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The scattering of longitudinally polarized electroweak bosons is likely to play an important role in

the elucidation of the fundamental nature of the electroweak symmetry breaking sector and in

determining the Higgs interactions with this sector. In this paper, by making use of the equivalence

theorem, we determine the renormalization properties of the electroweak effective theory parameters

in a model with generic Higgs couplings to the W and Z bosons. When the couplings between the

Higgs and the electroweak gauge bosons deviate from their Standard Model values, additional

counterterms of Oðp4Þ in the usual chiral counting are required. We also determine in the same

approximation the full radiative corrections to the WLWL ! ZLZL process in this type of

model. Assuming custodial invariance, all the related processes can be easily derived from this

amplitude.
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I. INTRODUCTION

Much of the current theoretical work concerning the
LHC implications for the electroweak symmetry breaking
sector (EWSBS) focuses on the deviations of the Higgs
boson couplings to the electroweak gauge sector rather
than the self-couplings of the gauge bosons themselves.1

Yet, any deviations of the former from their Standard
Model (SM) values turn out to have implications for the
latter; they are intimately intertwined at loop level and
should be understood together, as unitarity considerations
demand. We seek in the present paper to provide a
consistent framework for future studies of both in the
scattering of longitudinally polarized electroweak gauge
bosons.

In a previous paper [1] we have already examined the
implications of unitarity in the scattering of longitudinally
polarized electroweak gauge bosons when—in addition to
the usual SM Lagrangian with a light scalar state (the
Higgs particle with MH ’ 125 GeV [2,3])—one includes
an EWSBS assumed to be strongly interacting. This sector
can be described at energies, M2

H < s < ð4�vÞ2 by an
electroweak chiral effective Lagrangian (EChL) [4].
In [1] we included a set of Oðp4Þ operators to describe
the strongly interacting EWSBS but assumed that the
couplings between the Higgs and the electroweak gauge
bosons were indistinguishable from the values that they
take in the SM. The main purpose of the present work is to
relax this hypothesis.

A general chiral Lagrangian with a nonlinear realization
of the SUð2ÞL � SUð2ÞR symmetry up to Oðp4Þ terms and
including a light Higgs is
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Here, the U field contains the three Goldstone bosons
associated to the breaking of the global group to the
custodial subgroup SUð2ÞV ,

U ¼ exp

�
i
w � �
v

�
; (2)

the w being the three Goldstone boson fields.2 The matrix
U transforms as U ! LURy under the action of the global
group SUð2ÞL � SUð2ÞR. The covariant derivative is
defined as

D�U ¼ @�Uþ 1

2
igWi

��
iU� 1

2
ig0Bi

�U�3: (3)

The Higgs field h is a gauge and SUð2ÞL � SUð2ÞR singlet.
The vacuum expectation value v ’ 250 GeV gives the
right dimensions to the exponent in U. The terms LGF

and LFP in Eq. (1) correspond to the gauge-fixing and
Faddeev-Popov pieces, respectively, whereas the term

X13
i¼0

Li ¼
X13
i¼0

aiOi (4)

1Anomalous four gauge boson couplings have not been mea-
sured yet in LHC experiments at the time of writing this paper.

2We shall denote by z the neutral Goldstone boson w� ¼
ðw1 � w2Þ= ffiffiffi

2
p

.
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includes a complete set of CP-even, local, Lorentz, and
gauge invariant operators, four-dimensional operators Oi

constructed with the help of the field U, covariant deriva-
tives, and the SUð2ÞL �Uð1ÞY field strengths W�� and

B��. A complete list can be found in [4] and also in [1].

While we will still restrict ourselves to a small subset of all
possible general couplings we study those that are experi-
mentally accessible now or in the near future.

In Eq. (1) we have included with respect to [1] two extra
parameters a and b controlling the coupling of the Higgs to
the gauge sector. Following conventions in [5], we have
also introduced two additional parameters d3 and d4 that
are commonly used in composite Higgs scenarios. They
parametrize the three- and four-point interactions of the
Higgs field in an effective way. Needless to say that in a
composite Higgs scenario, such as the one we have in
mind, the Higgs potential need not be renormalizable and
higher powers of the field h could appear. There could be
additional interaction terms with the electroweak gauge
sector of Oðh3Þ or higher. None of this should affect the
results below.

The SM case corresponds to a ¼ b ¼ d3 ¼ d4 ¼ 1 in
Eq. (1). Current LHC results indicate that a and b are not
too far from these SM values [6], but at present, deviations
from these SM values cannot be excluded. In [1] we
assumed that the extended EWSBS would manifest itself
only through the appearance of nonzero values for the ai
Oðp4Þ coefficients but a and b (as well as d3 and d4) were
assumed to be very close to 1. This is the most conservative
hypothesis. However, even if a ’ b ’ 1, if the EWSBS is
such that Oðp4Þ operators are present, unitarity violations
reappear at large energies in a way apparently similar to
what happens in models that were copiously studied in the
past [7] in the context of a very heavy Higgs or Higgsless
theories.

In [1] we calculated the scattering amplitudes using
the longitudinal components of the vector bosons them-
selves as external states, rather than the corresponding
Goldstone bosons3 as it is customarily done when one
takes advantage of the equivalence theorem [8]. The
reason to do so is that at the energies being now explored
at the LHC, corrections to the equivalence theorem can be
of some relevance [9].

We enforced unitarity through the use of the inverse
amplitude method [10]. We found that, even when includ-
ing a light SM Higgs boson of mass MH ¼ 125 GeV, the
unitarity analysis predicts the appearance of dynamical
resonances in much of the parameter space of the higher-
order coefficients. Their masses extend from as low as
300 GeV to nearly as high as the cutoff of the method of

4�v ’ 3 TeV, with rather narrow widths typically of order
1 to 10 GeV. In the absence of these resonances virtually all
parameter space of the anomalous couplings could be
excluded. However, we also showed that the actual signal
strength of these resonances, when compared with current
Higgs search data, was such that they were not currently
being probed in LHC Higgs search data. Yet, if anomalous
vector boson couplings exist, the resulting dynamical reso-
nances they predict should definitely be observable with
future LHC data.
The study in [1] therefore showed that there is a direct

connection—also when a light Higgs is present—between
anomalous four gauge boson couplings and the under-
lying structure of dynamical resonances in the scalar and
vector channels. This emphasizes the importance of mea-
suring these couplings (currently not yet observed at the
LHC) to elucidate the fundamental nature of the EWSBS.
These measurements have to go hand in hand with the
search for the putative additional resonances, bearing in
mind that their peak heights and widths bear little resem-
blance to the Higgs signal (in the scalar sector) or even to
what is expected in previously studied strongly interacting
theories (particularly in the vector channel). The reason
being that the unitarization of the scattering amplitudes
with a light Higgs profoundly changes the resonance
structure with respect to the Higgsless (or a very heavy
Higgs) scenario in extended scenarios of EWSBS. The
situation could be also more intriguing if the hypothesis
of setting a and b to their SM values, namely a ¼ b ¼ 1,
is relaxed as unitarity violations are already apparent at
tree level.
Before the phenomenological analysis however, the case

a � 1 and b � 1 requires a complete new study of the
radiative corrections, including a detailed study of the
divergences and counterterms in this new scenario. This
is part of the present work. We will also present a complete
calculation of the one-loopWLWL ! ZLZL scattering am-
plitude (and by extension, upon use of custodial symmetry,
of all four longitudinal electroweak gauge boson cou-
plings). The one-loop calculation will be done by making
use of the equivalence theorem [8], where the longitudinal
components are replaced by the corresponding Goldstone
bosons. This approximation is enough to derive the coun-
terterms relevant for the process being discussed. The
calculation is done in the nonlinear realization discussed
above, as this is the natural language in composite Higgs
models. Note that although S-matrix elements are indepen-
dent of the particular parametrization, renormalization
constants need not be.
Finally we mention that when computing electroweak

gauge boson scattering amplitudes by making use of the
equivalence theorem approximation, particularly if the
calculation is done in the gauge where the Goldstone
bosons are massless, some subtleties appearing in a
complete calculation are not present. For instance, the

3In [1] we treated the tree-level and the imaginary part of the
one loop exactly, but we actually had to resort to the equivalence
theorem for the real part of the one-loop correction in order to
keep the calculation manageable.
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results are automatically custodially invariant as one is
assuming g ¼ g0 ¼ 0. Crossing symmetry is also easily
implemented by the usual exchanges of the Mandelstam
variables. Therefore it is particularly simple to reproduce
all amplitudes from the ww ! zz one and, accordingly,
only higher-dimensional operators that are manifestly cus-
todially invariant are needed when moving away from the
SM. However, in a full calculation of the WLWL ! ZLZL

amplitude, including Oðg; g0Þ corrections, new non-
custodially invariant operators would be required as
counterterms. Furthermore, crossing symmetry (although
obviously still holding) is harder to implement (see e.g. the
discussion in [1]). We emphasize once more that none of

this affects the determination of the counterterms
derived in this paper.

II. LAGRANGIAN AND COUNTERTERMS

The Lagrangian in Eq. (1) will be our starting point. The
parameters there have to be considered as renormalized
quantities. We trade � for M2

H using M2
H � ð�2 þ 3v2�Þ.

We will use a renormalization scheme where the relation
M2

H ¼ 2�v2 that holds true at tree level remains true for
renormalized quantities.
Next we have to consider the counterterm Lagrangian.

This will be
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We have included the possible higher-order terms from the
two Oðp4Þ operators that are relevant for WLWL scattering
in the custodial limit, namely L4 and L5 (see e.g. [1] for
details). We omit the pieces that are not relevant forWLWL

scattering. In the treatment of this paper noncustodial
Oðp4Þ operators are not needed.

The counterterm Lagrangian needs some explanation.
To begin with, we have not introduced counterterms for d3
and d4 as they affect mostly the renormalization of the
Higgs self-interactions of which there is no experimental
information at present. Their renormalization should not
affect the counterterms that interest us most, namely those
directly related to WLWL scattering, such as �a4 and �a5.
Secondly, there are additional �v2 counterterms coming
from the third line of Eq. (5) that depend on the number of
factors of v in the different terms of the U expansion. For
instance, terms like

1

2
@�z@

�zþ @�w
þ@�w� (6)

will have no corresponding counterterm because they
contain no factor of v. On the other hand, terms with
more than two w fields will result in counterterms. For
example, consider one term contributing to the four-point
interaction
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�v2
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3v2
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In addition there are wave-function renormalization
constants for the Higgs field, ZH, and for the Goldstone
boson fields, Zw. Note that there is no mass term (and no
corresponding counterterm) for the Goldstone bosons as
we shall consistently work in the ’t Hooft-Landau gauge,
where Goldstone bosons are strictly massless. The renor-
malization conditions we will employ are that (i) the tad-
poles vanish at one loop, (ii) the mass parameters are the
on-shell masses, (iii) and that the relation � ¼ M2

H=ð2v2Þ
is now true of the renormalized quantities, rather than the
bare ones. We also note that condition (ii) only ends up
affecting the Higgs mass counterterm, as the Goldstone
bosons will remain massless independent of any correc-
tions to the two-point function.
As indicated in the Introduction we shall make use of the

equivalence theorem to determine the counterterms and the
WLWL scattering amplitude rather than using the actual
gauge degrees of freedom. As far as the counterterms are
concerned, this procedure is good enough to give the
correct renormalization of the parameters a, b, a4, and a5
that parametrize the EWSBS and thus the departures from
the SM result. As for the finite pieces of the amplitude, the
use of the equivalence theorem is just an approximation4

that becomes better for s � MW . A complete calculation
using the gauge degrees of freedom is just too complicated
for the present purposes and it is available numerically
only for the SM [11].

4In [1] we used the equivalence theorem in the ’t Hooft-
Landau gauge to compute the one-loop real part of the amplitude
for simplicity. It was seen there that in spite of this approxima-
tion unitarity was approximately preserved.
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III. TREE-LEVEL CALCULATION OF wþw� ! zz

The tree-level calculation is fairly straightforward and
comes from the sum of the two diagrams as in the usual
linear realization case, albeit with different couplings: the
wwzz four-point diagram, and the s-channel Higgs
exchange diagram. These diagrams are shown in Fig. 1.
Their respective contributions are

iMðaÞ
tree ¼ i

�
s

v2

�
; and iMðbÞ

tree ¼ �i

�
a2s

v2

��
s

s�M2
H

�
:

(8)

Combined they give

iMtree ¼ �i

�
s

v2

��ða2 � 1ÞsþM2
H

s�M2
H

�
; (9)

which obviously reduces to the same value as the linear
case for the SM (a ¼ 1). Note that in the following the
assumption that p2

i ¼ 0 is already made when presenting
the amplitude. This expression shows clearly the �s2

growth of the tree-level amplitude as s � M2
H if a � 1

signaling the breakdown of unitarity already at tree level
when one moves away from the SM.

IV. ONE-LOOP LEVEL CALCULATION
OF wþw� ! zz

In the following, the classification of diagrams roughly
follows the conventions given in Ref. [12], but of
course the calculation is completely different as the
nonlinear realization is used in the present paper and
additional topologies of the diagrams do appear. The
single diagram includes contributions from internal h,
w�, and z loops. We labeled by (a) the subdiagrams
for the h loops and by (b) the combined ones for w�
and z loops.

Here, we will present the radiative corrections to the
process grouped in several classes. There are the Higgs
self-energy corrections to the diagram in Fig. 2 and the
vertex corrections in Fig. 3. Then we have some irreduc-
ible diagrams that following [12] we classify as bubbles

(in Fig. 4), triangles (in Fig. 5) and boxes (in Fig. 6). In
addition we have two new type of diagrams that
appear only in the nonlinear realization and thus have
no counterpart in Ref. [12]. We have called them
five-field (in Fig. 7) and six-field (in Fig. 8) diagrams,
respectively.

A. Higgs self-energy corrections

The two-point diagrams given in [12] correspond
to �i�ðsÞ and are plotted in Fig. 2. Their contribution
to the tree-level diagram wþw� ! h ! zz can be
parametrized as

iM2�pt ¼
�
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�
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½�i�ðsÞ	; (10)

and for d3 ¼ d4 ¼ 1 we have
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(11)

The scalar functions A0 and B0 are described in the
Appendix and both are ultraviolet divergent. Note that
the calculation includes the counterterm for �M2

H

(last line).

B. hwþw� and hzz vertex corrections

The three-point diagrams given in [12] correspond to
the hww=hzz vertex correction i�3, which is also related
to the one-loop corrections to the Higgs decay width to

FIG. 2. Radiative corrections to the Higgs two-point function,
M2�pt. (a) Contribution to Ma

2�pt. (b) Contribution to Mb
2�pt.

(c) Contribution to Mc
2�pt. (d) Contribution to Md

2�pt.

FIG. 1. Tree-level diagrams contributing to the amplitude
wþw� ! zz, iMtree. (a) Contribution to iMa

tree.
(b) Contribution to iMb

tree.
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ww=zz. The total correction is the same for both the
hww and hzz vertices, although the actual set of dia-
grams is slightly different for each in the nonlinear
representation, as there is a 4-w coupling but no 4-z
coupling. We draw diagrams in Fig. 3 for the case of
the hwþw� vertex. Replacing appropriately w’s by z’s
lines in Fig. 3, we get the diagrams for the hzz vertex. In
this case, however, we only have z internal loops in

Fig. 3(b). The rest of the diagrams are the same;
however, the total correction can be given as twice the
correction to any one vertex to give

iM3�pt ¼
�
2a

v

�
s

ðs�M2
HÞ

½i�3	: (12)

We then have (for d3 ¼ d4 ¼ 1) the total contribution

FIG. 3. Three-point vertex correction for the hwþw�, Ma
3�pt vertex. A slightly different set of diagrams for the vertex hzz but the

result is actually the same. (a) Contribution to Ma
3�pt. (b) Contribution to Mb

3�pt. (c) Contribution to Mc
3�pt. (d) Contribution to

Md
3�pt. (e) Contribution to Me

3�pt. (f) Contribution to Mf
3�pt. (g) Contribution to Mg

3�pt.
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Note the inclusion of the counterterms for the parameter a (describing departures from the SM hww and hzz couplings in
the nonlinear realization) and for the scale v2. The (finite) scalar function C0 is described in the Appendix.

C. Bubble diagrams

The bubble diagrams are given in Fig. 4 and their contributions for d3 ¼ d4 ¼ 1 sum up to

FIG. 4. Bubble diagrams, iMbubbles. Note that we have included the four-point counterterms �a4 and �a5 here, but this is simply a
choice. (a) Contribution to iMa

bubbles. (b) Contribution to iMb
bubbles. (c) Contribution to iMc

bubbles. (d) Contribution to iMd
bubbles.

(e) Contribution to iMe
bubbles.
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iMbubbles ¼ i
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Note the inclusion here of the counterterms for the Oðp4Þ coefficients a4 and a5.

D. Triangle diagrams

The triangle diagrams are given in Fig. 5 and their contributions give (for d3 ¼ d4 ¼ 1) the total result
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E. Box diagrams

The box diagrams are depicted in Fig. 6 and their contributions differ only in the exchange of t $ u,
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The scalar function D0 is also described in the Appendix.

F. Five-field diagrams

The five-field diagrams do not have a linear calculation
counterpart; they are a new topology present in the non-
linear description. They are shown in Fig. 7 and they are
found by starting from the wwzz four-point vertex
and adding a Higgs leg to the central vertex and then
connecting it to each of the four external legs. Their
inclusion is necessary to make the calculation complete
to OððMH=vÞ4Þ. Summed together they give
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�
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G. Six-field diagram

Finally, there is a single diagram here in which two
Higgs legs connect to the central wwzz four-point vertex

and then connect to each other to form a single closed loop.
As with the five-field case, it is again necessary to ensure
the calculation is complete to OððMH=vÞ4Þ and similarly
has no linear-calculation counterpart. This is given in
Fig. 8. It gives

iM6F ¼ i
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�
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V. WAVE-FUNCTION RENORMALIZATION
AND TADPOLES

A. Tadpoles

The one-loop tadpole diagram and counterterm are
given in Fig. 9. For Mw ¼ 0, and when assuming the

relationship � ¼ M2
H

2v2 for the renormalized quantities, there

is a single contributing diagram to the Higgs tadpole at one
loop: a Higgs loop deriving from a three-Higgs coupling.
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This gives a value of the tadpole (with external leg
removed) of

iT ¼
�
3d3M

2
H

2v

�Z d4��k

ð2�Þ4��

1

ðk2 �M2
HÞ

¼ i

�
1

4�v2

�
2
�
3M2

Hv
3

2

�
A0ðM2

HÞ: (19)

From the counterterm Lagrangian Eq. (5) the contribution
from the tadpole counterterm is

i�T ¼ �ivð�M2
H � 2v2��� 2��v2Þ: (20)

Therefore, to meet our renormalization condition for
vanishing tadpoles at one loop, we must have

FIG. 5. Triangle diagrams contributing to the irreducible part of the wþw� ! zz amplitude, iMtriangles. (a) Contribution to
iMa

triangles. (b) Contribution to iMb
triangles. (c) Contribution to iMc

triangles. (d) Contribution to iMd
triangles. (e) Contribution to

iMe
triangles. (f) Contribution to iMf

triangles. (g) Contribution to iMg
triangles. (h) Contribution to iMh

triangles.
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�M2
H

M2
H

� ��

�
� �v2

v2
¼ � M2

H

ð4�vÞ2
�
3

2

�
A0ðM2

HÞ
M2

H

: (21)

B. Goldstone boson wave-function renormalization

When all Higgs tadpoles are appropriately canceled,
there are only mixed Higgs/Goldstone boson loops, a
Higgs loop, and w=z loops (which are zero when the w=z
are massless). Any divergences which appear due to the
wave-function renormalization of the external fields must
be canceled by something in the remainder of this ampli-
tude. We shall see later that this is easily achieved with the
renormalization of v2, which is also a global factor multi-
plying the tree-level contribution. In fact from the mere
requirement of finiteness of the amplitude after including
the one-loop diagrams, we can derive only a condition on
the combination 2�Zw � �v2. Therefore the renormaliza-
tion condition on the wave function has to be imposed
separately and this consists in requesting the unit residue
condition on the external legs.

The two-point function for the Goldstone bosons in
Fig. 10 gives the following:

�i�wðq2Þ��i�ð1þ2Þ
w ðq2Þ

¼ i

�
1

4�v2

�
2ðv2Þðða2ð3q2�M2

HÞ�bq2ÞA0ðM2
HÞ

þa2ðq2�M2
HÞ2B0ðq2;0;M2

HÞÞ; (22)

which verifies�wð0Þ ¼ 0 for all a and b, and therefore the
Goldstone bosons stay massless, as they should.5

The wave-function renormalization factor is then

Zw ¼ 1þ d�w

dq2

��������q2¼0

¼ 1�
�

1

4�v

�
2
�
ða2 � bÞA0ðM2

HÞ þ a2
M2

H

2

�
: (23)

In the SM case, this is finite and matches the value given by
Ref. [13]

ZSM
w ¼

�
1�

�
1

4�v

�
2
�
M2

H

2

��
¼

�
1� �2

16�2

�
; (24)

but in general it is divergent. This divergence is canceled
against contributions from �v2 when the corresponding
contribution to the one-loop amplitude is placed in the
complete calculation. The one-loop contribution to the
amplitude wþw� ! zz from wave-function renormaliza-
tion is

iMWFR ¼ i

�
1

4�v2

�
2ðM2

HsÞ
�ða2 � 1ÞsþM2

H

s�M2
H

�

�
�
a2 þ 2ða2 � bÞA0ðM2

HÞ
M2

H

�
: (25)

C. Higgs boson wave-function renormalization

The contributions to the Higgs two-point function can be
derived from Sec. IVA, while the counterterm contribution
is simply

� i�ðctrÞ
H ðq2Þ ¼ �i�M2

H: (26)

This gives

�i�Hðq2Þ ¼ i

�
1

4�v

�
2
�
3M4

H

2

��
d4
M2

H

A0ðM2
HÞ

þ 3d23B0ðq2;M2
H;M

2
HÞ

þ a2
s2

M4
H

B0ðq2; 0; 0Þ
�
� i�M2

H: (27)

The on-shell condition for the Higgs mass requires

Re�HðM2
HÞ ¼ 0: (28)

Independent of this condition and the counterterm, we have
the wave-function renormalization factor of (now setting
d3 ¼ d4 ¼ 1)

ZH ¼ 1þ d�H

dq2

��������q2¼M2
H

¼ 1�
�

1

4�v

�
2
�
3M4

H

2

��
3B0

0ðM2
H;M

2
H;M

2
HÞ

þ a2
�
B0
0ðM2

H; 0; 0Þ þ
2

M2
H

B0ðM2
H; 0; 0Þ

��

¼ 1þ
�
MH

4�v

�
2
��
9

2

��
1� 2

ffiffiffi
3

p
�

9

�

þ a2
�
3

2
� B0ðM2

H; 0; 0Þ
��
: (29)

This is divergent in the SM case and only becomes
finite for a ¼ 0. When the one-loop correction to
i�ðh ! wþw�Þ is performed and all external wave-
function renormalizations are included (i.e. both ZH and
Zw), all divergences cancel for arbitrary a and b when
using the appropriate values for the counterterms given in
Sec. VI. This is a good check on this value of ZH. It should
also be noted that the SM value for ZH does not match that

FIG. 6. The box diagrams contributing to the irreducible part
of the amplitude, iMboxes. (a) Contribution to iMa

boxes.

(b) Contribution to iMb
boxes.

5To see this, it is important to note that B0ð0; 0;M2
HÞ ¼

A0ðM2
HÞ=M2

H.
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given in Ref. [13]; this is a result of the nonlinear nature of
the calculation.

The complete, renormalized decay width for the Higgs
boson into Goldstone bosons is

�ðh!wwÞ¼
�
3�MHa

16�

��
aþ

�
�

�2

���
1

16

�
ðað17þ10b

�3að7a�8Þ�2�v2Þ�12bÞ

�
�
�

8

� ffiffiffi
3

p ð1þ3a�bÞþ
�
�2

48

�
ða2Þð4þaÞ

��

(30)

for arbitrary a and b, where �v2 is a finite renormalization,

not fixed by our conditions. For a ¼ b ¼ 1 and �v2 ¼ � 1
2

(the value used in Refs. [12,13]), this reproduces the known
SM result

�ðh ! wwÞ ¼
�
3�MH

16�

��
1þ

�
�

�2

��
19

16
� 3

ffiffiffi
3

p
�

8
þ 5�2

48

��
:

(31)

VI. DIVERGENCES AND DETERMINATION OF
THE COUNTERTERMS

Here we give the pieces of each individual diagram

proportional to �� ¼ ð2�Þ � 	E þ log 4�þ log �2

M2
H

. We

give the results in the case d3 ¼ d4 ¼ 1 but it is quite
straightforward to restore these factors for each individual

FIG. 10. Self-energy for w=z fields (contribution to iMWFR).

FIG. 8. Six-field diagram, iM6F.

h

h

h ⊗

FIG. 9. Tadpole diagram and counterterm for the Higgs field.

w+

w−

z

z

h

w+

(a)

w+

w−

z

z

h

z

(b)

w+

w−

z

z

h

w−

(c)

w+

w−

z

z

h

z

(d)

FIG. 7. Five-field diagrams, iM5F. Note that they do not have a counterpart in the linear realization of the SM. (a) Contribution to
iMa

5F. (b) Contribution to iMb
5F. (c) Contribution to iMc

5F. (d) Contribution to iMd
5F.
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diagram if so desired. These factors appear only in the
radiative corrections to two- and three-point functions,

MðaÞ
2�pt �

�
1

4�v2

�
2
��

�
9a2M4

Hs
2

2ðs�M2
HÞ2

�
;

MðbÞ
2�pt �

�
1

4�v2

�
2
��

�
3a4s4

2ðs�M2
HÞ2

�
;

MðcÞ
2�pt �

�
1

4�v2

�
2
��

�
3a2M4

Hs
2

2ðs�M2
HÞ2

�
;

(32)

MðaÞ
3�pt �

�
1

4�v2

�
2
��

�
3abM2

Hs
2

ðs�M2
HÞ
�
;

MðbÞ
3�pt �

�
1

4�v2

�
2
��

� �2a2s3

ðs�M2
HÞ
�
;

MðcÞ
3�pt �

�
1

4�v2

�
2
��

��2a2bM2
Hs

2

ðs�M2
HÞ

�
;

MðdÞ
3�pt �

�
1

4�v2

�
2
��

��3a3M2
Hs

2

ðs�M2
HÞ

�
;

MðeÞ
3�pt �

�
1

4�v2

�
2
��

��a4s2ðs� 2M2
HÞ

ðs�M2
HÞ

�
;

(33)

MðaÞ
bubble �

�
1

4�v2

�
2
��

�
b2s2

2

�
;

MðbÞ
bubble �

�
1

4�v2

�
2
��

�
s2

2

�
;

MðcÞ
bubble �

�
1

4�v2

�
2
��

�
tðt� uÞ

6

�
;

MðdÞ
bubble �

�
1

4�v2

�
2
��

�
uðu� tÞ

6

�
;

(34)

MðaÞþðbÞ
triangle �

�
1

4�v2

�
2
��

�
a2sð3s� 2M2

HÞ
3

�
;

MðcÞþðdÞ
triangle �

�
1

4�v2

�
2
��

��a2tððt� uÞ �M2
HÞ

3

�
;

MðeÞþðfÞ
triangle �

�
1

4�v2

�
2
��

��a2uððu� tÞ �M2
HÞ

3

�
;

MðgÞþðhÞ
triangle �

�
1

4�v2

�
2
��ð�a2bs2Þ;

(35)

MðaÞþðbÞ
box �

�
1

4�v2

�
2
��

�
a4ðs2 þ t2 þ u2Þ

3

�
; (36)

MðaÞþðbÞþðcÞþðdÞ
5F �

�
1

4�v2

�
2
��ð2a2M2

HsÞ; (37)

M6F �
�

1

4�v2

�
2
��ð�bM2

HsÞ; (38)

MWFR �
�

1

4�v2

�
2
��ð2M2

HsÞða2 � bÞ
�ða2 � 1ÞsþM2

H

ðs�M2
HÞ

�
:

(39)

Note that we have included the w, z Goldstone boson
wave-function renormalization as a contribution to the
one-loop amplitude to be canceled by the counterterms
in �L.
If we ignore the tadpole counterterms, we can collect

together all the individual counterterms to give the following:

Mctr ¼
�
1

v2

��
s

ðs�M2
HÞ2

��
�v2

v2
ðða2 � 1Þs2

þ ð2� a2ÞðsM2
HÞ �M4

HÞ � �aðð2aÞðsÞðs�M2
HÞÞ

� �M2
H

M2
H

ðða2ÞðsM2
HÞÞ

�
þ

�
1

v4

�
ð4�a4ðt2 þ u2Þ

þ 8�a5ðs2ÞÞ: (40)

The values of the counterterms needed to cancel the
one-loop divergences—and satisfy our renormalization
conditions—can be solved for arbitrary a and b to give

�v2

v2
¼ M2

H

ð4�vÞ2 ð��ð�a2 þ bÞ þ �v2Þ;
�M2

H

M2
H

¼ M2
H

ð4�vÞ2
�
3

2

�
ð��ð4þ a2Þ þ 7þ 2a2 � ffiffiffi

3
p

�Þ;

��

�
¼ M2

H

ð4�vÞ2
�
1

2

�
ð��ð9þ 5a2 � 2bÞ þ 18

þ 6a2 � 3
ffiffiffi
3

p
�� 2�v2Þ;

�a ¼ M2
H

ð4�vÞ2
�
1

2

�
ð��ða� 1Þðað5aþ 2Þ � 3bÞÞ;

�a4 ¼ 1

ð4�Þ2
��1

12

�
ð��ða2 � 1Þ2Þ;

�a5 ¼ 1

ð4�Þ2
��1

48

�
ð��ð2þ 5a4 � 4a2 � 6a2bþ 3b2ÞÞ;

(41)

where �v2 is a finite piece, not determined by the renor-
malization conditions a priori. Note that the counterterm
for b cannot be determined from this process. As previously
indicated it is quite easy to restore the dependence on d3
and d4 in the divergent part of all diagrams but we will not
present the results here.

A. Cross-checks

In the SM case (a ¼ b ¼ 1), renormalization conditions
read as

�v2

v2
¼ M2

H

ð4�vÞ2 ð�v
2Þ;

�M2
H

M2
H

¼ M2
H

ð4�vÞ2
�
3

2

�
ð��ð5Þ þ 9� ffiffiffi

3
p

�Þ;

��

�
¼ M2

H

ð4�vÞ2
�
��ð6Þ þ 12� 3

2

ffiffiffi
3

p
�� �v2

�
;

�a ¼ 0; �a4 ¼ 0; �a5 ¼ 0:

(42)
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The last three terms should be absent in the SM, so this is a
good check. In the EChL case (a ¼ b ¼ 0) we have

�v2

v2
¼ M2

H

ð4�vÞ2 ð�v
2Þ;

�M2
H

M2
H

¼ M2
H

ð4�vÞ2
�
3

2

�
ð��ð4Þþ7� ffiffiffi

3
p

�Þ;

��

�
¼ M2

H

ð4�vÞ2
�
��

�
9

2

�
þ9�3

2

ffiffiffi
3

p
���v2

�
; �a¼0

�a4¼ 1

ð4�Þ2��

��1

12

�
; �a5¼ 1

ð4�Þ2��

��1

24

�
; (43)

in agreement with already known results [4].
It is interesting to note here that while �M2

H � 0, its
contribution to the counterterm amplitude is actually

proportional to a2 and therefore vanishes when a ! 0
[see Eq. (40)]. Also, the �� term is only necessary
here to remove the tadpole divergence (which is absent
from the full amplitude for a ¼ b ¼ 0) so once again
plays no part. Finally, the �v2 term is finite. Therefore
only �a4 and �a5 are needed to remove the one-loop
divergences from the Goldstone boson scattering ampli-
tudes, which is what one would expect in the EChL
approach.

VII. FINAL RESULTAND CONCLUSIONS

Finally, the complete one-loop amplitude
iMloopðwþw� ! zzÞ [for arbitrary a and b and rendered
finite by using the counterterms in Eq. (41)] is given by the
following:

iMloop¼ i

�
1

4�v2

�
2
�
M2

H

2

�
2
�
6a2ð�6�2a2þ ffiffiffi

3
p

�ÞM4
H

ðs�M2
HÞ2

�4a2ð18þ2aða�3Þþ5b�3
ffiffiffi
3

p
���v2ÞM2

H

ðs�M2
HÞ

�2

9
ða2�1Þ

�
ða2�1Þt

2þ4tuþu2

M4
H

�72a2
t2þ tuþu2

tu

�
þ4

�
s

M2
H

�
ð2a4�3a2bþbþða2�1Þ�v2Þ

þa2ð6 ffiffiffi
3

p
��4ð9þ3aða�2Þþ5b��v2ÞÞþ2

�ða2�bÞs2þðða2�bÞ�3aÞM2
Hs�2a2M4

H

M2
Hðs�M2

HÞ
�
2
�B0ðs;M2

H;M
2
HÞ

þ2
sðða2�1ÞsþM2

HÞ
M4

H

�ða2�1Þs2þð6a2þ1ÞM2
Hs�4a2M4

H

ðs�M2
HÞ2

�
�B0ðs;0;0Þ

þ
��
4ða2�1Þ2

3

t2

M4
H

þ2ða2�1Þ
3

ðða2�1Þs�6a2M2
HÞ

M2
H

t

M2
H

þ4a2ð1�ða2�1Þð1þ4
u

t
ÞÞ
�
�B0ðt;0;0Þþðt,uÞ

�

�8a2
ða2�bÞs2þðða2�bÞ�3aÞM2

Hs�2a2M4
H

ðs�M2
HÞ

C0ð0;0;s;M2
H;0;M

2
HÞ

þ8a2
s

ðs�M2
HÞ

ðða2�1ÞsþM2
HÞC0ð0;0;s;0;M2

H;0Þþ
�
8a2ðða2�1ÞsþM2

H

�
1�2ða2�1Þu

t

��
C0ð0;0;t;0;M2

H;0Þ

þðt,uÞ
�
þð4a2M4

HD0ð0;0;0;0;s;t;M2
H;0;M

2
H;0Þþðt,uÞÞ

�
: (44)

Here the functions �A0 and �B0 are the corresponding scalar integral functions with the divergences removed (see Appendix).
The amplitude as written above has been grouped by scalar loop integrals. In the SM limit (a ¼ b ¼ 1), this simplifies
quite a bit

iMloop
SM ¼ i

�
1

4�v2

�
2
�
M2

H

2

�
2
�
þ M4

H

ðs�M2
HÞ2

ð�48þ 6
ffiffiffi
3

p
�þ 18 �B0ðs;M2

H;M
2
HÞ þ 6 �B0ðs; 0; 0ÞÞ

þ M2
H

ðs�M2
HÞ

ð�76þ 12
ffiffiffi
3

p
�þ 4�v2 þ 12 �B0ðs;M2

H;M
2
HÞ þ 20 �B0ðs; 0; 0Þ þ ð8M2

HÞð3C0ð0; 0; s;M2
H; 0;M

2
HÞ

þ C0ð0; 0; s; 0;M2
H; 0ÞÞÞ þ ð2 �B0ðs;M2

H;M
2
HÞ þ 14 �B0ðs; 0; 0Þ þ 4 �B0ðt; 0; 0Þ þ 4 �B0ðu; 0; 0ÞÞ

þ ð8M2
HÞðC0ð0; 0; s;M2

H; 0;M
2
HÞ þ C0ð0; 0; s; 0;M2

H; 0Þ þ C0ð0; 0; t; 0;M2
H; 0Þ þ C0ð0; 0; u; 0;M2

H; 0ÞÞ
þ ð4M4

HÞðD0ð0; 0; 0; 0; s; t;M2
H; 0;M

2
H; 0Þ þD0ð0; 0; 0; 0; s; u;M2

H; 0;M
2
H; 0ÞÞ � 2ð22� 3

ffiffiffi
3

p
�� 2�v2Þ

�
: (45)
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Equations (41) and (44) contain our main results. We have
seen how the departures from the SM can be taken con-
sistently into account in an effective-Lagrangian philoso-
phy also at the one-loop level and the suitable counterterms
included to render the amplitude finite. We note that if a
and b are set to their SM values, the coefficients accom-
panying theOðp4Þ operators are finite and do not run, while
this is not the case as soon as one departs from the SM.
After cancellation of the divergent part of the loop (say in
the MS scheme), a finite logarithmic part remains. For
instance in the case of the effective coefficients a4
and a5, and appealing to naturality arguments, their
characteristic size would be

�a4 ¼ 1

ð4�Þ2
��1

12

�
ða2 � 1Þ2 log f

2

v2
;

�a5 ¼ 1

ð4�Þ2
��1

48

�
ð2þ 5a4 � 4a2 � 6a2bþ 3b2Þ log f

2

v2
;

(46)

with f being the compositeness scale.
In the present study we have restricted ourselves to the

case where the triple and quartic Higgs coupling take the
same values as in the SM, but relaxing this hypothesis is
straightforward. The dependence of the divergent parts on
d3 and d4 can be easily determined as they simply contrib-
ute as overall factors to vertex and self-energy corrections.
None of those diagrams behave as �s2 (or as t2 or u2) for
large values of s, and they therefore do not contribute to
�a4 and �a5 that are totally independent of d3 and d4.

It would be interesting to extend the present study to
other low-energy constants of the effective theory parame-
trizing the EWSBS. In particular, a1 and a2 correspond to
operators that contribute to the triple gauge boson vertex
that has been recently measured for the first time at the
LHC [14]. The renormalization of d3 and d4 would even-
tually be of interest too, but their relevance for comparison
with experiment is still well ahead.

We have also presented a full one-loop calculation using
the equivalence theorem approximation (and taking
the masses of the Goldstone bosons to vanish, i.e. in the
’t Hooft-Landau gauge) of the WLWL ! ZLZL in the
general case with generic couplings of the Higgs to

the electroweak gauge bosons. This calculation should be
quite useful in precise comparisons of measurements of the
four gauge boson coupling (not yet measured at the LHC)
to theoretical predictions. Its knowledge is also very rele-
vant in connection with unitarity analysis such as the one
done in [1] and the prediction of new resonances originat-
ing from the EWSBS. As emphasized in the Introduction,
the search for such resonances has to go hand in hand with
accurate measurements of the four gauge boson couplings.
Almost any deviation of these coefficients from their SM
values would lead to unitarity violations at high energies
and thus require additional resonances to restore it. In a
forthcoming publication we will study in detail the issue of
unitarity and extend the results of [1] to the case where the
tree-level Oðp2Þ parameters a and b depart from their SM
values. Both the determination of the counterterms and the
full calculation of the real part of the scattering amplitude
derived in this preparatory paper are necessary ingredients
for such an analysis.
In conclusion, we have successfully provided a one-loop

theory of Goldstone boson scattering in the context of an
extended EWSBS where the Higgs is allowed to have
arbitrary couplings. The coefficients a and b describing
the coupling of the Higgs to theW and Z gauge bosons are
currently of great interest to SM fits, but their treatment so
far has only been of tree-level studies. If a and b are not
exactly equal to 1, some Oðp4Þ operators with running
coefficients are required for a consistent treatment at one
loop. Their running has been determined in this work. The
results smoothly connect to the SM and are, we believe,
completely general.
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APPENDIX

Here we define the independent scalar integrals entering
our expressions

A0ðm2
0Þ ¼ N

Z
ddk

1

k2 �m2
0

¼ m2
0ð�� þ 1Þ;

B0ðp2
1; m

2
0; m

2
1Þ ¼ N

Z
ddk

1

k2 �m2
0

1

ðkþ p1Þ2 �m2
1

;

C0ðp2
1; p

2
2; p

2
12; m

2
0; :; m

2
3Þ ¼ N

Z
ddk

1

k2 �m2
0

1

ðkþ p1Þ2 �m2
1

1

ðkþ p12Þ2 �m2
2

;

(A1)

D0ðp2
1; p

2
2; p

2
3; p

2
13; p

2
12; p

2
23; m

2
0; :; m

2
3Þ ¼ N

Z
ddk

1

k2 �m2
0

1

ðkþ p1Þ2 �m2
1

1

ðkþ p12Þ2 �m2
2

1

ðkþ p13Þ2 �m2
3

; (A2)
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whereN ¼ ð2��Þ4�d=ði�2Þ and pij ¼
Pj

h¼i ph. We note

that of the scalar loop integrals (A0, B0, C0, and D0) in our
solution only A0 and B0 contain divergences. We will

therefore define the functions �A0 and �B0 as the correspond-
ing scalar integral functions with the divergences removed

A0ðaÞ ¼ a�� þ �A0ðaÞ;
B0ða; b; cÞ ¼ �� þ �B0ða; b; cÞ:

(A3)

Note that this differs slightly from the �� ¼
ð2� � 	E þ log 4�Þ used in the literature on the scalar

loop integrals. However, this has the benefit that all

factors of log �2

M2
H

are currently in the counterterms and

that �A0ðM2
HÞ ¼ M2

H. For situations in which it is

better to have log �2

M2
H

explicitly in the amplitude (for

instance in the limit M2
H ! 1), this can be achieved by

replacing each counterterm in Eq. (40) with C log �2

M2
H

,

where C is the coefficient of the divergent part of the
corresponding counterterm, and then adding it to the
amplitude.
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