

Scoring function Parameter set Train

S3 Set 1

Rank MSE

6 0.409

10 0.402

26 0.384

36 0.378

Figure 4: Training and testing MSE trend of PRS using the scoring function S2 and
the parameter Set 2.

Looking at chart 4, it can be seen the situation seen in chart 3. The Overfitting
phenomenon takes place for all the rank values that have been employed when
testing.



Appendix . Results employing other scoring functions 73

.2 Results of PBRS

Scoring function Parameter set Test

S1 Set 1

Rank MSE SD Time (s)

6 0.063 0.014 9.526

10 0.069 0.01 9.649

26 0.134 0.012 9.698

36 0.157 0.007 9.954

Train

Rank MSE

6 0.158

10 0.162

26 0.179

36 0.181

Table 6: Evaluation of PBRS using the scoring function S1, which takes into ac-
count the types of events, and the parameter Set 1, which its purpose is focused
on buying products.

Figure 5: Training and testing MSE trend of PBRS using the scoring function S1
and the parameter Set 1.
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As can be seen in chart 5 how the testing MSE is under the training MSE. This
situation is unlikely but possible, the reason could be that the testing set employed
is too small and it could cause the model to fit better than the training set by
random chance.

Scoring function Parameter set Test

S1 Set 2

Rank MSE SD Time (s)

6 0.084 0.018 3.985

10 0.121 0.015 4.098

26 0.227 0.013 4.379

36 0.267 0.012 4.539

Train

Rank MSE

6 0.104

10 0.107

26 0.105

36 0.104

Table 7: Evaluation of PBRS using the scoring function S1, which takes into ac-
count the types of events, and the parameter Set 2, which its purpose is focused
on engaging users.
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Figure 6: Training and testing MSE trend of PBRS using the scoring function S1
and the parameter Set 2.

Chart 6 shows how the testing MSE increase whereas the training MSE remains
almost the same value as the rank value grows. For these rank values, the testing
MSE exceeds excessively the training MSE so the Overfitting phenomenon takes
place. It happens when the rank value is between 4 and 6. Just in that moment, the
algorithm is not working properly as it is memorizing instead of learning. Hence,
the optimal rank value before the Overfitting phenomenon occurs is near 2 as it is
the point in which the MSE is lower.

Scoring function Parameter set Test

S2 Set 1

Rank MSE SD Time (s)

6 0.127 0.031 3.918

10 0.215 0.025 4.128

26 0.371 0.034 3.978

36 0.419 0.013 4.188

Table 8: Evaluation of PBRS using the scoring function S2, which takes into ac-
count when the events were triggered, and the parameter Set 1, which its purpose
is focused on buying products.
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Table 8 – continued from previous page

Scoring function Parameter set Train

S3 Set 1

Rank MSE

6 0.077

10 0.074

26 0.072

36 0.74

Figure 7: Training and testing MSE trend of PBRS using the scoring function S2
and the parameter Set 1.

Looking at chart 7, it can be seen the situation seen in 6 where the Overfitting
phenomenon occurs when the rank value is between 4 and 6 and the optimal rank
value is between 2 and 4.
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Scoring function Parameter set Test

S2 Set 2

Rank MSE SD Time (s)

10 0.207 0.023 4.31

26 0.373 0.015 4.328

36 0.421 0.024 4.575

Train

Rank MSE

6 0.074

10 0.071

26 0.073

36 0.074

Table 9: Evaluation of PBRS using the scoring function S2, which takes into ac-
count when the events were triggered, and the parameter Set 2, which its purpose
is focused on engaging users.

Figure 8: Training and testing MSE trend of PBRS using the scoring function S2
and the parameter Set 2.
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In chart 8 it can be seen how the testing MSE exceeds excesively the training MSE
when the rank value is near 4. Just in that moment Overfitting takes place making
the ALS algorithm produces useless models. The optimal rank value is between 2
and 4 which is the point in which the function has its minimum value.


