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ABSTRACT

The central topic of this work is the concept of acyclic spaces in topological K-theory
and their analogues in algebraic K-theory. We start by describing topological K-
theory and some basic results, such as representability by a spectrum. Next we discuss
algebraic K-theory and some of its properties, including Swan’s theorem, followed
by the topological tools required to construct higher algebraic K-theory by means of
Quillen’s plus-construction. Finally, we describe a class of rings whose algebraic K-
theory groups vanish in all dimensions. In fact each ring R admits a cone CR with
K;(CR) = 0 for all ¢ and a suspension SR that is used to define negative K-theory

groups of R in analogy with the topological case.
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Introduction

The core of what is now known as K-theory originated with the works of Whitehead
and Grothendieck around 1950. The common denominator of both works is the study
of algebraic invariants in their respective areas. Whitehead was interested in creating
algebraic invariants that would allow to classify homotopy equivalences in topology, while
Grothendieck was interested in generalizing the Riemann-Roch theorem in algebraic ge-
ometry. The distillation of ideas of Whitehead and Grothendieck and their application in
the case of topological vector bundles resulted in topological K-theory, through the works
of Atiyah, Bott and Hirzebruch. In algebra, the application of these ideas to projective
modules and general linear groups led to the origins of algebraic K-theory around 1960.

Topological K-theory and algebraic K-theory are closely related, as we shall see. Our
initial goal was to search for examples of acyclic rings, that is, rings R whose algebraic
K-theory groups K;(R) vanish for all i. A subsequent research objective would be to
compare the lattices of K*-acyclics and K ,-acyclics both in topological K-theory and in
algebraic K-theory, starting from results proved by Hovey [10] in the topological setting.
This study probably requires background on motivic homotopy theory and goes beyond
the scope of the present essay.

This work is divided in two parts. In Part I we discuss topological K-theory. The first
chapter begins with basic definitions about vector bundles and we explain some of their
properties, the basic operations between them and ways to construct them. We define the
first topological K-theory group and show some of its properties. In the second chapter
we define the negative K-theory groups both for reduced and unreduced K-theory. We
also put into play the basic computational tools by means of long exact sequences of
groups. Then we show that K-theory is a generalized cohomology theory according to the
Eilenberg-Steenrod axioms. We also define the spectrum of complex K-theory and state
Bott’s periodicity theorem. Finally we compute the complex K-theory groups of some
topological spaces like the real projective plane or the complex projective plane.

Part II consists of two chapters. In the first one we give the definition and basic
properties of the Grothendieck and Bass-Whitehead groups for rings with unit; we provide
a characterization of Grothendieck groups by means of idempotents, and compute Ky for
commutative and local rings. We also give a proof of the Serre-Swan theorem, that relates
K°(X) and Ko(C(X)), where X is a compact Hausdorff space and C(X) is the ring of
continuous complex-valued functions on X. We finish this chapter by computing K; of
fields. In the last chapter we give the construction of higher algebraic K-theory groups
by means of Quillen’s plus-construction, and compute the algebraic K-theory groups for
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2 INTRODUCTION

finite fields. Next we define infinite sum rings and show that they are K-acyclic. In fact
every ring R can be embedded into a K-acyclic ring C'R, called its cone. In analogy with
topological K-theory one can then define a ring SR, called suspension of R, which can be
used to define negative algebraic K-theory groups.



Part 1

Topological K-theory






Chapter 1

Vector Bundles and First Notions
of K-theory

Vector bundles are the starting point for topological K-theory and they are generalizations
of vector spaces. We begin describing the notion of a family of vector spaces. In this
chapter we follow the expositions given in [3] and [7], but see also [9].

1.1 Definition and properties

Definition 1.1.1. Let X be a topological space. A family of (complex) vector spaces over
X is a topological space E, together with

(i) a continuous map p: E — X

(ii) a (complex) vector space structure on each E, := p~!(x), compatible with the
topology on E.

Such a family is denoted by £ = (E,p, X). The map p is called the projection map, E is
called the total space, and E, is called the fiber of £ at the point z. Most of the time we
shall simply refer to the family F, letting the rest of the data be implicit.

Compatibility just means that multiplication by scalars C x £ — FE and addition
E xx E — E are continuous, where E x x E := {(e1,e2) € Ex E : p(e1) = p(e2)}. Notice
also that we can add elements only if they lie on the same fiber. The dimension of E, is
called the rank of the family at z, and will be denoted by rank,(E). The rank of E is
defined as
rank(E) := sup{rank,(F) : z € X}.

Example 1.1.2.

e Consider F = X x C™ together with the projection map X x C* — X. This is
the trivial family of rank n, and when the space X is understood, we will denote it
simply by n

e Consider X = C and let ey, e5 be the standard basis for C2. Let
E = {(z,2¢1)|z€Q,teC}u{(x,2e2) |z € X\Q,2ze C} < X x C2.
By the preceding example, X x C> — X is a family of vector spaces, and E becomes

a sub-family of vector spaces under the same operations.

5



6 CHAPTER 1. VECTOR BUNDLES AND FIRST NOTIONS OF K-THEORY

A morphism of families is, roughly speaking, a map that preserves fibers. The next
definition states it precisely.

Definition 1.1.3. A morphism from one family p: E — X to another family p': £/ —
X is a continuous map ¢: E — FE’ that satisfies

(i) p o =p;
E-*.,p

NI

X

(ii) for each x € X the induced maps ¢, : E, — E! are linear.

We say that ¢ is an isomorphism if it is bijective and ¢! is continuous, and that E and

E’ are isomorphic if there exists an isomorphism ¢ between them.

If Y is a subspace of X, we write E’ for the restriction p~1(Y). Clearly the restriction
Ply E ly — Y is a family over Y. We shall denote it by E | and call it the restriction of
E to Y. This can be seen as a family induced by the inclusion ¢ : ¥ — X and the next
definition generalizes this for any continuous map from Y to X.

Definition 1.1.4. Given a family (F,p, X) and a continuous map f : ¥ — X, the
induced family (f*E, f*(p),Y) is given by f*FE as the subspace of Y x E consisting of
all points (y,e) such that f(y) = p(e), with addition and multiplication given by (y,e) +
(y.€') = (y,e+¢)and r-(y,e) = (y,re).

If the map f in the above definition is an inclusion map, then sending each e € E into
the corresponding (p(e), e) we have a map that is clearly an isomorphism E‘Y ~ f*(F). If
f is not an inclusion map, given y € Y, there is a natural map of vector spaces (f*E), —
Ey(,) which is an isomorphism.

Definition 1.1.5. A (complex) vector bundle over X is a family of vector spaces p: E —
X such that every point x € X has a neighborhood U € X, an n € Z>(, and an isomor-
phism of families of vector spaces

p N (U) —=—U xC"

\ Jpn

U

The isomorphism in the above diagram is called a local trivialization. Usually one simply
says that a vector bundle is a family of vector spaces that is locally trivial. A vector bundle

of constant rank n will be denoted by ¢ : C* — E PLX.

The n appearing in the previous definition depends on the point x. It is called the
rank of the vector bundle at x. The rank is constant on the connected components of X.
Vector bundles of rank 1 are often called line bundles.

We will assume throughout that our base spaces are connected. If X =| |, X, is dis-
joint union of path components, then a vector bundle E over X is by definition a collection
of vector bundles E, over each X,, and the rank of each F, may be different. Assuming
that our base spaces are connected simplifies the discussions, and all the arguments can
be extended to the non-connected case in a straightforward way.
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Figure 1.1: Vector Bundle

Example 1.1.6. The most important example of a vector bundle is the tangent bundle
m:TM — M of a smooth manifold.

Definition 1.1.7. A morphism of vector bundles is just a morphism of the underlying
families of vector spaces. The induced family of a vector bundle is called the pullback
bundle. The category of vector bundles is denoted Vect, and the category of vector
bundles over a fixed base space X is denoted by Vectx.

Proposition 1.1.8. Given a morphism ¢ of vector bundles

E-*,F

BN

X

Then ¢ is an isomorphism if and only if it is a linear isomorphism on each fiber, i.e.

Q|5 :E,——E. forallzeX

T

Proof. If ¢ has an inverse ¢!, it restricts to an isomorphism on each fiber. Conversely,
suppose that F = X xC" and E' = X x C"™ are trivial vector bundles and that ¢ : E — E’
restricts to an isomorphism on each fiber. By the exponential law for spaces, we have
homemorphisms of spaces (with respect to the compact-open topology)

map(X x C", X x C™) = map(X x C",C™) = map(X, map(C",C™))
where the left-hand side denotes maps over X. When we restrict attention to morphisms

of vector bundles on the left-hand side, we get a homeomorphism
O



8 CHAPTER 1. VECTOR BUNDLES AND FIRST NOTIONS OF K-THEORY

1.2 Sections

Definition 1.2.1. Given a family of vector spaces p : E — X, a section of p is a map
s : X — FE such that pos = idyx, the identity map of X. Hence, a section assigns
to each x € X a vector in the fiber p~!(z). The set of sections is denoted I'(E), an it
becomes a vector space using pointwise addition and multiplication in the fibers of E. A
collection of sections si,..., sy is linearly independent if the vectors si(x),...,si(z) are
linearly independent in F, for every x € X.

Since vector bundles are locally trivial families of vector spaces, a section of a vector
bundle can be described locally by a vector valued function on the base space. Given a
family of vector spaces, it will be useful to have some criterion to decide when it is trivial

Proposition 1.2.2. Let p : E — X be a family of vector spaces of constant rank n.
Then the family is trivial if and only if there is a linearly independent collection of sections
S1y-+-58n-

Proof. Tt is clear that X x C" has such sections, and any vector bundle isomorphism takes

linearly independent sections to linearly independent sections. Conversely, if s1, ..., s are
linearly independent sections of p : E — X, then the map

p: X xC"— FE (1.1)

(@, A1, An) — D Aisi(z) (1.2)

is an isomorphism on each fiber and hence an isomorphism of vector bundles. O

Given a map ¢ : E — E’ of vector bundles over X, then neither Ker ¢ nor Coker ¢
are necessarily vector bundles. For example, let X = [—1,1] and let £ = 1. Define
¢ : . — FE as multiplication by ¢ on the fibers Ej.

1.3 Operations on vector bundles

There are several canonical constructions that can be applied to vector spaces, and we
expect to extend almost all of them to vector bundles. As we shall see it is not hard to do
this, the only subtle part is how to define the topology that the resulting vector bundles
should carry. We will define these topologies locally, and check continuity also locally.

Direct Sum

Given two vector bundles £ : C" — E; L, X and & :C"— Ey LI '¢ , we consider the
subspace

E1® Ey = {(e1,e2) € E1 x Ey : pi(e1) = pa(e2)}
of Ey x Es, together with the map pg : E1 @ E2 — X defined as pg(e1,e2) = pi(e1). It

is easy to check that we have a vector bundle £® & : C"@®C™ — E, @ E» ", X . Given
local trivializations ¢ : pfl(U) — UxC" and ¢ : pgl(V) — V' xC™, the map p1 X ps :
Ey x EFy — X x X is a vector bundle because ¢1 X ¢ :pl_l(U) pr_I(V) — UxVxXxX
is a local trivialization for E; x Es, and hence p; X po is the pullback along the diagonal
map § : X — X x X. We will call this operation the direct sum or internal Whitney
sum of F1 and FE5. The rules for vector addition and multiplication are the evident ones.
Notice also that the fiber of E1 @ Es over a point x is simply (E1), @ (E2),.
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Cn (Cm

Figure 1.2: Direct sum

External Whitney sum

Given vector bundles £ : C" — E P, X and n:C"—F Ly , we consider EH F :=
E x F as a topological space with the product topology, and the map pHq : E
F — X xY given by (p&Hq)(e, f) = (p(e),q(f)). In this way we have a vector

bundle {Hn : C"C™ — EHF P, X x Y whose fiber over an element (x,y)is E,®F,.

Tensor product
Given two vector bundles ¢ : C" — E 25 X and ¢ : C™ — E' 25 X | consider the set
EQFE ={(z,v) |ze X,ve E,®E.}

Is clear how to the define addition and scalar multiplication in the fibers, but it is not so
clear how to topologize EQE’. Given x € X and U a neighborhood of z over which both are
trivializable. We choose local trivializations ¢ : U x C" — E |, and ¢ UxC" — FE'
We extend by linearity the map ® : U x (C" x C™) — (E x E/)|U,
(u,v@w) — (u, d(u,v) ® ¢ (u, w)). This map is is bijective, since local trivializations are
isomorphisms, and gives linear isomorphisms when restricted to each fiber. Finally we
give (E x F’ )|U the topology induced by this map, with this topology the vector space
operations are continuous.

o
given by sending

1.4 Transition functions
Definition 1.4.1. Given a vector bundle ¢ : C" — FE P, X with local trivializations

p Y (U)o, x Cn

Sl

Ua
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that restrict to vector space isomorphisms ha| B E, = {x} x C™. A transition function
is a map

fap : Ua n Uz — GL(C")
given by fga(x) := hﬁ|Em(ha|E,¢)_1'

Remark 1.4.2. GL(C") is a topological space with the topology inherited as a subspace
of Hom(C",C").

Given trivializing open sets U,,Ug and U, and the associated transition functions, on
the triple intersection they satisfy f,3o fga = fys, this is known as the cocycle condition,
to see this one just has to consider the following diagram

1
ha! hg hg hy
cr B, cn E, cn

Proposition 1.4.3. Given an open cover {Uy} of a connected topological space X, assume
we are given maps
fga Uy N Uﬁ — GL(C”)

that satisfy the cocycle condition. Then there is a complex vector bundle £ : C* — E L
with transition functions fgq.

Proof. Define E = (||, Us x C")/ ~, where for every x € U, n Ug we have (z,v) ~ (z,w)
if and only if w = fgo(x)(v). The cocycle condition implies that fg, = fﬂ_al Thus, if
(z,v) ~ (z,w), v = fop(x)(w), so ~ is symmetric. Transitivity follows in a similar way
and thus ~ is an equivalence relation. Define p: E — X by p([x,v]) = . Then the map
Uy x C" — | |, Uq x C* — E can be factored as

Uy xC" —F

N

E‘Ua

And p: E — X is vector bundle with transition functions f,gz. O

1.5 Paracompact spaces

We will summarize some results about paracompact spaces that we will need in the next
section to classify vector bundles.

Definition 1.5.1. A Hausdorff space X is paracompact if for each open cover {U,} of X
there is a partition of unity {yg} subordinated to it, i.e., there are maps ¢, : X — I
that satisfy the following:

(i) Each ¢, has its support contained in some Ug

(ii) Each z € X has a neighborhood in which only finitely many g are nonzero

(iif) 25 pp=1
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Compact Hausdorff spaces, CW-complexes and metric spaces are all examples of para-
compact spaces.

Definition 1.5.2. An open cover {U,} is locally finite if for any xz € X there is an open
neighbourhood V, such that each Vj3 is a disjoint union of open sets, each contained in
some U,

Theorem 1.5.3. A space X is paracompact if and only if it is a Hausdorff space and
every open cover has a locally finite open refinement.

Proof. See [9, p. 35]. O

Lemma 1.5.4. Let X be a paracompact space. If {U,} is an open cover, there is a
countable open cover {Vg} such that each V3 is a disjoint union of open sets and it is
contained in some {Uy}.

Proof. See [9, p.37]. O

1.6 Classification of vector bundles

Definition 1.6.1. The set of n-dimensional vector subspaces of CF is called the Grasm-
manian, and we denote it by Gr, (CF). It is a topological space with the quotient topology
given by

CFx .. xCh— [] Gra(Ch)

0<n<k

(U1, ey Un) > (U1, oo U )

We also denote by BU(n) := Gr,,(C%) := (>, Gr,,(CF), and define
EU(n) := {(V,v) |V c C* for some k,dimc V = n,ve V}.
The notation EU(n) comes from the unitary group

U(n) = {matrices B € M(n,C)| BB" = Id}.

U(n) is a compact Lie group and the colimit along the inclusion maps A — (61 (1)> ,

denoted by U = colim,, U(n) = | J,,>, U(n), is an infinite-dimensional topological group.
We have a vector bundle 7<:

AC.C" — EU(n) 25 BU(n) =: Gr,(C*®)
(V,u) — V
The vector bundle ’yg is called the tautological vector bundle or also universal bundle.

Every complex vector bundle of rank n is a pullback of &
BU(n) is called the classifying space of complex vector bundles of rank n.
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Proposition 1.6.2. Let p: E — X be a (complex) vector bundle of rank n, where X is
paracompact. There exists a map f: X — BU(n) and an isomorphism of vector bundles
over X so that E = f*EU(n)

Proof. We can assume that p : E — X has trivializations ¢q: p~*(Us) — Uy x V
with {U,} locally finite and countable. Let h,: X — [0, 1] be a partition of unity with
respect to {U,} and define go: E — V by ga‘p_l(Ua) = (hq op) - (M2 © va). , where
my: Uy x V. — V is the projection map, and g, = 0 else. The map g, is continuous
since hg'(0,1] € U,. Choose an isomorphism X,V = C® (I is countable) and define
g =249 E — X,V = C®. Then g is well defined since {U,} is locally finite. We
now claim that g maps each EU(z) isomorphically onto V. This is so since if hq(z) # 0
then for any e € EU(x), g(e) = Xagale) = (Eaha(z)) - maal(e) = m2(pale)) € V. Define
f: B— BU(n) via f(b) = g(EU(z)). We consider the pullback

f*(EU(n)) —— EU(n)

| |

X ——BU(n)
0

Then f*(EU(n)) consists of triples (z,V,v) such that ¢ maps EU(x) isomorphically
onto V € C*. Thus, the map E — f*(EU(n)) given by the isomorphism g: EU(x) =,
V on every fiber E, is an isomorphism of vector bundles.

We need the following lemmas

Lemma 1.6.3. Let X be paracompact. A vector bundle p: E — X x I whose restrictions
over X x [0,t] and over X x [t,1] are trivial is trivial as well.

Proof. Let hy: Ey := E‘(Xx[o,t]) = Xx[0,t]xV and hy: By := E‘(XX[t,l]) = X x[t, 1]

V' be isomorphism to trivial bundles. The maps kg and h; may not agree on F | (Xx (1)) SO

we cannot glue yet them. Define an isomorphism hg1: X x [t,1] x V — X x [t,1] x V
by duplicating the map hohl_lz X x {t} x V on each slice X x {s} x V fort < s <1, and
set hq := hgihi. Then h; is an isomorphism of bundles and agrees with hg on F ‘ (Xx{1))’
We can now glue together hg and hy to get the desired. O

Lemma 1.6.4. For every vector bundle p: E — X x I there is an open cover {Uy} such

that each restriction E‘(U 1) — U, x I is trivial.

Proof. For each x € X, take open neighbourhoods U, with 0 = t) <t} < --- <t =1
such that E| ] U, x [ti—1,t;] is trivial. This can be done since for each (z,t)
x 1—1,07

we can find an open neighbourhood of the form U, x J;, where J; is an open interval,
over which F is trivial; if we then fix « then the collection {J;} covers I and we can take
a finite subcover Ji,...,Jpy1 and choose t; € J; n J;;1; this way E remains trivial over
Uy x [ti—1,t;]. Now, by Lemma 1.6.3, E' is trivial over U, x I. O

Theorem 1.6.5. Let X be paracompact and let p: E — X x I be a vector bundle. Then
E’XX{O} = E‘Xx{l}'
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Proof. By Lemma 1.6.4, take an open cover {U,} of X such that E|(U 1) is trivial.

Assume first that X is compact. Then we can take a cover of the form {U;}? ;. Take a
partition of unity {h;: X — I}]", subordinated to {U;}. For i > 0, set g; = hy +---+ h;
where gg = 0 and g, = 1, let X; = Graph(g;) € X x I be the graph of g; and let p;: E; —
X; be the restriction of F to X. The map X; — X;_; given by (z, g;(x)) — (z, gi—1(x))

is a homeomorphism, and since F | (Uix]) is trivial,
k2

>~

E\Xm(Uixl) o $E|Xi,1m

l l

Xin(UinI)—= X;_1 0 (U; x I)

(UZ'XI)

the dashed arrow in the above diagram exists. Since outside U; , h; equals zero and
we obtain an isomorphism of vector bundles over different base

E|Xme B E‘Xi,lme’

spaces
fi: E,Xi — E|Xi.

O]
The composition f = fj o---o f, is then an isomorphism from E’X = E|X><{1} to

E|X0 - E|Xx{0}'
each V; is a disjoint union of open sets, each of them contained in some U,. This means
that F is trivial over each V; x I. Let {h;: X — I} be a partition of unity subordinated to
{V;}, and set as before g; = hi1+---+h; and p;: E; — X; := Graph(g;) the restriction. As
before we obtain isomorphisms f;: E; = FE;+1. The infinite composition f = fj o foo---
is well defined since for every point, almost all f;’s are the identity. As before f is an
isomorphism from E|Xx{1} to E’Xx{o}'

Assume now X is paracompact. Take a countable cover {V;}; such that

Corollary 1.6.6. A homotopy equivalence of paracompact spaces f: X — Y induces a
bijection f*: VectgY — Vectg X

Proof. If g is a homotopy inverse of f, then f*o ¢* = id* = id and g*o f* = id* =id. O
Theorem 1.6.7. Let X be paracompact. Then the pullback along vS: EU(n) — BU(n)
induces a bijection
[X, BU(n)] = Vect® X
[f]— f*EU(n)

Definition 1.6.8. The vector bundle 4&: C* — EU(n) — BU(n) is called the univer-
sal vector bundle of rank n

The universal vector bundle admits an inner product, induced from an inner product
on C*®. Since every vector bundle of rank n is obtained as a pullback along WS, we deduce
that any vector bundle admits an inner product which is obtained by pulling back the one

C
on v, .

Proposition 1.6.9. Let X be a paracompact space. Then any n-dimensional bundle can
be embedded in a trivial infinite dimensional bundle.
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Proof. See [9, p.29] O

Corollary 1.6.10. If X is compact Hausdorff, any n-dimensional vector bundle can be
embedded in a trivial (finite dimensional) vector bundle.

Proof. For k > n,

Gr,(C*) € Gr, (CM*) < -+ < | ] Gro(CF) = BU(n).

k>n

Since X is compact, the classifying map X — BU(n) factors as

X L G, (C?) -5 Gro(C?) = BU(n)

and by Lemma 1.6.3 for pullbacks we get that f*EU(n) =~ f*FEU(n,d). We thus get

E = *EU(n) —L = EU(n,d) —— Gra(C?) x C4

o

X I Gy (c?)

i.e, an embedding of F in a trivial bundle. O

1.7 Group completion

From now on all our spaces are compact Hausdorff, this includes for example all finite C'W -
complexes. Let X be a connected space. We denote by Vect: X the set of isomorphism
classes of n-dimensional vector bundles over X. We write Vectg = @,,-, Vectg X, where
by convention Vect?c X = x. The direct sum of vector bundles induces an abelian monoid
structure on Vect$ X. We can further extend this by setting, for a non-connected space
X = ||, Xa (a disjoint union of path components), Vect X = [, Vectf X, with the
ordinary abelian monoid structure.

Let A be an abelian monoid. A group completion of A is an abelian group K(A)
together with a map of abelian monoids o = a4: A — K(A) such that for any abelian
group A’ and any map of abelian monoids p: A — A’, there exists a unique map of abelian
groups p: K(A) — A’ that makes commutative the following diagram

A—25 K(A) (1.3)
|
) \LH!E
Al

If K(A) exists is unique up to isomorphism. We construct K (A) for an arbitrary abelian
monoid (A,®). Let F(A) be the free abelian group generated by the elements of A and
let E(A) € F(A) be the subgroup generated by elements of the form a +a' —a@®a’, where
+ = +p(4)- The quotient K(A) := F(A)/E(A) is an abelian group which together with
the obvious map a.: A — K (A) and satisfies the universal property of (1.3). Alternatively
we can define K (A) as follows:
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Let A: A — A x A be the diagonal map. The quotient K(A) = (A4 x A)/A(A)
inherits an abelian monoid structure which has inverses since [a,a] = 0. We think of an
element [a,b] of K(A) as a formal difference a — b where [a,b] = [d/,b] if and only if
a®b =d ®b. Weset ag: A— K(A) by a — [a,0]. Since K(A) is functorial in A, we
get for any map of abelian monoids p : A — B a commutative diagram

A
d
B

If B is an abelian group, ap is an isomorphism so that p := a]_gl o K (p) satisfy the universal
property.

— 24 K(A)
Jarn
X ap

— K(B)

Definition 1.7.1. The K-group of a connected space X is defined as
K(X)=KU(X)= K(Vect$:(X),®)
If X =] ], X, is a disjoint union of path components, we set
K(X) = K(Vect(X)),

By the construction of the group completion, the elements of K(B) can be described
as formal differences [E] — [F] of isomorphism classes of vector bundles. The elements of
K (B) are called virtual vector bundles.

If E is a vector bundle over X, there is n € N and an embedding £ — n . We can
take the orthogonal complement E- of E with respect to n. This is done like the other
operations on vector bundles, Strictly, (—)L is not a functor on finite dimensional vector
spaces but rather a topological functor on finite dimensional vector spaces, embedded in
some ambient vector space. The induced functor on suitable vector bundles is constructed
in the same way as before. It follows that for any E there is an n € N such that E@E+ ~ n.

Suppose that [E] — [F] € K(X), and let G be a vector bundle such that F & G is
trivial. Then

[E] = [F] = [E]+[G] = ([G] = [F]) = [E®G] — [n]

Thus every element in K (X) is of the form [H] —[n]. Suppose [E] = [F] in K(X). Then
([E], [F]) = ([G],|G]) for some G so that E®G ~ F®G. Let G’ be such that GAG’ ~ n.
Then E®n = F @ n. We would like to view all trivial as one (trivial) element. We thus
make the following definition.

Definition 1.7.2. Two vector bundles £ and F' over X are said to be stably equivalent if
there are n,m € N such that E® n =~ FF® m. We denote by ~g the equivalence relation
of stably equivalent vector bundles, and let S Vect$ X = Vectg / =g.

Suppose now X is pointed, i.e, equipped with a map * — X. We obtain an augmen-
tation map € : K(X) — K(x) =~ Z.

Definition 1.7.3. The reduced K -theory of a pointed space (X, ) is defined as:

K(X) = ker(e : K(X) — K(x)).
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The map € : K(X) — K(x) is given by [E] — dim E. It follows that K (X) consists
of elements of the form [E] — [F], where dim E = dim F'.

Remark 1.7.4. The map X —>  gives a natural splitting K (X) =~ K(X) @ Z.

Proposition 1.7.5. Let (X, *) be a pointed compact space. Then S Vect* X is an abelian
group, and there is an isomorphism

SVect* X =~ K(X).

Proof. S Vect* X =~ K (X) is an abelian monoid under direct sum and has inverses since
the isomorphism E @ E+ =~ n implies [E]~! 2 [E+]. The natural surjection

Vectt X — S Vect™ X

is a map into an abelian group. By the universal property of the group completion implies
there exists p in the following diagram which must be also surjective:

Vect: X —2— K(X) — K(X)

In the above diagram, the map K(X) — K(X) is given by [E] — [E] — [dim E].
Recall that the elements in K (X) are of the form [E] — [F] with dim E = dim F. Since
p(n) = 0, we get a factorization of p through the map f: I?(X) — SVect* X given by
[E]—[F] — [E]s—|F]s- The map f is surjective since p is. To prove injectivity of f, we
construct a left inverse. The map Vect* X — K(X) —s K(X) given by [E] — [E]—[n]
respects ~g and hence induces a map j: S Vect* X — K(X). If [E] — [F] € K(X) then
J(f([E] = [F])) = [E] — [n] — ([F] — [n]) since dim E = dim F'. We see that j o f = id,
so f is an isomorphism. O

1.8 Relative K-groups

If X = X'| |X” € CHaus, we have Vect, X = Vect, X’ @ Vect* X”. Since @ is the
coproduct in AbMon and AbGrp, and K is a left adjoint, K(X) = K(X') ® K(X").
Let (—)* be the left adjoint to the forgetful functor CHaus, — CHaus from pointed
compact Hausdorff spaces (and pointed maps) to compact Hausdorff spaces. It is given
by X, = X u {*}. We then have

K(X*) =ker(e: K(X)® K (x) = K(x)) = K(X)
For an inclusion 7 : X’ — X in CHaus we make the following definition
Definition 1.8.1. The relative K-groups of a pair Y € X € CHaus are

K(X,Y)=K(X/Y)

where the base point is taken to be Y /Y

~

We have K (X, ) = K(X;) = K(X), so our definition specializes to the old one in
the degenerate case. Our aim now is to establish an exact sequence of the form

K(X,Y) — K(X) — K(Y)
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1.9 Construction of vector bundles over quotients

We assume Y € X € CHaus is a pair and denote by ¢: X — X /Y the quotient map.
Suppose that p: £ — X is a vector bundle which is trivial over Y. Let « : E’Y =Y xV
be a trivialization and let 7: Y x V' — V be the projection. Define an equivalence relation
on E| by setting e ~ ¢’ if and only if 7(a(e)) = w(a(e’)), and extend this relation by the
identity to F. Let F/a = FE/ ~ be the quotient space and set

p:Ela— XY

by p([e]) = q(p(e)). Note that p is well-defined since if e # ¢/, e ~ €’ only if p(e),p(e’) € Y.
In fact e ~ ¢’ only if they are in a different fiber, which means that we collapsed all the
fibers parametrized by Y into a single fiber. Thus p: E/a — X /Y has a fiber isomorphic
to V over every point. We would like to show that p : E/a — X /Y is in fact a vector
bundle.

Lemma 1.9.1. If E — X is trivial over a closed subspace Y S X, then there exists an
open neighbourhood Y < U € X over which E is still trivial.

Take such an open Y < U and a trivialization (¢1,p2) : B, =+ U x V. Then
this induces a trivialization ¢ : (E/a)|U = (E|U)/a — (U/JY) x V, given by ¢([e]) =
(gp1(e), pa(e)). This is a local trivialization of E//a around Y /Y € X /Y. Around z € X\Y
we have an open neighbourhood U € X\Y so that we can use the same local trivializations
of E — X (restricted to U) to get a trivialization of E/a — X /Y. We deduce that
E/a — XY is a vector bundle.

Lemma 1.9.2. IfY < X is a closed subspace, then any trivialization o E| ~nonY of
a vector bundle p: E — X defines a vector bundle E/a — X /Y on the quotient XY .






Chapter 2

Higher K-theory Groups

We start by introducing some notation and topological constructions in order to define the
higher K-groups of a space and see some properties of them. We have defined K(X) as
the group completion of the abelian monoid of isomorphism classes of vector bundles over
X. K(X) is K%(X) in an infinite sequence of abelian groups K"(X) for n € Z. Our aim is
to see that this sequence defines a cohomology theory in the sense of Eilenberg-Steenrod.

2.1 Notation and basic constructions

Let Top denote the category of compact Hausdorff spaces and Top, the category of
pointed compact Hausdorff spaces. By Top? we denote the category of compact pairs,
that is, the objects are pairs of spaces (X,Y'), where X is compact Hausdorff and Y < X.
There are functors

Top — Top? Top? — Top (2.1)
X — (X, &) (X,Y) — XY (2.2)

where the basepoint in the quotient X /Y is Y/Y. If Y = ¢, then X/ = X is the
space X with a disjoint basepoint.

For a space X in Top we denote by K(X) the group completion of Vectc X and for a
pointed space X in Top, the reduced K-theory group K (X) is

ker(i: K(X) — K(x9)) = Z,

where i* is the map induced by the inclusion of the basepoint i: xg — X. There is a short
exact sequence
0 — keri* = K(X) — K(X) - K(zg) — 0

which has a section ¢* induced by the unique map ¢ : X — xzq. It gives a natural splitting
K(X) ~ K(X)® K(zo). We also have that K(X) = K(X,) for every X in Top. Thus
K (X)) defines a contravariant functor from Top, to abelian groups. For a compact pair
(X,Y), we define K(X,Y) = K(X/Y). So K(—,—) is a contravariant functor from Top?
to abelian groups.

Recall that the smash product of two pointed spaces is defined as the quotient X AY =
X xY/XVvY,where X vY = X x {29} U {x0} x Y is the wedge of X and Y, that is, the
disjoint union glued by the base points.

For a pointed space X in Top, the reduced suspension X is S A X. The n-th reduced
suspension of X is X" X = S" A X.

19
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2.2 Negative K-groups

We use the reduced suspension to define negative K-groups for spaces, pointed spaces and
pairs of spaces.

Definition 2.2.1. For n > 0

K(X)=K(Z"X) for X € Top, (2.3)
K™X,Y)=K(X/)Y)~K(Z"(X/Y)) for (X,Y) € Top? (2.4)
K™(X)=K™"™X,») = K(XE"(X,)) for X € Top, (2.5)
K—"(=), K~"(—,—) and K~"(—) are contravariant functors for every n > 0 from

Top,., Top? and Top respectively, to abelian groups.

Given X in Top. The cone on X is the quotient CX = X x I/X x {0}. The cone CX
has a natural basepoint given by X x {0}, and that defines a functor C' : Top — Top,.
The space CX /X is called the unreduced suspension of X.

If X is a pointed space, we have an inclusion Czg/xo =~ I — CX /X and the quotient
space is obtained by collapsing I in CX /X is the reduced suspension ¥ X. Since [ is a
closed contractible subspace of C X /X, we have that Vectc(CX/X) = Vecte((CX/X)/I).
Hence K(CX/X) =~ K(XX) and K(CX,X) = K(CX/X) ~ K(£X).

For a compact pair (X,Y) we define X U CY to be the space obtained by identifying
Y € X with Y x {1} in CY. There is a natural homeomorphism X u CY /X ~ CY/Y.
Thus, if Y is a pointed space we have that

~

K(XUuCY,X)=K(CY,Y)=~K(ZY) =K ()

2.3 Exact sequences of K-groups

Now we relate the K-groups of a pair (X,Y) with the K-groups of X and Y.

Lemma 2.3.1. Let (X,Y) be a compact pair in Top? and leti: Y — X and j: (X, ) —
(X,Y) be the canonical inclusions. There exists an exact sequence

KX, v) L5 KOx) 25 KO®y)

Proof. The composition (Y, &) — (X, &) AN (X,Y) factors through the zero group
(Y,Y). Applying K yields a commutative diagram

i*oj

K9(X,Y) K°(Y)

KOY,Y) =KoY /Y) =0

So, i* o 7* = 0 and hence im j* < ker¢*. Suppose now that £ € keri*. We can represent
¢ as a difference [E] — [n], where E is a vector bundle over X. Since i*(§) = 0, i*(§) =
[E‘Y] — [»] = 0. So, [E‘Y] = [n] in K°(Y). There is an m > 0 such that then

a: (E@m)|, =n@®m.
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So, we have a vector bundle that is trivial in Y. By Lemma 1.9.2 we have a vector bundle
(E®m/a over X/Y. Now n = [(E® m)/a] — [n — m]. Observe that n lies in K°(X/Y),
since the rank of (E @ m)/a in the component of the basepoint is n + m. So

7 () = [E@m] — [n—m] = [E] — [n] =¢,
Thus keri* < im j*. O

Corollary 2.3.2. Let (X,Y) be a compact pair in Top? and Y in Top,. There is an
exact sequence

KX, v) 25 RO(x) 25 ROy

Proof. We have natural isomorphisms K9(X) ~ K9(X)@® K°(x) and K°(Y) =~ K%(Y) ®
KO(%), thus the following diagram commutes.

KO(X)——— 5 KO%Y)

P
~
—~
~
~
-

KOX,Y)—— K%X) @ KO(x) —— K*(Y) @ K°(x)

KO(x)

The central row and the columns are exact. Now, any element in K°(X,Y) goes to zero
in K%(%) so there is a map K°(X,Y) — K°(X) that makes the diagram commutative.
It is immediate from Lemma 2.3.1 that the required sequence is exact. O

Proposition 2.3.3. Let (X,Y) be a compact pair of spaces and 'Y in Top,. Then there
is a natural exact sequence:

B Yx) 5 R4 y) 2 KO, y) 25 RO(x) 25 ROy)

Proof. We need to check exactness of the three subsequences of three terms. Exactness
of KOX,Y) — K9%X) — K°(Y) is given by Corollary 2.3.2. To prove exactness at
K~Y(Y) — K%X,Y) — K°(X) we consider the pair of spaces (X u CY, X). Applying
Corollary 2.3.2 we get an exact sequence

KX U CY, X) "5 KO(X U CY) -5 RO(X)

QJ: pﬁ: / (2.6)

Since CY is contractible, the quotient map p: X U CY — X /Y induces an isomorphism
on K° and moreover k* o p* = j*, which follows directly from the commutativity of the
diagram

XxX—% xocoy

T

XuCY/CY = XY
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We define the connecting homomorphisms 6 = (p*)~!o m*o ~1. We denote the respective
cones C1Y and CoX to distinguish between them. Now we apply Corollary 2.3.2 to the
pair (X,C1Y u 02X, X U C1Y). We get the exact sequence:

KX uCY uOX, X u(CY)—— KX UCY UCyX)— KX UCLY)

‘ ~

KX U CY U CoX)/CyX)

Using the definition of ¢ given in the previous step, we can check that the composition in
the square on the right is indeed d. For the left part of the diagram we have a square as
follows:

KX UCY UCX, X UCY)—— KYX U C1Y U ChX)

~

KX U C1Y U CyX)/CyX) KoY )Y)
K%(C2X/X) K=(Y)
Pd
EYx)y---—"~

Now, we would like the dashed arrow that makes the diagram commutative to be i* to
conclude the proof. Consider the following diagram

X u Cly U CQX*>C"1Y/Y*>EY

| — I

Oy X/ X +—C1Y (Y ——— Y)Y — XY

|

X

which induces the following commutative diagram,

1Az

KX UC1Y UCyX) +—— KO (C1Y)Y) «+—— K~L(Y)

/ % = TT*

_[?O(CQX/X) E— [?O(Cly U CZY) = kO(CQY/Y) = IN{_I(Y)

K~Y(X) i
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Inserting this diagram into diagram (2.6), we can check that the latter commutes if the
dashed arrow is T* o i*. So in the end, we get an exact sequence

EY(x) 5 BYy) 2 ROX,Y).

Since —i* and i* have both the same kernel and image, we can replace —i* by ¢* and we
still have an exact sequence. This completes the proof. ]

Corollary 2.3.4. If (X,Y) is a compact pair and Y € Top,, then there is a long exact
sequence

S KX S R S K(XY) D KN x) S
LR Y 2 KOXLY) A5 RO(X) L ROy

Proof. Replace in the exact sequence of Proposition 2.3.3 the compact pair (X,Y) by
(X"X,¥X"Y) forn=1,2,... O

Corollary 2.3.5. If (X,Y) is a compact pair, then there is a long exact sequence

—92 i* —92 ) 1 J* -1 i*
S KX S Ky S kYY) D k)
i+ -1 5, 70 i*. 70 i* 70
RN 2 KX, Y) L KOX) S KOY)

Proof. Apply Corollary 2.3.4 to the pair (X,Y}). Recall that IN(*"(XJF) =K "X) O

2.4 K-theory as a cohomology theory

In 1945 Eilenberg and Steenrod introduced an axiomatic approach to cohomology theory
by abstracting the fundamental properties that any cohomology theory should satisfy.

Definition 2.4.1. A cohomology theory h* on Top,, (or any nice subcategory like compact
pairs, pairs of CW- complexes, etc.) is a collection of contravariant functors

K" : Top? - Ab, neZ
where Ab denotes the category of abelian groups, and natural transformations
6" h"o R — b

where R : Top? — Top? is the functor that sends (X,Y) to (Y, &) and f to f|Y, satisfying
the following axioms

(i) Homotopy invariance. If f ~ g, then h"(f) = h"™(g) for every n € Z

(ii) Ezcision. For every pair (X,Y) and U C Y such that the closure U is contained in
the interior Y°, the inclusions (X\U,Y\U) — (X,Y") induces an isomorphism

R(X\U,Y\U) = h"(X,Y), foreveryneZ
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(iii) Ezactness. For every pair (X,Y) in Top? and Top, there is an exact sequence

~

o~ %~
(X U CY) 1o h(X) RAN h"(Y) for every n e Z
where i : Y — X and j: X — X u CY denote the canonical inclusions.

We need the following theorem to show that K-theory is a generalized cohomology
theory.

Theorem 2.4.2 (Bott periodicity I). If X is a compact Hausdorff space, then
K(X) ~ K(3?X).
Proof. See [4] or [9, p.51]. O

Recall that we have defined the negative K-groups in 2.2.1 by

~ ~

K™X) = K(X"X).

Thus, we have an isomorphism 8: K"(X) i>~ K—""2(X) for all n > 0. Since for

any space X € Top we have that K~"(X) = K "(X4), there is also an isomorphism
K™"(X) =~ K " 2(X) in the unreduced case. Thus, for a space X in Top, we can define:

K¥(X):= K°(X), K>+(X):= K~Y(X), for every ne Z.
And similarly, for any pointed space X in Top,,, we define
K™ X)=KX), K*™'(X)=KYX), foreveryneZ.

The results about exact sequences that we have seen can be extended to all the integers.
In particular, we can extend the long exact sequence of Corollary 2.3.5 to an infinite long
exact sequence on the right. Exactness for K* is Corollary 2.3.5 and for K* it follows
from Corollary 2.3.2. The excision axiom follows from K"(X,Y) = K(X/Y).

Theorem 2.4.3. K-theory and reduced K -theory are a generalized cohomology theory and
a reduced cohomology theory respectively.

Corollary 2.4.4. Let X and Y in Top,. Then K "(X vY) =~ K "(X)®K "(Y) for
every n € Z.

Proof. We have pointed inclusions i1: X — X vY and i9: Y — X v Y, and surjections
ri: XvY — Xand ro: Y — X v Y. They satisfy that r; 0 i1 = idx and ro0 is = idy.
So taking K=" we have maps

ri+rd  ~ (3% ,i%)

K™X)®K™(Y) K™MXVvY) 225 K (X)@ K "(Y)

such that (if,45) o (ri 4+ r5) = id, so (if,45) is surjective. To see that it is also injective,

let ¢ € ker(if,4%). Then if(§) = 0 and i5(¢) = 0. Now, consider the pair (X v Y, X) and

apply Corollary 2.3.4. We get an exact sequence
K"XVvY,X)=K"((XvY)/X)=K"Y) KX VvY) - K (X).

Since & € keri], there exists an element n € K—"(Y) such that ry(n) = £ However,
n=1i3or;(n) =i3(&) =0, and therefore n = 0 and £ = 0 too. O
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Corollary 2.4.5. Let (X,Y) in Top? and Y in Top,. IfY is contractible, then
K™X/Y)=~K™™X) for everyn > 0.

Proof. By Corollary 2.3.4, since Y is contractible, then X"Y" is also contractible, thus
K~™(Y) =0 for each n > 0. O

Corollary 2.4.6. Let X and Y in Top, and Y be a retract of X. Then
K™X)~K™X,Y)® K "™(Y)
for every n = 0.

Proof. Since Y is a retract of X, there exists a map r: X — Y such that r o ¢ = idy,
where i denotes the inclusion. Then, i* o r* = id and therefore ¢* is injective. The map ¢
that appears in the long exact sequence in Corollary 2.3.2 factors through the zero map.
Since * is a section, we have split short exact sequences.

i*

3 ~
0— K™X,Y) s K"(X) S (Y) — 0,

So K"(X) =~ K "(X,Y)® K "(Y). O

Corollary 2.4.7. Let X and Y in Top,. Then the projection maps pr1 : X xY — X,
pro: X xY — Y and the quotient map ¢: X xY - X xY/X vY = X AY induce an
isomorphism

K MXxY)2K "X AY)®K ™"(X)®K ™(Y).
for every n = 0.

Proof. The map X — X x Y that sends = to (x,y) and the projection pr; we can see
that X is a retract of X x Y. By Corollary 2.4.6 we have that
K"MXxY)~K™XxY,X)®K "(X).

~

Now, K"(X xY,X) = K(XxY/X). Since Y is a retract of X xY /X, applying Corollary
2.4.6 again, we obtain
K™"MXxY/X)2K "X xY/X,Y)®K"(Y).

Since K™™(X xY/X,Y) =K "™(X vY), we are done. O

By Bott’s periodicity, all of the previous corollaries hold for K™ and K" for ne Z.

2.5 The external product for reduced K-theory

Given two vector bundles £ : C*" — F — X and ¢ : C™ — E' — X, their tensor product
E®E C" — E” — X is well defined and satisfies rank({ ® &) = rank(§) - rank(¢'),
since the product ® is distributive over the sum @. With this operation, K°(X) becomes
a ring. We can define an external product

KA(X)@ K (V)& KO(X xY)
[€1® [n] — [(p1)*E @ (p2)*n]
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Let [¢] € K9(X) and [5] € K°(Y). Then from the following commutative diagram

K9({ag} x V) — KO(X x V) <2 KO(X)

T

KO (x0)

it follows that (p1)*(¢), that lies in K°(X x Y), restricts to zero in K°({xo} x Y). Similarly
(p2)*(n) restricts to zero in K%(X x {yo}). So p¥ (&) - p5(n) restricts to zero in K%(X vY)
and hence, it lies in the kernel of K%(X x Y) — K°(x), which is K°(X vY). By Corollary
2.4.7 there is a split short exact sequence

0— KX AY)— KX xY)— K (X)OKY(Y)~KY(XVvY)—0

Since pi (&) - p5(n) lies in KX x Y) and it is zero in K°(X x Y), it lies in the kernel of
the third map in the above sequence, which is K°(X A Y). So we have defined a map

KX)®K'(Y) » K°(X A Y).

This map is in fact the restriction of the exterior product on K as we can see in the
following diagram;

lle

K'X)®@K'(Y) = (K"X)®K(Y)) ® K'(X) @ K°(Y)

® Z
! ! H I e
KX xY) KX AY) @ K'X) ® K(V) @ Z

lle

The first isomorphism is obtained by using K°(X) = K 9%(X) @ Z, and similarly for
Y, and the isomorphism on the second row is obtained by using Corollary 2.4.7. We can
replace X by ¥"X and Y by ¥™Y in (2.7) to obtain a pairing

K"X)®@K ™Y) > K™ ™XAY)

If X and Y are in Top, we can replace X by X, and Y by Y, in the previous pairing to
obtain a pairing
K"'"X) KT™Y)—>K"""™XAY)

in the unreduced case.

2.6 K-theory groups of the spheres

The sphere S* can be decomposed as the union of the upper and lower hemisphere. Since
each hemisphere is contractible, every vector bundle on S* restricts to a trivial bundle on
cach of the hemispheres. A vector bundle on S* can be determined by a map from the
intersection of the two hemispheres to GL(n, C).

Definition 2.6.1. A clutching function for S* is a map f: S¥~1 — GL(n,C), where
GL(n,C) is the group of n x n invertible matrices with complex coefficients.
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Every clutching function f: S¥~1 — GL(n, C) gives rise to a vector bundle E; over
Sk of rank n. We define

Ef = (D™ x C") Ugk—1xCn (D+ x C"),

where D™ ={(z1,...,2341) € S¥| 2,1 < 0} is the lower hemisphere, and D™ ={(x1,...,74.1) €
Sk |xp 1 = 0} is the upper hemisphere. If 2 € S¥~1, then we identify (z,v) in D™ x C"
with (z, f(z)v) in DT x C". If f is homotopic to g, then E; ~ E,,.

Proposition 2.6.2. There is an isomorphism Vectl(S¥) = [S¥~1 GL(n,C)] for every
n,k=1.

Proof. See [3, p.24]. O
Lemma 2.6.3. The group GL(n,C) is path-connected for every n = 1.

Proof. For n = 1 is trivial since GL(1,C) = C\{0} ~ R?\{0}. Let n > 2 and let M €
GL(n,C). Let J be the Jordan canonical form of M

J=1: . |, whereJ;=|: . 1
0 - J 0 - N

There exists an invertible matrix @ such that M = QJQ~'. For each \; € C, let v;: I —
C be a path from \; to 1 that does not pass through the origin. Let J(¢) be a matrix
obtained from J by replacing A; by «; and multiplying by (1 — ¢) all elements above the
diagonal. Now define the path v: I — GL(n,C) by v(t) = QJ(t)Q~'. This path satisfies
that v(0) = QJ~'Q = M and y(1) = QQ~! = 1 € GL(n, C). O

Corollary 2.6.4. Every complex vector bundle over S is trivial. In particular, K°(S') =~
7.

Proof. By Proposition 2.6.2 , Vect{(S*) =~ [S*~1, GL(1,C)] = [S*¥~1, S1], since GL(1,C) =~
U(1) = S'. The sphere S¥~! is simply connected for & > 2, hence any map S¥~! — S1
factors through the universal cover R — S'. Since R is contractible, any map is homo-
topic to a constant map, and any two constant maps on S L are homotopic because S s
path-connected. Thus [S¥~!, 5] has only one element. O

2.7 The complex K-theory spectrum

Let h* be a reduced cohomology theory. We restrict ourselves to cohomology theories
defined on pointed CW-complexes and we assume that they are additive,i.e, they satisfy

the wedge azxiom:
% (\/ XZ-> ST xa)

iel
We will make use of the following theorem:

Theorem 2.7.1 (Brown representability). FEvery reduced cohomology theory on the cate-
gory of basepointed CW -complezes and base-point preserving maps has the form h"™(K) =
[X, E,] for some Q-spectrum {E,}.
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Proof. See [1, p.406] O

For every n € Z the functor h" satisfies the conditions of the Brown representability
theorem. There is a unique (up to homotopy) pointed connected C'W-complex L, and a
natural equivalence

~

R S5 [X, Ly«

for every pointed connected CW-complex X. Let E, = QL,41, recall that € is right
adjoint to the suspension functor . For any X the suspension is connected, so

FUSX) = [BX, Lsi .
Since h"(X) is a reduced cohomology theory, it (£X) =~ h™(X), so
(X)) = h"YEX) = [BX, Ly s = [X, QLn1] = [X, Enls

where the third isomorphism is given by the adjunction between ¥ and 2. Thus, we
can associate to h* the family of pointed CW-complexes {E),},ecz which for any pointed
CW-complex X satisfies:

[X, Eple = KM X)W EX) = [SX, Bni1ls = [X, Ens1]s.
This implies that there is a homotopy equivalence
E, = QF,,1.

Definition 2.7.2. A spectrum, or an Q-spectrum is a sequence of pointed C'W-complexes
{E, }nez together with homotopy equivalences

e: B, — QF, 1
for every n € Z.
So we have proved the following:

Theorem 2.7.3. Every additive reduced cohomology theory h* on pointed CW -complezes
determines an Q-spectrum {Ey}nez such that h"(X) = [X, E, ]« for every n € Z.

The converse is also true. Let {E),},cz be an Q-spectrum and define
E™(X) = [X, E,).

Then E* is a reduced cohomology theory. It is homotopy invariant and the suspension
isomorphism is given by

(en)s

E"NSX) = [BX, Eni1le = [X, QFni1]s X, Epl« = E™(X)
This also implies that E™(—) takes values in abelian groups since
E™(X) =~ E"2(32X) = [22X, Ensols

and [X2(—), —] is always an abelian group . To prove exactness, consider a pair (X,Y)
and the sequence

vy 45 x4 xouoy.
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This gives an exact sequence

(X UCY, 7], 25 [X, 2] S5 1Y, 2]

for every Z. Taking Z = E, gives the required exact sequence

*

EMX uey) S Brx) B By,
E* is also additive since
E" (\/ X,) =[\/ Xi, En] = [ [[ X, Bule = [  E"(X).
i€l i€l 1€l i€l
So we have proved the following;:

Theorem 2.7.4. If {En}nez is an Q-spectrum, then the functors En defined as En =
E"(X) = [X, Ey]« for every n € Z form an additive reduced cohomology theory on pointed
CW -complexes.

Example 2.7.5. Let G be an abelian group and let K (G, n) be the associated Eilenberg-
MacLane space. This space is characterized (up to homotopy) by the property that
(K (G,n)) = G if k = n and zero if k # n. There is a homotopy equivalence

K(G,n) = QK(G,n +1).

The spaces K(G,n) define an Q-spectrum HG called the FEilenberg-MacLane spectrum
associated to G. It is defined as (HG),, = K(G,n) for n = 0 and zero for n < 0. The
cohomology theory that it describes

HG"(X) = [X,K(G,n)]s = H"(X;G)

for n = 0 corresponds to singular cohomology with coefficients in G, see [8, p.453].

2.8 The spectrum KU

Recall from 1.6.1 that the Grassmannian Gr,,(C¥) consists of all n-dimensional vector sub-
spaces of C¥. The canonical inclusion C* — C**+! that sends (v1,...,v,) to (vi,...,vn,0)
induces maps

i : Gr, (CF) — Gr,, (CHH.

Theorem 2.8.1. Let X € Top. There is a natural bijection [X, BU(k)] = Vectk(X) that
sends f to the pullback f*(ER(C™)).

If we apply Theorem 2.8.1 with k£ + 1 and X = BU(k), we obtain a bijection
[BU(k), BU(k + 1)] = Vectf:™ (BU (k).
So, taking on the right-hand side the vector bundle Ey(C*) @ 1 over BU (k) gives a map

ir : BU(k) — BU(k + 1)
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such that i} (Ey41(C*) = Ep(C*) @ 1. We define BU = colimp{BU (k), i1} as the colimit
of the sequence given by the inclusion maps .

Let d : Vecte(X) — [X,N] be the function that assigns to a vector bundle p: E — X
the function dg : X — N defined as dg(X) = dimp~!(x). The set [X,N] has an abelian
monoid structure defined using the one on N such that d is a map of abelian monoids.
Consider the natural inclusion [X,N] — [X,Z], which is in fact the group completion of
[X,N]. By the universal property of the group completion there is a map d : K°(X) —
[X,Z] and a commutative square

Vectc (X) SN [X, N]
KO(X) - - 5 [x,2]

We will denote K (X) = ker d.
Proposition 2.8.2. There is a split short exact sequence

0— K(X)— K%X) = [X,Z] — 0.
In particular, KO(X) ~ K(X)® [X,Z].

Proof. Let f: X — N. Since X is compact, f(X) is compact in N and hence finite. So
suppose that f(X) = {n{,...,n,}. Then X = X; L --- U X,,, where each X; = f~!(n;).
We define a bundle over X by taking trivial bundles n;, at each X;. This defines a map
¢: [X,N] — Vectc X that satisfies d o ¢ = id. Now, using the universal property of the
group completion, there exists a map @: [X,Z] — K°(X) that satisfies d o % = id. The
map P a section of the map [X,Z] — 0, thus the sequence splits. O

Corollary 2.8.3. If X € Top, is connected, then IA((X) ~ KO(X).

Proof. Consider the following commutative diagram of split short exact sequences

0— s K(X) —— KOX) 45 [X,2] ——0

| |

0—— K%X) —— K°(X) [+, 7Z] 0

where 7: * — X is theA inclusiozl of the basepoint. If X is connected, then i* is an
isomorphism and hence K (X) =~ K%(X). O

Consider the sets Vectf(X) and define for every k = 0

tp: Vecth X — Vect(’grl X (2.8)
[E] — [E® 1] (2.9)

and denote by Vects X = colim{Vectfé X, tx} the colimit of the sequence given by the maps
te.

Proposition 2.8.4. For every X € Top we have that Vects(X) = [A((X)
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Proof. For each k > 0 consider the maps ¢y : Vecth X — K(X) given by ¢([E]) =
[E]—[k] € K(X). Then @p110t,([E]) = @i ([E]) for every k, so by the universal property
of the colimit, there is a map ¢: Vect; X — K (X) and a commutative triangle

Vect(’f: X —— Vects X
| ~
o
K(X)
Since for each vector bundle E there is a vector bundle E’ such that E@® E’ ~ n for some
n, it follows that ¢ is bijective. O
Proposition 2.8.5. For every X € Top there is an isomorphism K(X) ~ [X, BU].

Proof. By Theorem 2.8.1, Vect® X = [X, BU(k)]. The maps t;: Vecth X — Vect(’grl X
and i: BU(k) — BU(k + 1) are compatible with this isomorphism. We get an isomor-
phism after taking colimits

colimy, Vect!: X = colimy[X, BU(k)].

The left hand side is Vects X, which by Proposition 2.8.4 is isomorphic to K (X). Since
X is compact and the maps i, are embeddings, the right-hand side is isomorphic to
[X, colimy, BU (k)] = [X, BU]. O

Corollary 2.8.6. If X € Top, then K°X) = [X,BU x Z]. If X € Top, and X is
connected, then K%(X) =~ [X, BU].
Proof. By Propositions 2.8.2 and 2.8.5 we have
K%(X) ~ IA((X)(—B[X,Z] ~ [X,BU|®[X,Z] ~ [X,BU x Z.
The second part follows from Corollary 2.8.3 and Proposition 2.8.5 O

Corollary 2.8.7. Let X € Top, such that the inclusion i : * — X s a cofibration (e.g ,
if X is a CW-complez). Then K°(X) = [X,BU x Z],.

Proof. We need to show that [ X, BU x Z], is the kernel of the map
KO(X) = [X,BU x Z] 5 [+, BU x Z] = K°(X).

Let j: [X,BU x Z]. — BU x Z] be the natural inclusion. If f € [X, BU x Z], then
i*(j(f)) is zero in [*, BU x Z]. So [X,BU x Z]« < keri*. To prove the converse, let
g € [X,BU x Z] and suppose that i*(j(g)) is zero. Since BU is connected, there is a
homotopy between the basepoint of BU and g;(xg), where xy denotes the basepoint of X.
So we can build a homotopy

a: {xo} x I — BU x Z

between (g1 (), 0) and (x,0), where = is the basepoint of BU. Now consider the following
diagram

Xxﬂnumdxl—gﬂﬁﬁUxZ
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Since * — X is a cofibration, there is a lifting H, giving a homotopy between g(z) =
H(z,0) and H(x,1) which is a pointed map, since H(zg, 1) = a(xg,1) = (x,0). O

The family of spaces Fo, = BU x Z and KUs,4+1 = QBU for n € Z have the property
that
KUy, = QBU = Q(BU x Z) = QKUsy,,.

By Bott’s periodicity (Theorem 2.4.2), we know that K°(X) =~ K°(£2X), hence Corol-
lary 2.8.7 shows that
[X,BU x Z], ~ K°(X) =~ K°(2?X) =~ [X,Q%*(BU x Z)], = [X,0?BU],

for every pointed (CW-complex) X. So KUy, = BU x Z ~ Q2BU = QKU 1.

The sequence { KU, }nez defines an Q2-spectrum called the complez K -theory spectrum,
and hence a reduced cohomology theory by Theorem 2.7.4. If X is a pointed finite C'W-
complex, then I?l?o(X) ~ K9(X).

The existence of a homotopy equivalence BU x Z =~ Q?BU is equivalent to Bott
periodicity.

Theorem 2.8.8 (Bott periodicity I1). There is a homotopy equivalence BU x 7 ~ Q> BU
Proof. See [5]. O

2.9 Acyclic spaces in topological K-theory
An important consequence of the fact that K*is a generalized cohomology theory is the
following;:

Proposition 2.9.1. Ifj: X — Y is an inclusion of cell complexes such that the induced
morphism R N

j5: K"Y) — K"(X)
is an isomorphism for all n, then I?"(Y/X) =0 for alln, i.e, Y/X is K*-acyclic.

Every continuous map between cell complexes is equivalent to an inclusion in the
following sense:

Given any inclusion X i> Y, there exists a cell complex which we denote by Zf ~ Y

and an inclusion X L Z f such that the following diagram commutes

X—>Y

N,

where h is a homotopy equivalence. The quotient Z f/X =: C'f is called the cone of f or
the cofiber of f. More generally, the following proposition holds.

Proposition 2.9.2. If f: X — Y is a continuous map between cell complexes such that
¥ KMY) — K™(X)
s an isomorphism for all n, then IN((Cf) =0 for all n.

There are examples of maps that induce isomorphisms in K*: see [15, p.414] and [17
p. 70].
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2.10 Computation of some K-groups

We compute the complex K-theory groups of RP? and CP"

Proposition 2.10.1. The complex K-theory groups of the real projective plane are;
K'RP?) ~7Z®7)/2, K°(RP?) ~7/2,
KY(RP?) =0, K'(RP?) =0.

Proof. To compute the complex K-theory groups of RP? we start by computing the groups
K*(S5?). Recall the formulas:

K"(X) =~ K"X)®K"(x) (2.10)

(2.11)

We obtain

K(§Y) ~ [S', BU
KO(sh) =

n
@
S

0
©
IS
&
S

(2.13)

(2.14)

KO(s?) =7, K°(S?) =Z@®Z = K°(S?) ® K°(+),
K1(S?) =0, K1(S?) = 0.

We apply the Mayer-Vietoris sequence to compute K*(RP?). See Figure 2.1; denote by
U =D ~ % and by Uy = RP?\{p} ~ S'. Then U; n Uy = S! and U; u Uy = RP?.
We thus have inclusion maps i1: Uy n Uy — Uy ~ * and i9: Uy n Uy — Uy ~ S'. The
inclusion S* 2 S has degree 2, since we have an isomorphism K°(S?) = K°(S!) and the
map KO(SQ) — KO(SQ) induced by the suspension 52 22, 62 has degree 2. The other
inclusion S %  induces KO(Ul) —> KU, A Us), that is, K%(x) = K°(S'), so it must

correspond to multiplication by 0. We can write down the corresponding Mayer-Vietoris
sequence;

Ko(RP?) ——— K%(x) @ K°(S1) KO(sh)

4 JA

K'Y(SY) +— Kl(x)® K(Sh) KY(RP?) =~ K~1(RP?)
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D

a

Figure 2.1: Real projective plane RP?

and by the previous computations we obtain;

7 = <€1 — €2>

N

7Z®7Z/)2 = KY(RP?) YASY/ Z 0

e

Z/2

\ Z 2 Z K'(RP?) =0

Thus,

K'(RPY) ~Z®17/2, K(RP?) =~ 7,/2,
K'(RP?) =0, K'(RP?) =

O]

Proposition 2.10.2. If X is a finite cell complex with n cells, then K*(X) is a finitely
generated group with at most n generators. If all the cells of X have even dimension then

KY(X) =0 and K°(X) is free abelian with one basis element for each cell.

Proof. We show this by induction on the number of cells. The complex X is obtained
from a subcomplex by attaching a k-cell for some k. For the pair (X, Y) we have an exact

sequence K(X/Y) —» K(X) — K*(Y). Since X/Y = S*, we have K(X/Y)

7., and

exactness implies that K*(X) requires at most one more generator than K*(Y). The first
term of the exact sequence K'(X/Y) — K'(X) — K(Y) is zero if all cells of X are of
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even dimension, so induction on the number of cells implies that K!(X) = 0. Then there
is a short exact sequence

0— K'X)Y) — K%(X) — K°(Y) — 0
with K 9(X/Y) = Z. By induction K (Y) is free, so this sequence splits, hence

K'(X)=Z@® K (Y).

O

Corollary 2.10.3. The complex K-theory groups of CP™ are;
K(CP?) =~ 7", (2.15)
K'(CP") =0. (2.16)

Proof. Since the complex projective plane CP™ has a cell structure with one cell in each
dimension 0, 2,4, ---,2n, by Proposition 2.10.2 we are done. [
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Chapter 3

Ko and K; of a Ring

Finitely generated R-modules are vector spaces when R is a field, and these have well
defined notions of basis and dimension. In them, dimension is the only isomorphism
invariant, and therefore the monoid of isomorphism classes of finitely generated R-modules
is isomorphic to the additive monoid N. Taking the group completion of this monoid we
obtain the additive group Z as an algebraic invariant of such modules. For a ring R, not
necessarily a field, this procedure can be done similarly taking the group completion of
isomorphism classes of finitely generated projective R-modules. Projective modules are a
natural generalization of free modules and the starting point of algebraic K-theory. We
shall recall briefly some definitions and properties about them, following [14], but the
reader can also find complete and self contained treatments in the books [2] and [19].

3.1 Projective modules

In this section we assume R is a ring and all our modules are, unless we state the contrary,
left R-modules.

An R-module is called projective if it is a direct summand of a free R-module. If M is
projective, then any R-module isomorphic to M is also projective, and an R-module P is
projective if and only if there exists a free R-module F' and R-linear maps

g
F—P
h

such that g o h = idp. Also, an R-module P is projective if and only if there exists an
R-module @ for which P @ @ is free. We have the following characterization of being
projective by means of maps between modules.

Proposition 3.1.1. The following conditions on a R-module P are equivalent:
(i) P is projective.
(ii) For each diagram of R-linear maps
P

Jj

MT>N—>O

with exact row, there is an R-linear map h: P — M with go h = j.

39
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(iii) Every surjective R-linear map g : M — P has an R-linear right inverse.
(iv) Every short exact sequence or R-linear maps

0— LI Mm% P 40

splits.
Proof. This can be found in [14, p. 53] O

If Fis a free R-module with basis B, each m € F' has a unique expression

m = Z c(b,m)b,

beB
where ¢(b,m) € R and ¢(b, m) = 0 for all but finitely many b € B. For each b € B, the map
b* . F — R
m +— c(b,m)
is called projection to the b-coordinate and is R-linear. This provides a function
()*: B— Hompg(F,R)
br—b*
A projective basis of an R-module M is any function
()*:S — Hompg(M, R)
s — s,
where S € M, and where, for each m € M

(i) s*(m) = 0 for all but finitely many s € S, and

(il) m = > s*(m)s.

seS

We say that such a set S is a generating set of M, and there is also the following charac-
terization of projectivity

Proposition 3.1.2. An R-module P is projective if and only if P has a projective basis.
If P is projective, then every generating set S of P is the domain of a projective basis.

And finally, for finitely generated projective R-modules we have this particularly simple
description:

Proposition 3.1.3. Let P be an R-module and n be a positive integer. The following
conditions are equivalent:

(i) P is projective and generated by n elements.
(ii) P is isomorphic to a direct summand of R™.

(iii) P is isomorphic to the R-module generated by the rows of an idempotent matriz in
M(n, R).

(iv) There exists an R-module Q) with P® @ = R™.
For a proof of Proposition 3.1.3 see [14, p.55]. It will be used thoroughly.
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3.2 The Grothendieck group K,

We denote by Proj R the set of isomorphism classes of finitely generated projective R-
modules. Proj R is an abelian monoid with the direct sum @ operation and the 0-module
as the identity. Like we did in the topological setting with K%(X), we take the group
completion of this monoid.

Definition 3.2.1. Let R be a ring with unit. The Grothendieck group of R is the group
completion of Proj R, and we denote it by Ky(R).

Recall that this group completion can be seen has the quotient F/R where F is the
free abelian group on Proj R and R is the subgroup generated by elements of the form

[P@Q]_[P]_[Q]v P,QEPI‘OJR

If P and @ are finitely generated projective R-modules, we say that P is stably iso-
morphic to @ if for some n € N we have R" @ P =~ R" ® Q. The following assertion is an
immediate consequence of the abstract properties of the group completion

Lemma 3.2.2. Let P and Q be finitely generated projective R-modules. Then [P] = [Q]
if and only if P is stably isomorphic to Q.

Example 3.2.3 (Division rings). Let R be a division ring. Every finitely generated R-
module is a finite-dimensional vector space, thus, for each generator [P] € Ky(R) we have
that [P] = [R"] = n[R], where n is the dimension of P. From this we see that Ky(R)
is generated by [R]. If there exists m € N that satisfies [0] = m[R] = [R™], by Lemma
3.2.2, there exists n € N for which

R"®0=R"®R™
and thus
n =dimp(R"®0) = dimgr(R"®R™) =n+m
Therefore, m = 0 and Ky(R) =~ Z, since [R] does not have finite order in Ky(R) = {[R]).

Given a ring R, the existence of a well defined rank function is crucial in order to have
non-trivial Ky groups, as we shall see in Proposition 3.4.2. By well defined rank function
we mean that R™ ~ R" implies m = n.

Example 3.2.4 (Grothendieck group of the integers). Any finitely generated Z-module
can be decomposed in a direct sum of its torsion and torsion-free part. The torsion-free
part consists of finitely many copies of Z, and its torsion part consists of finitely many
primary cyclic groups. Thus, every finitely generated projective Z-module is torsion-free,
since being projective implies being torsion-free, so Ky(Z) is cyclic and generated by [Z].
Since the rank of a Z-module is well defined, in fact we have that Ko(Z) =~ Z.

Lety : R — S be a ring homomorphism, we can view S as an (R, S)-bimodule by
defining sr = sp(r) for all r € R and s € S. The additive functor S ®g []: pRMod —
sMod, when restricted to finitely generated projective R-modules, maps them to finitely
generated projective S-modules, and then we can define Ko(p) : Ko(R) — Ko(S) by
[P] — [S ®g P]. In particular if P = R™ is a finitely generated free R-module, we have
Ko(o)([R™]) = [S®Rr R"] = [S™], and thus, K is a functor from rings to abelian groups.

One might wonder why we restrict ourselves to finitely generated projective modules
in the construction of the Grothendieck group. The reason is that if we allow countable
generated modules, the Grothendieck group would always be trivial.
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Remark 3.2.5 (Eilenberg swindle). If P is a countably generated projective module over
a non-trivial ring R, and P @ Q is free, then

F:=@(FoQ)

121

is also free, and POF =~ PO ((POQ)®(PO®Q)®...) =2 PO(Q®P)®(Q®P)D...) =
(PEQ)B(POQ)®D: - - = F so we would thus have that P@F ~ F and then [P]+[F] = [F],
leading to [P] = [0] for any P.

3.3 Ky from idempotents

If R is a ring with unit, we denote by M (n, R) the n x n matrix ring over R, and by
GL(n, R) the group of n x n invertible matrices over R. For any n € N, we can consider
the inclusions M (n, R) € M(n+1, R) and GL(n, R) < GL(n + 1, R) given respectively by

aHaO

0 0
|_>a0
¢ 0 1

Notice that the first inclusion is a non-unital ring homomorphism. Taking the colimit
along these inclusions, we define M (R) = | J;_; M (n, R) and GL(R) = |J,~_; GL(n, R).

An idempotent is an element e € R that satisfies e? = e. If e € R is an idempotent, we
can consider the R-module P = Re. This module can be decomposed as R = Re ® R(1—e),
thus, it is projective. Conversely, given a decomposition R = P @ @, there are unique
elements e € P and f € @, such that e+ f = 1 € R. The elements e and f =1 —e
are idempotent, and ef = fe = 0. Thus, we have a bijective correspondence between
idempotent elements of R and decompositions R =~ P @ Q.

If P is a finitely generated projective R-module, we have P@® @ = R" for some n € N.

and

The composition e : R* < P E) R" is an idempotent endomorphism of the ring R",
where « is the projection onto P and f is the inclusion p — (p,0). This idempotent can
be identified with a matrix in M (n, R). The image e¢(R") of e is P @ {0} =~

We denote the set of idempotent elements of M (n, R) by Idem(n, R), and we have

e¢]
Idem(R U Idem(n, R) < M(R)

The block sum of matrices p and ¢ is defined as the matrix

set Idem(R) is closed under the block sum operation, and if e is conjugate to p by u, an
f is conjugate to g by v, we have

e®f=uwav)(p®(udv)™!
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For each class [P] € Proj R, we can associate an idempotent e € Idem(n, R) for some
n. Different idempotent matrices can give rise to to the same isomorphism classes of pro-
jective modules, and to compute Ky(R) from idempotent matrices we need to describe the
equivalence relation between them that corresponds to isomorphism of the corresponding
modules.

Lemma 3.3.1. Let p € Idem(n, R) and q € Idem(m, R). The corresponding finitely gen-
erated projective R-modules, R™p and R™q are isomorphic if and only if we can enlarge
the sizes of p and q (padding with zeroes in the right lower right-hand corner) so that they
have the same size N x N and are conjugate under the group GL(N, R)

Proof. Adding zeroes if necessary, we can assume that p and ¢ are of the same size,
so there exists a matrix v € GL(N, R) such that upu~! = q. Now, right multiplication by
u induces an isomorphism from RV¢q to RVp, Let p € Idem(n, R) and ¢ € Idem(m, R),
assume that a : R"p — R™q is an isomorphism. We can extend a to an R-module
homomorphism R"™ — R™ taking a = 0 on the complementary module R™(1 — p) and
viewing the image R™q as embedded in R™. Similarly, a~! extends to an R-module
homomorphism § : R"™ — R™ that maps to 0 the elements in R"™(1 — ¢). Under this
extensions, « is given by multiplication on the right by an n x m matrix a, and g is given
by multiplication on the right by an m x n matrix b. We have the relations ab = p, ba = q,
1—p

a =pa = aq and b = gb = bp. Thematr1x< b 1—¢

) is invertible, as its square is

1, ® 1,,, and it conjugates p@® 0 to 0 P g, since

1—p a p 0\ (1-—p a _(1-p a 0 ay (0 O
b 1—q/\0 O b 1-q) b 1—-¢q)\0 0) \0 ¢
and the matrix 0 @ ¢ is conjugate to ¢ @ 0 by a permutation matrix. ]

Lemma 3.3.1 allows us to give another description of the Grothendieck group.

Theorem 3.3.2. For any ring R, the monoid Proj R can be identified with the set of
congugation orbits of GL(R) on Idem(R). The semigroup operation is induced by block

o war— (b )

The Grothendieck group Ko(R) is the group completion of this semigroup.

Proof. By Lemma 3.3.1, Proj R is isomorphic to the orbit space Idem(R)/GL(R), now
recall that the group completion is a functorial construction. O

Theorem 3.3.3 (Morita invariance). Let R be a ring. For any positive integer n € N,
there is a natural isomorphism

Ko(R) = Ko(M(n, R))

Proof. 1t follows from Theorem 3.3.2. By the usual identification of M (m, M (n, R)) with
M(m - n, R), is clear that Idem(M (n, R)) = Idem(R) and GL(M (n, R)) = GL(R). O

The Grothendieck functor is continuous in the following sense
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Theorem 3.3.4. Let (Ry)aer, (0ap; Ra — Rg)a<p be a directed system of rings and let
R = liﬂRa be the direct limit of the system. Then

Ky(R) ~ @KO(RQ).
Proof. See [18, p.9] O
We are ready to give our first example of a ring whose Grothendieck group vanishes.

Example 3.3.5 (A ring with vanishing Kjy). We make use of Theorem 3.3.2 to construct
a ring R for which all projective modules are stably isomorphic to one another, and hence,
for which Ko(R) = 0. Let F be a field and let V' be an infinite-dimensional vector space
over F. Consider the ring R = Endp(V). Let p,q € Idem(R), they are idempotents in
M(n, R) for some n € N. Consider p@®1®0 and ¢® 10 in

M(n+2, R) = Endp(F"")®pR =~ Endg(F""?)®pEndp(V) = Endp(V""?) = Endp(V) = R,
Since V is infinite-dimensional, V"2 and V have the same dimension over F. Now
0 < rankp < dimp(V") = ndim(V) = dim(V)

Thus dimV < rank(p@®1®0) < dimV + dim V' and rank((p@® 1@ 0) = dim V. Similarly,
rank(¢®1®0)) = dimV, and

rank(101@1)(p®1®0)) =rank((1 —p)D0D1) =dimV,
rank(191®1)(¢®1@0)) =rank((1 —¢) @0 1) = dim V.

Since p@ 1@ 0 and ¢ ® 1P 0 are idempotent endomorphisms of a vector space with same
rank and corank, they are conjugate. Hence, p@® 1@ 0 = ¢@® 1 ® 0 and hence [p] = [¢] in
Ky(R).

As a result of the characterization by idempotents of Ky we can prove easily the
following assertion.

Proposition 3.3.6. Let R = Ry x Ry be a cartesian product of rings. There is a natural
isomorphism Ko(Rl X Rg) = Ko(Rl) &) K()(RQ)

Proof. There is an isomorphism M (R) =~ M (Ry)x M (Rz) given by (r;;) — (p1(ri5), p2(7ij))-
It sends GL(R; x Rg) to GL(R;) x GL(R2) and Idem(R; x R3) to Idem(R;) x Idem(Ry),
so it induces an isomorphism Ky(R; x Ra) = Ko(R1) x Ko(Rz2).

O

3.4 K, of commutative and local rings

The ring of integers Z is an initial object in the category of rings with unit. For any ring
with unit R , we denote by ¢ : Z — R the unique ring homomorphism which sends 1 € Z
to the unit element of R. It induces a ring homomorphism i, : Ko(Z) — Ko(R). By the
properties of the group completion, i.(Ky(Z)) is the subgroup of Ky(R) generated by all
finitely free R-modules. If V' is an infinite-dimensional vector space over a field F, the ring
R = Endp(V) satisfies R >~ R@® R as R-modules, thus, in this case, i (Ko(Z)) = {0}. In
fact we have seen in Example 3.3.5) that Ko(R) = {0}. The group i.(Ko(Z)) measures in
some sense the non-trivial part of Ko(R).
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Definition 3.4.1. Let R be a ring with unit. The group
I?O(R) = coker iy (Ko(Z)) = Ko(R)/i+(Ko(Z))
is called the reduced Grothendieck group of R

Proposition 3.4.2. Let R be a ring with unit, all of whose finitely generated projective
R-modules are free and which has a rank function; that is R™ =~ R"™ implies n = m. Then
Ko(R) = Z . In particular, Ko(R) = Z if R is a division ring, a principal ideal domain,
a local ring, or Flxy,...,z,] for any field F.

Proof. Consider the function r : Proj R — N induced by the rank, that is, r(R") = n.
This map is well-defined, and it is a semigroup map, since

r(VeWw)=rV)+r(W)

It is an insomorphism because we are assuming that two free modules P and () are
isomorphic if and only if 7(P) = r(Q). Since group completion is a functor, r induces an
isomorphism 7, : Ko(R) — Z. Each of the rings mentioned satisfy the hypothesis. For
division rings we have seen it previously in Example 3.2.3, for principal ideal domains see
[20, p. 638], for local rings see [20, p.887] and for polynomial rings in several variables over
a field, it follows from Quillen-Suslin Theorem, see [19, p. 209]. O

3.5 The Serre-Swan Theorem

Given a compact Hausdorff space X and a vector bundle over X, we prove that the set
of sections I'(X, F) is a finitely generated projective module over the ring of continuous
complex-valuated functions C'(X), and every finitely generated projective C'(X)-module
arises, up to isomorphism, from this construction. This is known as the Serre-Swan theo-
rem. In fact, there is an equivalence between the category of finitely generated projective
modules over C'(X) and the category of complex vector bundles on X (see [23, p.267]).
The group K° of a compact Hausdorff space, and the Grothendieck group of C(X) are
thus isomorphic. This is a nice result that relates topological and algebraic K-theory.

Proposition 3.5.1. The set of sections T'(X, E) of a (complezx) vector bundle E 2 X is
a finitely generated projective module over the ring of continuous complex-valued functions
when X is compact Hausdorff.

Proof. For every point x € X we have a neighborhood U € X and a local trivialization
p 1(U) = U x C" for some n € Zzg. We have functions constant functions e; : U — C"
for 1 < j < n, determined by the standard basis of C". These functions generate the
sections of this vector bundle over the ring of complex-valued continuous functions. By
compactness, we have a finite open covering {U;} of X. If we choose a partition of unit {f;}
subordinated to the finite covering {U;}. Given a section e; corresponding to the open U,
we consider e;j(x) = ej(z) fi(x), this is a section supported in U;, and can be extended to
all X just by defining it as identically zero on X\U;. By construction, these e;; generate
I'(X, E) as a C(X)-module. Thus, I'(X, E) is finitely generated. Now, to see that I'( X, F)
is projective, we choose a set of generators of I'( X, ) as a C(X)-module. Let {s; };?:1 be



46 CHAPTER 3. Ky AND K; OF A RING

this set of generators, we can construct a vector bundle morphism ¢ between the trivial
bundle X x C* =% X and F, by sending

k

(z,v1,...,05) —> Z vjs;(x).
j=1

Since for each z € X, the s;j(z) span p~!(x), the morphism ¢ is surjective on each fiber.
The subbundle defined fiberwise by E! = ker ¢, will be denoted E’. It is locally trivial,
since it is trivial over any open subset where FE is trivial. Now, we must check that

I'(X,E)®I'(X,E)~T(X,X x CF) ~CF

To see this, it suffices to show that E@® E' ~ X x CFk. Choose an hermitian metric on
E and consider also the induced hermitian metric on X x C* that comes from the usual
inner product of C¥. With respect to this metrics, the morphism ¢ has and adjoint ¢*
which satisfies the relation

{pv, w) = (v, p*w)

Since ¢ is surjective on each fiber, ¢* will be injective on each fiber, and its image will
be the orthogonal complement of E& = kerp. Thus, ¢* gives an isomorphism of vector
bundles from E to E't, showing that E® E’' ~ X x CF O

Proposition 3.5.2. If X is a compact Hausdorff space and P is a finitely generated
projective module over R = C(X), then P ~T'(X, E) for some vector bundle E 2 X

Proof. As usual, P® @ =~ R™ for some n. Notice that C'(X)" = C(X,C"), thus, the
elements of P are continuous functions from X to C". We consider the set

E = {(z,v1,...,v,) € X x C" : 3s € P such that s(x) = (v1,...,v,)}

and the map F — X given by p(x,v1,...,v,) = x. Is clear that I'(X, E) = P, so we only

have to check that E & X is a vector bundle. First we check that it is locally trivial. Let
el,...,e" € Psuch that e!(z),...,e"(z) are a basis for each fiber E, = p~!(z) of C". This

elements are vector-valued functions, so we write e’ = (e}, ..., e},). Since they are linearly

independent, we can choose indices 1 < j; < --- < j, < n, so that

1 1 1
€ € €,
e=det | : :
T T T
€ € €,
is distinct from 0 at zz. Similarly, we may choose elements f!,..., f"~" € @ such that

fY(z),..., f""(z) form a basis for the image of Q in C" at x. Notice that the dimen-
sions must be complementary, since P® @ = R" ~ C(X,C"). Now we can consider a
determinant f that we build in a similar way as we did for e. Since the determinants are
continuous, in some neighborhood U of z, both are distinct from zero. At any point y of
this neighborhood e!(y),...,e"(y) are linearly independent, and generate a free submod-
ule of P rank r. Similarly, f}(y),..., f*"(y) are linearly independent and generate a free
submodule of () rank n — r. Now the dimensions imply that these must exhaust P and
@, so both P and @ are trivial over U. O
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3.6 The Bass-Whitehead group K;

Given a ring with unit R, we want to construct another algebraic invariant associated
to this ring. Our invariant should be an abelian group, as is Ko(R). There is a group
that arises in a natural way from the ring R, which is the infinite general linear group
GL(R), and is also strongly related with Ky, as we have seen. This is highly non-abelian,
but we obtain an abelian group K;(R), just by considering the quotient with respect to
the commutator subgroup. It turns out that this commutator subgroup has a very nice
property, it is generated by the infinite elementary matrices. Recall from 3.3 the definitions
of GL(R) and M (R).

Definition 3.6.1. An invertible matrix M € GL(n, R) is called an elementary matriz if
M has the form I +ae;; , where I is the identity matrix, a € R, i # j, and e;; is the matrix
with 1 in the (7, j)-th position and 0 elsewhere. We denote by E(n,R) the subgroup of
GL(n, R) generated by all n x n elementary matrices, and by F(R) the colimit of E(n, R)
with respect to the inclusion GL(n, R) — GL(n + 1, R).

Lemma 3.6.2. The elementary matrices over a ring R satisfy the relations

(1) eij(a) - eij(b) = eij(a + b);

(1) eii(a)  en®) = e(d) - eii(a), Gk andi £

(ii) eij(a) - en(b) - eii(a) ™ - ejr(b) ™ = eix(ab), i, 7,k distinct;
(i11) eij(a) - exi(b) - eii(a) ™ - eri(b) ! = ep;(—ba), i,7,k distinct.

Furthermore, any upper-triangular or lower triangular matriz with 1’s on the diagonal
belongs to E(R).

Proof. It is a matter of multiply and check. For the last assertion, it is known from
linear algebra that any upper or lower triangular matrix can be reduced by elementary
operations to the identity, and these operations correspond to multiplication by elementary
matrices. o

Lemma 3.6.3. For any A € GL(n, R),
(gl AO_1> € E(2n, R)
Proof. 1t follows from Lemma 3.6.2 and the identity

(0 0)=( D) D6 )0 )

The first three factors of the right hand side lie in F(2n, R), and the last factor on the
right lies also in E(2n, R) since

0 a)-G )66 )
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Proposition 3.6.4 (Whitehead’s Lemma). If R is a ring with unit, then
E(R) = [E(R), E(R)] = [GL(R), GL(R)]

Proof. The first equality follows from (éii) of Lemma 3.6.2. To check the second one, we

compute
ABAT'B™! 0\ [(AB 0 A 0 B 0
0 1) \o B'taA')\o A')\o Bl)"

By Lemma 3.6.3 and the first equality, we have
[GL(R),GL(R)] < E(R) = [E(R), E(R)] < [GL(R), GL(R)]
O

Definition 3.6.5. Let R be a ring with unit. The Bass- Whitehead group of R, denoted
by Ki(R), is the group
GL(R)ab = GL(R)/E(R)

Any ring homomorphism ¢ : R — S induces, by entrywise application, a ring ho-
momorphism M (R) — M(S), which restricts to a group homomorphism from GL(R) to
GL(S), and hence from GL(R)ap to GL(S)ap. In this way, we have a functor from rings
to abelian groups, which is called the Bass- Whitehead functor.

The group operation in K7 (R) can be described in two different ways. As a quotient
group, given two invertible matrices A, B € GL(n, R), the product of the corresponding
classes [A] and [B] in K1(R) is just [A]-[B] = [AB]. On the other hand, we can consider

the block sum of A and B,
A 0
A@B—(O B>

Since B@ B !¢ E(R) by Lemma 3.6.3, and the matrices AB and AB @ 1 are identified

in GL(R), we have
A 0\ _(AB 0\ (B! 0
0 B/ \0 1 0 B)’

[A®B]=[(AB®1)(B'@B)] = [AB®1] = [AB].

That is,

One may also intepret K;(R) as the group of canonical forms for invertible matrices
over R under elementary row or column operations (in the usual sense of linear algebra).
For if A € M(n,R), e;j(a)A is the matrix obtained from A by adding a times the j-th
row to the i-th row (an elementary row operation), and Ae;j(a) is the matrix obtained
from A by adding a times the i-th column to the j-th column (an elementary column
operation). Vanishing of K;(R) for instance, would mean that every matrix in GL(R) can
be row-reduced or column-reduced to the identity matrix

Proposition 3.6.6 (Morita invariance). Let R be a ring with unit. For any positive
integer n € N, there is a natural isomorphism

Ki(R) = Ki(M(n, R))
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Proof. Recall that in Theorem 3.3.3 we have seen that GL(M (n, R) =~ GL(R). We must
check that this isomorphism also identifies F(M (n, R)) with E(R). Note that elementary
matrices in M (n, R), when viewed as a matrices in R, are upper triangular, thus, by
Lemma 3.6.2, we have that E(M(n, R)) < E(R). Conversely, the image of the generators
of E(M(n, R)) generate E(R), since it contains all elementary matrices, except the ones
with an entry in some slot of an n x n identity matrix on the diagonal. But if e;j(a) is
such a matrix, then e(;1,);(1) and e;;4n,)(a) are not, and we have the relation

eij(ab) = eip(a)er;(b)eir(a) tey;(b) "
Taking k = i+n and b = 1, we see that E(R) < E(M(n, R)). So we obtain an isomorphism
GL(M(n, R))/E(M(n, R)) — GL(R)/E(R)
O

There are analogues of Theorems 3.3.4 and 3.3.6 for the Bass-Whitehead functor. We
prove below the analogue for the latter.

Proposition 3.6.7. Let R = Ry x Ry be a cartesian product of rings. There is a natural
isomorphism Kl(Rl X Rg) = Kl(Rl) X Kl(Rg)

lle

Proof. Since GL(R; x Ry) = GL(R;) x GL(Rg), this isomorphism maps E(R; x R3) to
E(Rl) X E(RQ) ]

Now we show an example of a ring whose Bass-Whitehead group is trivial.

Example 3.6.8 (A ring with vanishing K). Let V be an infinite-dimensional vector space
over a field F, and let R = Endp(V'). V is isomorphic to an infinite direct sum of copies
of itself. For any A € GL(R), we can form the infinite block sum of A with itself, which
we denote by oo - A.

A
0
0

o o

0
0
w-A= A

It is an element of GL(R). Now, by an Eilenberg Swindle argument, similar to the one we
have seen in Example 3.3.5, the matrices A@® (o0 - A) and (o0 - A) are conjugate. Hence,
the matrix A represents the identity in Ki(R).

3.7 K, of commutative and local rings

Proposition 3.7.1. If R is a commutative ring and R* = GL(1, R) is its group of units,
then the determinant det : GL(n, R) — R* extends to a split surjection GL(R) — R*,
and thus it gives a surjection K1(R) — R*.

Proof. Since det(A@ 1) = det(A), the determinants on GL(n, R) are compatible with the
usual embeddings of GL(n,R) in GL(m, R) for n < m. We obtain an homomorphism
GL(R) — R*, because det(AB) = det(A)det(B). This homomorphism must factor
throught a map GL(R),, — R* since the group of units is commutative. The splitting
is defined by the inclusion R* = GL(1, R) — GL(R). O
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Given a commutative ring R, we denote by SL(n,R) < GL(n,R) the matrices of
determinant 1 in GL(n,R). As in the definitions of GL(R) and E(R), we denote by
SL(R) the colimit of SL(n,R) with respect to the usual inclusion maps. It is called
the special linear group of R. Since elementary matrices have determinant 1, we have
E(R) < SL(R). We denote by SK;(R) the quotient SL(R)/E(R). For fields, we have the

following proposition.

Proposition 3.7.2. If F is a field, then SKi(F) is trivial, i.e, the determinant induces
an isomorphism det : K1 (F) — F*.

Proof. Given a matrix A € GL(n,F) for some n € N. By performing elementary row
operations that only add a multiple of a row to another, we can reduce the matrix A
to a diagonal matrix D = diag(ds,...,d,) = E1A, where the matrix E; € GL(n,F) is
a product of elementary matrices of type e;;(a). Since det(D) = det(E1A) # 0, all the

d
diagonal entries of D are non-zero. Now, consider the matrix < 0” d01>. By Lemma
n
3.6.3, it is in E(2,F), and thus we see that the matrix D,, = diag(1,...,1,d,,d,?!) is in
E(n,F). In the same way

D,y = diag(1,...,1,dy_1dp,d, " d; ' 1) € E(n,F)
Iterating this process we obtain
E2 = D1D2 ce Dn € E(n,F)

with Fo 1A = E9D = diag(d,1,...,1), where d = d1dy . ..d, = det(D) = det(A). Thus,
if A e SL(n,F) we have that A = E['E;' € E(n,F), so SL(n,F) < E(n,F), giving
E(n,F)) = SL(n,F) O

Proposition 3.7.3. Let R be a commutative ring with unit. Then
Ki(R) ~ R*®SK(1,R).

Proof. See [18, p. 64] O
Corollary 3.7.4. IfF is a field, then

K, (F) >~ F*.

More generally, the following theorem holds.

Theorem 3.7.5. Let R be a local ring or an euclidean domain. Then

Ki(R) =~ R™.
Proof. See [18, p.69-74] O

Example 3.7.6 (K of the ring Z/nZ). Let n € N,n # 1, and let p{* - - - p* be the prime
factorization of n. By the Chinese remainder theorem, we have the following isomorphism
of rings.

Z/nZ% = L/pT'Z X - - X L/piF .
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Now, by Theorem 3.6.7,
K\(Z/nZ) = K\(Z/p'Z) @ - - - ® K1 (Z/py* Z).

The rings Z/p;'Z are local with maximal ideal p;Z/p;*Z for each i, and Theorem 3.7.5
gives

K\(Z/nZ) = (Z/p'Z)* @ @ (Z/p}}L)* (3.1)
See [12, p.44] for a concrete description of the groups of units that appear in (3.1) above.






Chapter 4

Higher K-theory and K-acyclic
Rings

In Part I, we have seen that (complex) topological K-theory is a generalized cohomol-
ogy theory associated to the spectrum KU = {BU,QBU, BU,QBU,...}. As topological
groups, we know that U =~ GL(C). One might try to define higher algebraic K-groups for
a ring R using the classifying space of the group GL(R). The classifying space of a topo-
logical group G is the quotient of a weakly contractible space by a free action of G (see [21,
p. 107] for more details). For a discrete group G, its classifying space is a path-connected
topological space whose fundamental groups are trivial, except the first one, 71 (BG) = G.
By results from homology theory of groups (see [6, p.36]), this implies that the homology
of the group G and the singular homology groups of the space BG are isomorphic:

H.(G;A) ~ H.(BG; A)

for all coefficients A. Hence, the correspondence G — BG and X — m1(X) satisfies
m1(BG) =~ G, but in general, it is not true that the classifying space of the fundamental
group of a space X is homotopically equivalent to X. Since, in principle, GL(R) is a
discrete group, all the homotopy groups of B GL(R) are 1, except 71 (BG) = G.

Quillen proposed a construction that associates to a topological space X another space
X T whose fundamental group is that of X, but in which a certain subgroup of 71 (X) has
been “killed”. This construction is known as the plus-construction. It will allow us to
define algebraic K-functors for any ¢ > 1, and we will see that for i = 1 coincides with the
Bass-Whitehead group.

4.1 Quillen’s plus-construction

Recall a group G is called perfect if G, = 0 or equivalently, if G = [G,G]. Any group
has a maximal perfect subgroup which is called the perfect radical and we denote it by
PG. Since commutators are sent to commutators by group homomorphisms, the perfect
radical is preserved by automorphisms, in particular by inner automorphisms, thus it is
a normal subgroup. Note that if G is an abelian group, then [G,G] = 1 and PG = {1},
since for any perfect subgroup S ¢ G we have S =[5, S] = {1}.

Theorem 4.1.1. Let X be a connected CW -complex with basepoint xy chosen from the
0-skeleton. Suppose that Pmi(X) = m1(X), that is, m1(X) is perfect. Then, there exists a
connected CW -complexr X+ and a pointed continuous map q : X — X such that

93



o4 CHAPTER 4. HIGHER K-THEORY AND K-ACYCLIC RINGS

(i) m(X™) = {1};
(ii) s : Hi(X;Z) = H;(X*;Z) for all i € N.
Proof. We can assume that Pmi(X) # {1}. Let {a;}icr be a set of base-point preserving
maps that generate mp(X)
(73 Sl — X
(1,0) = xo

By means of this maps, we adjoin 2-cells to X for each ¢ to obtain
X' = X Ugay {€7}
This space is simply connected since, by the Seifert-van Kampen theorem, we have
m(X') = 7r1(X)/<1 aibier = {1}

Therefore, the Hurewicz map h : m2(X’) — Ha(X') is an isomorphism. Consider the
following diagram associated to the inclusion ¢’ : X — X’

7T2(X/) *}WQ(X/,X) 4)7‘(’1()()

] |

Ho(X") —— Hy(X', X) —— Hy(X)

The first homology group is Hi(X) = 0, since we are assuming that m;(X) is perfect and
71(X)ap = H1(X). By construction, Ho(X’, X) is a free abelian group, generated by the
cells (622). Since j is surjective and the Hurewicz map is an isomorphism, we can choose
maps f3; : S — X’ such that j o h[B;] = (e?). As before, we attach 3-cells €} to X' to
obtain

Xt = X" Ugay {€}

By the Seifert-van Kampen theorem, the fundamental group 71 (X ™) is trivial. Now we
must see that the inclusion ¢ : X < X T is an isomorphism in homology. For this, it
suffices to prove that the relative homology H. (X, X;Z) is trivial. We have a chain
complex of the form

s 0o C3(XT X)L (XL, X) 20—

where the groups C3(X ™, X) and Ca2(X*, X) are free abelian, generated by (ef) and (e?)
respectively. Thus, it suffices to show that d(e?) = (e?). By construction, the boundary
of (e3) is the image of the map S3;, so

joh[Bi] = (ef) € Hy(X', X) = Co(X', X) = Co(X T, X).
Thus, the complex Cy (X, X) is acyclic. O

Recall that the mapping cylinder My of a map f : X — Y is the quotient space of
the disjoint union (X x I) 'Y, obtained by identifying each (z,1) € X x I with f(z)eY
(see [8, p.2])
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Theorem 4.1.2 (Quillen). Let X be a connected CW -complex, with basepoint xg, say,
chosen from the 0-skeleton. Let N be a perfect normal subgroup of m(X). Then, there
exists a connected CW -complex X, depending on N, and a pointed continuous map
q: X — X7 such that

(i) qs : m(X) — m(XT) is the quotient map m (X) — m(X)/N
(ii) s : Hi(X; A) = Hy(X*; A) for any i and for any A, where A is a w1 (X T)-module

(#ii) q is universal up to homotopy, i.e., for any f : X — Y that satisfies (i) and (i1),
there is a unique map g such that

X%Y

A
Ve
x 79
Ve
Xt
with goq ~ f.
Proof. We shall only prove part (i). For part (i7) see [22, p. 18], and for part (iii) see [13,
p.31].
Let p: X — X be the covering space that corresponds to N. We can apply Theorem
4.1.1 with respect to X to form X, since m1(X) = N is perfect.
The space XV is defined as the disjoint union of X' and the mapping cylinder M,
by identifying the copies of X in these two spaces. We have a commutative diagram given
by the inclusion maps

X—— X+

|

M,=X—>X*

By the Seifert-van Kampen theorem, the induced map m1(X) — m(X ™) is surjective
and its kernel is the normal subgroup generated by N. Notice that, since X1 /M, is
homeomorphic to X /X, we have H.(X*, M) = H,(X*,X) =0, so the map X — X+
induces an isomorphism on homology with coefficients in Z. O

Example 4.1.3. Let X be a homology n-sphere, that is, a path-connected space whose
homology groups are

Z fori=0
Hi(X;Z) =<0 fori#0,n forn>1

Z fori=n

Since Hq(X;Z) = m1(X)ap is trivial, the fundamental group m(X) is perfect. The space
X% is simply connected, and H;(X;Z) =~ H;(X;Z) =~ H;(S™;Z) for all i. Since X7 is
simply connected, Hurewicz’s theorem (see [8, p.366]) tells us that X is in fact (n — 1)-
connected and m,(X) =~ H,(XT;Z) ~ Z. If f: S® — X represents a generator of
7 (XT), then f induces isomorphisms in all homology groups since the homomorphism
Js: Hy(S™) — H,(X ™) sends the canonical class to the image of [f] under the Hurewicz
map, and therefore Whitehead’s theorem (see [8, p.346]) implies that f is a homotopy
equivalence. Hence X+ ~ S™.
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4.2 Higher algebraic K-theory

Let R be a ring with unit and let B GL(R) be its classifying space. We know that E(R) is
the perfect radical of GL(R), so we can take the plus-construction of B GL(R) and define

Definition 4.2.1. The algebraic K-groups of R are

K.(R) = m(BGL(R)"), n

\%

1

Any homomorphism of rings with unit f : R — S induces a homomorphism GL(f) :
GL(R) — GL(S), and therefore, a continuous map B GL(R) — B GL(S). We define
K, (f) = m(BGL(f)"). They are covariant functors from the category of rings with unit
to the category of abelian groups. By Theorem 4.1.2; the space B GL(R)" is connected
and

71 (BGL(R)") ~ m (B GL(R))/E(R) =~ GL(R)/E(R)

Thus, K1(R) = m(BGL(R)*") and the Bass-Whitehead group K;(R) given in 3.6.5 co-
incide. So far we have only defined the groups Ky and Kjp, but there are also groups
K5 due to Milnor, which coincide with the corresponding group as defined above, and
therefore suggest that Quillen’s construction is correct. However, for Ky the construction
“fails”, since B GL(R)™ is path connected (for B GL(R) is), and the group mo(B GL(R)™)
has just one element. However, this can be corrected replacing the space B GL(R)' by
Ko(R) x BGL(R)™", where we view K((R) as a topological group with the discrete topol-
ogy. Regardless, we will just consider K; for ¢ > 1 and K, independently. There is
another construction of higher algebraic K-functors for exact categories, known as the
QQ-construction, which is also due to Quillen and does not have this drawback, see for
example [22, p.38] or [25, p. 347].

4.3 K-theory of finite fields

The higher K-theory groups are hard to compute for certain rings, and one of the major
achievements of Quillen, which was also part of his motivation to define the higher K-
groups as we have seen, was his computation of all the K-groups for finite fields. We give
an outline of this computation, assuming the following theorem

Theorem 4.3.1 (Quillen). Let Fy be a finite field, ¢ = 2. There are maps

BGL(F,)" — BU “=% Bu

that induce the following long exact sequence on homotopy groups

T (BU) )

Lml(B QL(F,)") —— 1y (BU) — D% o (BU) - ) (4.1)

Ty (BGL(Fy)) — mo(BU) e

<—> 1 (BGL(F,)*) — m(BU) 2%, o (BU)
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Proof. See [16, p.582]. O
The maps ¥ : BU — BU, k > 0, are called Adams operations, they induce
go’,: : moi(BU) — mo;(BU)
a— k' -a

Proposition 4.3.2. BU =% BU induces m;(BU) L= 1o;(BU).

Proof. Let f and g be two maps from BU to BU:

f

BU___BU
g

Consider their homotopy classes at [BU, BU]. By Bott’s periodicity, [BU, BU]| =
[BU,QU], so there is an homotopy equivalence between BU and QU, which we denote by
h. The loopspace QU is a group with the operation given by concatenation of loops. Now,
for any = € BU, we define (ho f + hog)(x) = (ho f)(z) * (ho f)(x).

f
BU 3 BU ——=QU

—
g

hof+hog

This operation is commutative, since in fact [BU, BU] =~ [BU, Q?BU] is an abelian group.
Recall that for any spaces A, X, we have [X A, X] = [A,QX], and also for any space
X, m(2X) = [S™,QX]. This allows us to define the sum in 7, (X) for any space X, since

Tm(X) = [S™, X] = [S™,QX] = [S™1, QX] = [S"2,0°X], forn>2
So, given a, € m,(2X), the sum « + 3 is defined also as concatenation of paths
(a+ B)(x) = a(z) = B(x) Vo e S"

Now we want to check that (f + ¢)« = f« + g«. Given a € m,(BU), then fi(«) € m,(BU)
is represented by f o «

BU —L . BU
QT foa
S’n

We must check that for every a € m,(BU), the induced maps (f + ¢)«(a) = fx(a) +
g«(a), and for this, it suffices to check that

ho(f+g)oa=(hofoa)+(hogoa)

which is immediate since the sum on the right hand side corresponds to concatenation of
loops in QU. Now ,

(dﬂ)*(a) = qi - a Ya € 7T21(BU)
ld*(a) =a Ya e WQZ(BU)

So finally, (47 —id)«(a) = ¢'a —a = (¢ — 1)a O
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Theorem 4.3.3 (Quillen). For every finite field F, and n > 1, we have

Z/(¢" —1) forn=2i—1,

0 forn even .

K, (Fy) = m(BGL(F)) ") =~ {

Proof. By the long exact sequence (4.1) from Theorem 4.3.1, to compute the first K-
groups of [y, we just replace the maps that appear in the exact sequence (4.2). These are
given by multiplication by (¢* — 1), by Proposition 4.3.2. Recall that

Z  for i even,

7T,L(BU) = .
0 for ¢ odd.

We obtain the exact sequence

oo —— Ky (Fg) —— m4(BU) = Z —— m4(BU) = Z)

L K3(F,) — m3(BU) = 0 —— m3(BU) = 0 >

(4.2)
C—) Ky(Fq) —— m(BU) = Z —— m(BU) = Z >
C—>K1(IE‘4,) ——m(BU)=0——m(BU) =0
Then,
Ky(Fy) =ker(-(¢* = 1) = 0,  K3(F,) = coker(-(¢> — 1)) = Z/(¢° — 1),
Ky (Fq) = ker(-(¢ —1)) =0, Ki(Fq) = coker(-(¢ — 1)) = Z/(¢ — 1).
Now apply induction to finish the proof. ]

4.4 K-acyclic rings

In this section we provide examples of rings for which all K-groups vanish. They are
called infinite sum rings. Their definition is due to Wagoner; see [24]. These rings have
several properties in analogy with Examples 3.3.5 and 3.6.8, where conjugation played an
important role. Recall that a group G is called quasi-perfect if [G, G] is perfect.

Definition 4.4.1. Let G be a quasi-perfect group, and let
®:GxG—=G

be a group homomorphism, which we denote by (g,9') — g ® ¢g’. We say that (G,®) is a
direct sum group if it satisfies

(i) For any finite set g1, ..., g, of elements of [G, G] and any g € G there exist h € [G, G]
such that ggig~! = hg;h~ ' for 1 <i<n
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(ii) For any finite set g1, ..., g, of elements of G there exist elements ¢ and d of G such
that
(g®)c ' =d(l@g)d™!, 1<i<n

A map f: G — G’ is a morphism of direct sum groups if, in addition to being a
homomorphism, satisfies

flo@d)=fl@®fly), VYg9,4€CG

Lemma 4.4.2. Let f : G — G be an automorphism of a discrete group G, such that
for any finite set g1,...,g9x € G there is an element h € G such that f(g;) = hgih™! for
1 <i<k. Then the induced map

s+ Hy(BG) — H.(BG)

1s the identity.

Proof. See [24, p. 352]. O
Definition 4.4.3. A direct sum group (G,®) is called flabby if there exists a homomor-
phism 7 : G — G, such that for any finite set g1,...,9, € G, there is an element c € G
such that

(gi@7(g:))c "t =7(g:), 1<i<n. (4.3)

Proposition 4.4.4. If G be a flabby group, then H,(BG;Z) =0 for alln >0

Proof. The map @ : G x G — @G induces a ring structure on H,(BG;Z), where the
multiplication, denoted by @, is given by

H.(BG;Z) ® Hy(BG;Z) = H,(B(G x G);Z) & H,(BG;Z).

We denote by 1 € Hy(BG; Z) the generator determined by the map of the standard 0-
simplex to the basepoint. This generator is a unit for the multiplication, since for any
z € Hy(BG;Z) the correspondences

z—z2@1 (4.4)
2= 1@®z (4.5)

are induced respectively by the group homomorphisms

g gde (4.6
g—redg (4.7)

The group homomorphisms (4.6) and (4.7) induce the identity on homology, since conju-
gation induces the identity on H.(BG;Z) by [6, Proposition 6.2, p.48]. Now consider the
maps induced by the algebraic diagonal map A and by 7 given below.

A:G—=Gx(qG (4.8)
Ay H (BG;Z) — Hy(BG;Z) ® H.(BG;Z) (4.9)
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7T:G—=G (4.10)
T« : H(BG,Z) — H«(BG;Z) (4.11)

Fix z € H,(BG;Z), which we can assume is represented by a chain >, k; (g%, ..., g%). We
claim that
Tx(2) = @o (id x 75) 0 Ay (2)

The left hand side of this equation is represented by >, ki(7(g}), ..., 7(g%)) and the right
hand side of this equation is represented by Y. ki(g} ® 7(g}), ..., 9% ®7(g%)). Since G is
flabby, these chains are conjugate and therefore, homologous. Now we prove by induction
that Hy(BG;Z) = 0 for n > 0.

Assume that H;(BG;Z) =0 for 0 < i < n, and let z € H,(BG;Z). Then

Nx(2) =z®1+1®z+2ui®vi

where 0 < degu; < n and 0 < degv; < n. By the inductive hypothesis, we know that
u; = v; = 0. Hence

Tu(2) = ®(id X ) Di(2) = 2D 1+ 1D 7w (2) = 2 + T (2)
and therefore z = 0. 0
Proposition 4.4.5. For any ring with unit, the group GL(R) is a direct sum group.

Proof. The group GL(R) is quasi-perfect, since the commutator subgroup [GL(R), GL(R)]
is the group F(R) of elementary matrices, which is perfect by Proposition 3.6.4. The group
GL(n, R) is also quasi-perfect for n > 3

Let P denote the positive integers, we partition P into two disjoint subsets P = P, U P,
and choose bijections a : P — P; and f : P — P. For any A = (a;;) and B = (b;;) in
GL(R), we define

A® B = (¢a(i).a()) - (bae).60))

To check condition (i) in Definition 4.4.1, take g1,...,9, € [GL(R),GL(R)] and let g €
GL(R). Choose an integer k such that g,¢1,...,9, € GL(k, R), now we take

_(9 O
h = <0 gl> € E(2k,R)

O]

Definition 4.4.6. A sum ring is a ring with unit R together elements «ag, a1, 8y, 51 € R
that satisfy the following identities:

apfo = a1 =1

Boao + Prag =1

Given a sum ring R, we can define a ring homomorphism ({ : R x R — R given by
a@lb = Boacg + B1bay, which is a unit-preserving homomorphism.

Proposition 4.4.7. If (R,H) is a sum ring, then GL(R) is a direct sum group with
operation given by A@® B = (ai;) B (bsj).
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Proof. We must check only condition (7i) in definition 4.4.1. To see this it suffices to show
that for A, B € GL(n, R), there is an invertible matrix @ € GL(3n, R) such that

A®B 0 0 A 0 0
Q! 0 10]Q=[0 B 0]|eGL(3n,R).
0 01 0 0 1

We denote by D, (x) the n x n diagonal matrix with = along the diagonal. Just take

Q= 0 0 Dy(a) |,
0 0 Dn (041 )
where
Dn (O[[)) 0 0

O

Definition 4.4.8. Let (R,H) be a sum ring, we say that it is an infinite sum ring if there
exists an identity preserving ring homomorphism o : R — R such that a Ho(a) = o(a)
for any a € R.

Corollary 4.4.9. If (R,H,0) is an infinite sum ring, then B GL(R)" is contractible
Proof. GL(R) is flabby, with

7: GL(R) — GL(R) (4.12)
A = (ai;) = 7(A) = (0(ai;)) (4.13)

By Proposition 4.4.4, the space B GL(R) is acyclic. Thus, by Theorem 4.1.2 the space
BGL(R)* is also acyclic and therefore, contractible. O

4.5 Cone and suspension of a ring

The notion of cone ring will allow us to provide examples of infinite sum rings.
Let R be a ring with unit. Any function f : Nx N — R can be considered as a “N x N-
matrix” Ay with infinitely many rows and columns:

Definition 4.5.1. The ring of infinite matrices with entries in R such that each row and
each column has at most finitely many non-zero entries is called the cone ring of R, and
we denote it by CR. The ideal of matrices with at most finitely many non-zero entries is
denoted by mR < CR. The ring SR = CR/mR is called the suspension of the ring R.

We have the identities CR = CZ ®z R, mR = mZ ®z R and SR = SZ ®yz R for any
ring R with unit.
Let R be a ring (not necessarily with unit) that satisfies the following condition:
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For any finite set a1,...,a, € R, there exists an idempotent r € R so that
ra; =a;r =a;, l1<i<n (4.14)

Any ring with unit satisfies the condition (4.14). If R satisfies (4.14), then mR, CR
and SR also satisfy (4.14).

Let E and F be free R-modules based on countable sets {e,} and {fz} respectively. An
R-linear transformation h : E — F' is called locally finite provided that for each fz there
are at most finitely many e, such that fz appears in h(e,) with a non-zero coefficient.
If h(ea) = > fs - T8a, then h is locally finite if and only if the matrix (r3,) is locally
finite, in the sense that each row and each column or (rg,) has at most finitely many
non-zero terms. The ring of all locally finite transformations of E to itself will be denoted
by Endj,.(E, R). Note that End;,.(FE, R) and End;,.(F, R) are isomorphic if there is a
bijection between the bases {e,} and {fz}.

Proposition 4.5.2. For any ring with unit R, the cone ring CR is an infinite sum ring

Proof. We must construct an identity preserving ring homomorphism ¢ : CR — C'R such
that for any r € CR it satisfies r ® o(r) = o(r). Instead of working with C' R, we identify
the cone with the ring Endj,.(E, R) of locally finite R-linear maps, where F is a free right
R-module with countable basis {e;‘?} and 1 < ¢,j < co. We partition the basis {e;?} into two
disjoint infinite subsets, {ef} = AguA;. Let §5; : {e?} — B;, i = 0,1, be any two bijections
and let 3; € End;,.(E, R) be the corresponding locally finite matrix, i.e, having in each
row and in each column at most finitely many non-zero entries. Define «; € Endjo.(E, R)

for i = 0,1 by
N {Bil(el‘?) if ek e A,,
ai(efy = {19 S

0 otherwise.

This gives us a a sum structure on Endj..(E, R), and hence on the cone CR. The are
many sum structures, but we fix the following one: choose By to be a bijection of {eé“},

1 < j < o, onto {e¥}, and define By by Bl(e?f’) = 6§+1- Let o and a3 be as above. To

make Endj,.(E, R) into an infinite sum ring, recall that £ = @ Ej, where E; is the free
submodule of F spanned by {e?} for 1 < k < 0. Define o : Endj,.(E, R) — Endjo.(E, R)
as follows. Let h € End;,.(F, R) and e;? € E. Then

a(h)(eh) == B] " Bohaoa] ' (eh).
For j = 1 we have

Bohao(ef) = o(h)(e), (4.15)

and for j > 1

Bro(h)ay(el) = Bro(h)(ef | =
= 51(ﬁ{7150h6¥0a{71(6§—1 ) =

)
B Bohaoad (ef) = a(h)(ef). (4.16)

Therefore, h @ o(h) = o(h) for any h € End;,.(E, R). O
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The suspension SR of a ring R is a sum ring because it is the homomorphic image of
CR, but in general it is not an infinite sum ring. The two categories of sum rings and
infinite sum rings are closed under the following operations:

(i) pullbacks of two morphisms;
(ii) forming the monoid ring R[M] where R is a ring and M is a monoid,;
(iii) taking the cone and suspension of a ring.

To show that the algebraic K-groups of a cone ring vanish for all ¢ > 0 we need the
following theorem.

Theorem 4.5.3 (Fundamental theorem of algebraic K-theory). For every ring R there
1s a natural sum decomposition.:

Ki(R[t,t71]) = K1(R) ® Ko(R) @ NK,(R) @ NK{(R),
where NK1(R) is the cokernel of the natural map K1(R) — Ki(R][t]).
Proof. See [25, p.225]. O
Theorem 4.5.4. Let R be a ring with unit. The cone ring CR is K-acyclic, i.e.,
Ki{(CR)=0 Vi=0

Proof. The cone ring C'R is an infinite sum ring by Proposition 4.5.2, and Corollary 4.4.9
implies that K;(CR) = 0 for all i > 0. In particular, K;(CR[t,t"']) = 0 for all i > 0,
since forming the monoid ring of an infinite sum ring is again an infinite sum ring. Now
Theorem 4.5.3 implies that

0 = Ki(R[t,t""]) > K1(CR) ® Ko(CR) ® NK1(CR) ® NK1(CR)
Thus Ko(CR) = 0 and CR is K-acyclic. O

The suspension satisfies the following nice property.

Proposition 4.5.5. If R is a ring with unit, then
Kl(SR) = Kl_l(R) fori=1
We will need the following theorem to prove Proposition 4.5.5

Theorem 4.5.6. Let _
1—>G1L>G2L>G3—>1

be an exact sequence of direct sum groups such that
(i) Gj is perfect
(ii) Gj acts trivially on the homology of G
Then the sequence
BGF 5 BGY 5 BGE

1s a homotopy fibration, where the plus-construction is taken with respect to the commu-
tator subgroup.
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Proof. See [11, p.83] O

Proof of Proposition /.5.5. Recall that for every ring R we have defined SR = CR/mR
where R is the ideal of C R that consists of the matrices that have at most a finite number
of coefficients. There is an exact sequence of rings

0— mR—CR—SR—0

Note that mR is an ideal and C'R and SR are rings. The sequence induces a long exact
sequence of groups

0 —— GL(mR) —— GL(CR) —— GL(SR) (4.17)
0 —— GL(mR) —— E(CR) —> S E(SR) ——0

The map ¢ is not exhaustive but ¢ is, since K;(CR) = 0 implies that GL(CR) = E(CR).
This long exact sequence of groups induces a fibration

BGL(mR) — BGL(CR) — BE(SR)

and the sequence
BGL(mR)* — BGL(CR)" — BE(SR)*

is again a fibration by Proposition 4.5.6. Now BGL(CR)" ~ = since CR is K-acyclic.
Thus
QBE(SR)" ~ BGL(mR)™ = BGLR".

where 2y denotes the connected component of the basepoint and the homotopy equivalence
BGL(mR)t ~ BGL R" follows from the fact mR =~ m(mR).
Then for 7 > 2:

Ki_l(R) = Wi_lB GLR" ~ ﬂi_lgB E(SR)+ = ﬂiB E(SR)+ = KJSR)

where m; BE(SR)* = K;(SR) follows from the fact that BE(SR)" is the universal cover
of BGL(SR)™, i.e, they have the same homotopy groups except 7 ; see [24, p. 357]. Hence
mBE(SR)T =~ m;BGL(SR)™" for all > 2.

For i =1,

Ki1(SR) = m(BGL(SR)" = GL(SR)/E(SR) = Ko(R)
because Ko(R) x BGL Rt ~ QB GL(SR)". See [24, p. 357, Proposition 3.2]. O
This fact provides a definition of

Definition 4.5.7. Let R be a ring with unit. The negative K-groups are
K_i(R) = K{(S*"'R) for i > 0,

where ST1(R) = S(S'R).
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