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Abstract. In the Minimal Standard Model (MSM) there is no degree of freedom for

dark matter. There are several extensions of the MSM introducing a new particle - an

invisible axion, which can be regarded as a trustworthy candidate at least for a part of

the dark matter component. However, as it is extremely weakly coupled, it cannot be

directly measured at the LHC. We propose to explore the electroweak sector indirectly

by considering a particular model that includes the axion and derive consequences that

could be experimentally tested.

We discuss the Dine-Fischler-Srednicki (DFS) model, which extends the two-Higgs dou-

blet model with an additional Peccei-Quinn symmetry and leads to a physically accept-

able axion. The non-linear parametrization of the DFS model is exploited in the generic

case where all scalars except the lightest Higgs and the axion have masses at or beyond

the TeV scale. We compute the oblique corrections and use their values from the elec-

troweak experimental fits to put constraints on the mass spectrum of the DFS model.

1 Introduction

In this paper we reexamine the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model. It is the two-

Higgs doublet model (2HDM) containing an additional singlet, endowed with a Peccei-Quinn (PQ)

symmetry. Introduction of the PQ symmetry in the Standard Model (SM) leads to the solution of the

strong CP problem but induces the necessity of two Higgs doublets and the presence of an axion. The

last becomes physically acceptable in the DFSZ model. From one point of view, the model includes a

lot of new physics coming from the 2HDM. From another, an invisible axion is a possible candidate

at least for a part of the dark matter. Both these reasons, as well as the interplay between the 2HDM

content and the axion, make this model interesting to study.

The discovery of a Higgs-like particle with mh ∼ 126 GeV and the development of experiments,

now probing the predictions of the standard electroweak theory with sufficient accuracy, impose the

constraints on any potential new physics that might exist at higher energies. Nevertheless, there is

still a room for a wide variety of the 2HDM scenarios. In the same time the introduction of an axion

restricts the number of possibilities, making the phenomenological consequences of the DFSZ model

more rigorous.
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2 Fields and symmetries

The DFSZ model originated as a solution to several problems. Firstly, Peccei and Quinn [1] proposed

to introduce an additional global U(1)PQ symmetry to the SM to rotate away the CP violating term.

Then, the introduction of two Higgs doublets is necessary to make the SM invariant under the U(1)PQ

transformation. The last thing is to make a new Goldstone boson of the necessarily broken PQ sym-

metry - an axion - invisible, meaning it should have a very light mass and be very weakly coupled

to ordinary matter. It wasn’t achieved in the original PQ model. However, later Dine, Fischler and

Srednicki [2] and Zhitnitsky [3] independently proposed a generalization of the Peccei-Quinn scheme

with a harmless axion. Addition of a complex scalar field gives an axion the right properties.

So, we work with two Higgs doublets and a complex scalar singlet:

φ1 =

(
α+
α0

)
; φ2 =

(
β+
β0

)
; φ. (1)

The vevs of the fields are

〈φ1〉 =
(

0

v1

)
; 〈φ2〉 =

(
0

v2

)
; 〈φ〉 = vφ. (2)

We can define the usual electroweak vacuum expectation value as v2 = (v2
1
+ v2

2
)/2 = 246 GeV and

the well-known 2HDM parameter tan β = v2/v1. The DFSZ model includes a 2HDM of type II: φ1

couples only to right-handed charge 2/3 quarks, φ2 couples only to the right-handed charge −1/3

quarks and to right-handed charged leptons. The Yukawa terms have the structure:

LY = G1q̄Lφ̃1uR +G2q̄Lφ2dR +G3 l̄Lφ2eR + h.c., (3)

and similarly for other quarks and leptons. Here φ̃i = iτ2φ
∗
i
.

For the potential we choose the one respecting CP, S U(2) × U(1) and U(1)PQ symmetries:

V(φ, φ1, φ2) = λφ(φ
∗φ − V2

φ)
2 + λ1(φ†

1
φ1 − V2

1 )2 + λ2(φ†
2
φ2 − V2

2 )2 + λ3(φ†
1
φ1 − V2

1 + φ
†
2
φ2 − V2

2 )2+

+ λ4

[
(φ†

1
φ1)(φ†

2
φ2) − (φ†

1
φ2)(φ†

2
φ1)

]
+ (aφ†

1
φ1 + bφ†

2
φ2)φ∗φ + c(φ†

1
φ2φ

2 + φ†
2
φ1φ

∗2). (4)

Furthermore, we consider an additional possible symmetry - the custodial symmetry. It is an

approximate symmetry in the SM keeping the equality ρ ≡ M2
W

M2
Z

cos2 θW
� 1 even when g′ � 0, with θW

being the Weinberg angle and MW , MZ – the electroweak gauge boson masses.

To make more evident such global symmetries of the potential of the DFSZ model one can intro-

duce a matrix notation [4]. Firstly, we construct the 2 × 2 matrices from the fields of Higgs doublets:

Φ12 = (φ̃1 φ2) =

(
α∗

0
β+

−α− β0

)
, Φ21 = (φ̃2 φ1) =

(
β∗

0
α+

−β− α0

)
= τ2Φ

∗
12τ2. (5)

Secondly, we consider the following combinations:

I = Φ
†
12
Φ12 =

(
φ†

1
φ1 φ̃†

1
φ2

−φ†
1
φ̃2 φ†

2
φ2

)
, J = Φ

†
12
Φ21 =

(
φ†

2
φ1 0

0 φ†
2
φ1

)
. (6)

Their vevs are

〈I〉 =
(
v2

1
0

0 v2
2

)
, 〈J〉 = v1v2. (7)
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This vacuum is not invariant under the full group S U(2)L × S U(2)R. However, if v1 = v2 , then 〈I〉 is

proportional to the 2 × 2 identity matrix and the vacuum preserves a group S U(2)V (the V stands for

“vectorial"), corresponding to identical matrices, i.e. L = R. This remaining group preserved by the

vacuum is the custodial-symmetry group.

The last thing is to define the constant matrix W,

W = (V2
1 + V2

2 )
I

2
+ (V2

1 − V2
2 )
τ3

2
=

(
V2

1
0

0 V2
2

)
, (8)

and then, the potential can be written as:

V(φ, I, J) = λφ(φ
∗φ − V2

φ)
2 +
λ1

4
{Tr [(I − W)(1 + τ3)]}2 + +λ2

4
{Tr [(I − W)(1 − τ3)]}2 + (9)

+ λ3 [Tr(I − W)]2 +
λ4

4
Tr

[
I2 − (Iτ3)2

]
+

1

2
Tr [(a + b)I + (a − b)Iτ3] φ∗φ +

c

2
Tr(Jφ2 + J†φ∗2).

A custodial global S U(2)L × S U(2)R transformation acts on our fields as

Φi j → LΦi jR
†, I → RIR†, J → J. (10)

If S U(2)L × S U(2)R is to be a symmetry, the parameters of the potential have to be set according to

the custodial relations: λ1 = λ + λB, λ2 = λ − λB, λ4 = 2λ + λ4B, V2
1
= V2 + V2

B
, V2

2
= V2 − V2

B
,

a + aB = b. All the “B” parameters vanish in the limit of custodial symmetry. In total, there are 11

parameters of which 7 are custodial preserving and 4 are custodial breaking.

3 Effective potential

In this section we integrate out the heavy scalars in order to build a low-energy effective theory at the

TeV scale with an axion and a light Higgs.

We decompose the matrix-valued Φ12 field in the following form Φ12 = UM12. U = exp

(
i
	G·	τ
v

)
is

a 2×2 matrix containing the three Goldstone bosons Gi associated to the breaking of S U(2)L ×U(1)Y

to U(1)em. Note that the matrices I and J entering the DFSZ potential are actually independent of U.

The effective potential then does depend only on the degrees of freedom contained in M12.

There is also the singlet field in the scalar potential, it can be parametrized as: φ = ρ + iGφ. The

phase of φ does not drop from the potential automatically because of the c term in (4). Gφ mixes with

the usual 0− scalar from the 2HDM. To have a well-defined massless state we need to find a suitable

phase both in M12 and in φ that drops from the potential.

It is straightforward to define the phases from the requirement that the kinetic terms are diagonal

and exhibit the canonical normalization. Then, the non-linear parametrization of Φ12 reads as1

Φ12 = UM12Ua, (11)

with a unitary matrix containing the axion being Ua = exp

⎛⎜⎜⎜⎜⎝i 2aφ√
v2φ+v

2 s2
2β

(
s2
β 0

0 c2
β

)⎞⎟⎟⎟⎟⎠ and the heavy

scalars collected in the matrix

M12 =
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v + H)cβ −

(
S − ivφ√

v2φ+v
2 s2

2β

Ã0

)
sβ

√
2H+cβ

√
2H−sβ (v + H)sβ +

(
S +

ivφ√
v2φ+v

2 s2
2β

Ã0

)
cβ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

1Here we introduce the short-hand notation sn
mβ ≡ sinn(mβ) and cn

mβ ≡ cosn(mβ).
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The field redefinition we use is as follows:

v + H =
cβ√

2
�[α0] +

sβ√
2
�[β0], S = − sβ√

2
�[α0] +

cβ√
2
�[β0], H± =

cββ± − sβα±
2

. (13)

The singlet field is non-linearly parametrized as

φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vφ + ρ − i
vs2β√
v2φ + v

2s2
2β

Ã0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝i
aφ√
v2φ + v

2s2
2β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (14)

The fields of H, S and ρ are not mass eigenstates but they have vanishing vevs. The mass eigenstates

are defined through the rotation matrix R:

H =

3∑
i=1

RHihi, S =

3∑
i=1

RS ihi, ρ =

3∑
i=1

Rρihi. (15)

H, S are also called interaction eigenstates. For instance, H has the same coupling to the gauge fields

as the SM Higgs boson, but the Higgs mass mh � 126 GeV is attributed to the lightest of hi states.

The construction of the effective Lagrangian for the DFSZ model goes with inclusion of additional

light particles explicitly as dynamical states:

L = v
2

4

(
1 + 2g1

h

v
+ g2

h2

v2
+ ...

)
TrDμU†DμU +

⎛⎜⎜⎜⎜⎜⎜⎝
v2φ

v2φ + v
2 sin2 2β

⎞⎟⎟⎟⎟⎟⎟⎠ ∂μaφ∂μaφ + 1

2
∂μh∂

μh−

− V(h) +

13∑
i=0

ai

(
h

v

)
Oi +Lren, (16)

where the Oi is a set of local gauge invariant operators [4],

DμU = DμU +U(∂μUa)U†
a , V(h) =

m2
h

2
h2 − d3(λv)h3 − d4

λ

4
h4, (17)

Lren =
c1

v4
(∂μh∂

μh)2 +
c2

v2
TrDμU†DμU + c3

v2
(∂μh∂

νh) TrDμU†DνU. (18)

The terms in Lren are required for renormalizability [5] at the one-loop level and play no role in the

discussion. The couplings ai are functions of h/v and can be regularly expanded. Their constant parts

ai(0) are related to the electroweak precision parameters.

4 Mass eigenstates

Having defined the fields we proceed with the description of the mass spectrum of the model (follow-

ing [6]). We have two doublets and a singlet, so a total of 4 + 4 + 2 = 10 spin-zero particles. Three

particles are eaten by the gauge bosons and 7 scalars fields are left in the spectrum: two charged Higgs

bosons, two 0− states and three neutral 0+ states.

The charged Higgs bosons have a mass m2
H±
= 8

(
λ4v

2 +
cv2φ
s2β

)
. In the 0− sector A0 and Gφ fields

mix forming the massless state, the axion aφ =
vs2βA0+vφGφ√
v2φ+v

2 s2
2β

, and the massive state Ã0 =
vφA0−vs2βGφ√
v2φ+v

2 s2
2β

, with

m2

Ã0
= 8c

(
v2φ
s2β
+ v2s2β

)
.
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Figure 1. Types of Feynman diagrams occurring in the calculation of the vacuum polarizations.

As was mentioned before, there is mixing in the 0+ sector. We mark the corresponding 0+ mass

eigenstates as hi. The mass matrix can be diagonalized in the limit of large vφ, which is astrophysically

constrained to be at least of order 107 GeV. In the paper [6] an expansion in v/vφ is carried out to the

second order to get the masses of hi. It is argued that the nominal expansion in powers of v/vφ is

applicable in a number of cases.

The cases of special interest are the ones with parameters a, b or c of order O(v2/v2φ) but c �
λiv

2/v2φ or c ∼ λiv
2/v2φ. For instance, in the last case ρ is a mass eigenstate with mass m2

h3
= 4λφv

2
φ.

The two remaining masses are

m2
h1,h2
= 8v2

(
K ∓

√
K2 − L

)
, (19)

where K = 2
(
λ1c2
β + λ2s2

β + λ3

)
+

v2φc

2v2 s2β
, L = 8

[
(λ1λ2 + λ1λ3 + λ2λ3) s2

2β +
v2φc

2v2 s2β

(
λ1c4
β + λ2s4

β + λ3

)]
.

These cases can provide much richer phenomenology (with h2, charged Higgs and Ã0 at the weak

scale) than others not discussed here. One can notice that the presence of these light states requires

that some couplings are rather small which my seem odd or fine-tuned. For a discussion on the

’naturalness’ of this possibility see [7].

5 Oblique corrections

5.1 Definitions and experimental measurements

If the new physics scale is significantly higher than the electroweak scale, new physics effects from

virtual particles in loops are expected to contribute predominantly through vacuum polarization cor-

rections to the electroweak precision observables.

One can parametrize possible departures from the SM with the so-called oblique parameters. In

our calculations we use the parameters ε1, ε2, and ε3 defined in [8] as follows:

ε1 ≡ 1

M2
W

[
A33(0) − A11(0)

]
, ε2 = F11(M2

W ) − F33(M2
W ), ε3 =

c

s
F30(M2

Z). (20)

Ai j and Fi j are the coefficients in the vacuum-polarization tensors

Π
i j
μν(q) = −igμν

[
Ai j(0) + q2Fi j(q2)

]
+ qμqν terms, (21)

where i j may be either WW, W3W3 or W3B and qμ is the four-momentum of the gauge boson. In

the effective theory ε1, ε2, and ε3 receive one-loop contributions from the leading O(p2) term and the

tree-level contributions from the ai(0):

ε1 = 2a0(0) + ... , ε2 = −g2a8(0) + ... , ε3 = −g2a1(0) + ... , (22)
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Figure 2. Exclusion plot imposed by the constraint

from ΔS on the Ã0 and H± in the ’quasi-custodial’

limit for different values of the symmetry breaking

parameter λ4B. Grey regions are excluded by stabil-

ity.
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Figure 3. Exclusion plot imposed by the constraint

from ΔT on the h2 and H±. The successive horizon-

tal bands correspond to different values of mA0
. The

stability bounds are implemented.

where the ellipses symbolize the one-loop v
2

4
Tr DμU†DμU contributions.

The Feynman diagrams which contribute to the vacuum polarization in the DFSZ model are de-

picted in Fig. 1. The wavy lines correspond to gauge bosons and the usual ones to various scalar

fields. Considering the gauge invariant kinetic term Lkin =
1
2
(∂μφ)

∗∂μφ + 1
4

Tr
[
(DμΦ

†
12

)DμΦ12

]
, one

can get all types of interactions and consequently all contributions to εi.

Experimental constraints on the oblique parameters are obtained from the global fits of the elec-

troweak sector of the SM. For a long time, such fits have been used to exploit measurements of elec-

troweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron

colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free

parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters

entering these fits are experimentally determined, including information on the Higgs couplings, and

the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios

for new physics.

While performing global fits( [9],[10]), it is more common to work with another set of parameters

S , T and U determined firstly in [11]. The connection between S , T and U, defined relative to the

SM (ΔT = T − T S M , etc.), and εi is as follows:

ΔT =
ε1 − εS M

1

α
, ΔU = −4s2

W
(ε2 − εS M

2
)

α
, ΔS =

4s2
W

(ε3 − εS M
3

)

α
. (23)

Here, α = e2/(4π) = g2s2
W
/(4π) is the fine-structure constant, sW = sin θW is the sine of the weak

mixing angle θW .
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the mass spectrum. The stability bounds are imple-

mented.

The experimental determinations of ΔS , ΔT and ΔU are:

from the Gfitter group [9]: ΔS = 0.05 ± 0.11, ΔT = 0.09 ± 0.13, ΔU = 0.01 ± 0.11; (24)

from the PD paper [10]: ΔS = −0.03 ± 0.10, ΔT = 0.01 ± 0.12, ΔU = 0.05 ± 0.10. (25)

ΔU is considered to be very small in most new physics models and therefore often set to zero in

the global fits. This changes the experimental limits on ΔS , ΔT a bit due to correlations between the

parameters. The relevant constraints in the ΔU = 0 scenario are [9]:

ΔS |ΔU=0 = 0.06 ± 0.09, ΔT |ΔU=0 = 0.1 ± 0.07. (26)

5.2 Spectrum implications

With both theoretical expressions for the oblique parameters and experimental bounds on them, we

can explore the allowed range of masses. As we are basically interested in the possibility of obtaining

a lightish spectrum, we discuss the case where the c parameter scales as v2/v2φ.

We will assume two types of settings. First, a ’quasi-custodial’ one, which means that the custodial

symmetry is broken only via the coupling λ4B = λ4 − 2λ being non-zero. The rotation matrix of 0+

states is equal to unity. The mass spectrum gets an additional restriction: m2
H±
= m2

h2
+ 8v2λ4B. In

Fig. 2 we provide an exclusion plot from the constraints on ΔS as an example. Notice, that the

negative values of λ4B allow much lighter spectra than the positive ones.

Then, the general setting, when the three masses mÃ0
, mH± and mh2

are unrelated, except for

the eventual lack of stability of the potential. The rotation matrix can be different form the identity.

However, experimentally the parameter cos θ, appearing on the diagonal of the rotation matrix, is

known [6] to be very close to one. We present a range of masses allowed by the constraints on ΔT in

Fig. 3.
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Furthermore, we depict constraints from several oblique parameters simultaneously. For the par-

ticular choice of λ4B in the ’quasi-custodial’ setting we have the exclusion plot both from ΔS and ΔT

in Fig. 4. ΔT significantly narrows the allowed region, while ΔU gives nothing new and is not present

in the plot. For λ4B = 0.2 the possible range would start at about 1 TeV range, while for negative λ4B

it goes down to 100 GeV. If we completely give up the custodial symmetry, ΔT determines the most

severe restrictions on the spectrum generally. However, ΔU � 0 scenario brings even more restric-

tions, see Fig. 5. As ΔU gets closer to exact zero its region shrinks to two lines, which overlap with

ΔT region only asymptotically at infinity.

6 Conclusions

The nature of electroweak symmetry breaking keeps being an important issue in particle physics today.

The Standard Model of particle physics contains a mechanism for electroweak symmetry breaking,

and the discovery of the Higgs boson at the LHC proves its consistency. However, the Minimal

Standard Model still has a several well-known problems. One of them being the absence of the degree

of freedom for dark matter.

The Dine-Fischler-Srednicki-Zhitnitsky model is a model with the electroweak symmetry break-

ing pattern, similar to the SM. The model contains an invisible axion which is an interesting candidate

for dark matter. Being extremely weakly coupled, the axion cannot be directly detected at the LHC.

Hence, we make an investigation what indirect consequences of the axion presence can be seen ex-

perimentally.

We consider the constraints from electroweak precision parameters, expressed in terms of the

oblique parameters, to get the restrictions on the model spectrum. The large scale, appearing in the

DFSZ model to make the axion nearly invisible, seems to generate a very heavy and inaccessible

spectrum of the new physics. However, we discuss cases in which a rather light spectrum appears,

with even a possibility to be tested at the LHC.
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