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Stratonovich conventions
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Abstract

Options are financial instruments designed to protect investors from the stock mar-
ket randomness. In 1973, Fisher Black, Myron Scholes and Robert Merton proposed
a very popular option pricing method using stochastic differential equations within
the Itô interpretation. Herein, we derive the Black-Scholes equation for the option
price using the Stratonovich calculus along with a comprehensive review, aimed to
physicists, of the classical option pricing method based on the Itô calculus. We show,
as can be expected, that the Black-Scholes equation is independent of the interpreta-
tion chosen. We nonetheless point out the many subtleties underlying Black-Scholes
option pricing method.

1 Introduction

An European option is a financial instrument giving to its owner the right
but not the obligation to buy (European call) or to sell (European put) a
share at a fixed future date, the maturing time T , and at a certain price called
exercise or striking price xC . In fact, this is the most simple of a large variety
of contracts that can be more sophisticated. One of those possible extensions
is the American option which gives the right to exercise the option at any
time until the maturing time. In a certain sense, options are a security for the
investor thus avoiding the unpredictable consequences of operating with risky
speculative stocks.

The trading of options and their theoretical study have been known for long,
although they were relative obscure and unimportant financial instruments
until the early seventies. It was then when options experimented an spectacular
development. The Chicago Board Options Exchange, created in 1973, is the
first attempt to unify options in one market and trade them on only a few



stock shares. The market rapidly became a tremendous success and led to a
series of innovations in option trading [1].

The main purpose in option studies is to find a fair and presumably riskless
price for these instruments. The first solution to the problem was given by
Bachelier in 1900 [2], and several option prices were proposed without be-
ing completely satisfactory [3]. However, in the early seventies it was finally
developed a complete option valuation based on equilibrium theoretical hy-
pothesis for speculative prices. The works of Fisher Black, Myron Scholes [4]
and Robert Merton [5] were the culmination of this great effort, and left the
doors open for extending the option pricing theory in many ways. In addi-
tion, the method has been proved to be very useful for investors and has
helped to option markets to have the importance that they have nowadays in
finance [1,3].

The option pricing method obtains the so-called Black-Scholes equation which
is a partial differential equation of the same kind as the diffusion equation. In
fact, it was this similarity that led Black and Scholes to obtain their option
price formula as the solution of the diffusion equation with the initial and
boundary conditions given by the option contract terms. Incidentally, these
physics studies applied to economy have never been disrupted and there still
is a growing effort of the physics community to understand the dynamics
of finance from approaches similar to those that tackle complex systems in
physics [6–10].

The economic ideas behind the Black-Scholes option pricing theory translated
to the stochastic methods concepts are as follows. First, the option price de-
pends on the stock price and this is a random variable evolving with time.
Second, the efficient market hypothesis [11], i.e., the market incorporates in-
stantaneously any information concerning future market evolution, implies
that the random term in the stochastic equation must be delta-correlated.
That is: speculative prices are driven by white noise [6,12]. It is known that
any white noise can be written as a combination of the derivative of the Wiener
process and white shot noise [13]. In this framework, the Black-Scholes option
pricing method was first based on the geometric Brownian motion [4,5], and
it was lately extended to include white shot noise [14,15].

As is well known, any stochastic differential equation (SDE) driven by a state
dependent white noise, such as the geometric Brownian motion, is meaningless
unless an interpretation of the multiplicative noise term is given. Two interpre-
tations have been presented: Itô [16] and Stratonovich [17]. To our knowledge,
all derivations of the Black-Scholes equation starting from a SDE are based
on the Itô interpretation. A possible reason is that mathematicians prefer this
interpretation over the Stratonovich’s one, being the latter mostly preferred
among physicists. Nonetheless, as we try to point out here, Itô framework is
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perhaps more convenient for finance being this basically due to the peculiar-
ities of trading (see Sect. 4). In any case, as Van Kampen showed some time
ago [18] no physical reason can be attached to the interpretation of the SDE
modelling price dynamics. However, the same physical process results in two
different SDEs depending on the interpretation chosen. In spite of having dif-
ferent differential equations as starting point, we will show that the resulting
Black-Scholes equation is the same regardless the interpretation of the mul-
tiplicative noise term, and this constitutes the main result of the paper. In
addition, the mathematical exercise that represents this translation into the
Stratonovich convention provides a useful review, specially to physicists, of
the option pricing theory and the “path-breaking” Black-Scholes method.

The paper is divided in 5 sections. After the Introduction, a summary of the
differences between Itô and Stratonovich calculus is developed in Section 2.
The following section is devoted to explain the market model assumed in
Black-Scholes option pricing method. Section 4 concentrates in the deriva-
tion of the Black-Scholes equation using both Itô and Stratonovich calculus.
Conclusions are drawn in Section 5, and some technical details are left to
appendices.

2 Itô vs. Stratonovich

It is not our intention to write a formal discussion on the differences between
Itô and Stratonovich interpretations of stochastic differential equations since
there are many excellent books and reviews on the subject [13,18–20]. However,
we will summarize those elements in these interpretations that change the
treatment of the Black-Scholes option pricing method. In all our discussion,
we use a notation that it is widely used among physicists.

The interpretation question arises when dealing with a multiplicative stochas-
tic differential equation, also called multiplicative Langevin equation,

Ẋ = f(X) + g(X)ξ(t), (1)

where f and g are given functions, and ξ(t) is Gaussian white noise, that is, a
Gaussian and stationary random process with zero mean and delta correlated.
Alternatively, Eq. (1) can be written in terms of the Wiener process W (t) as

dX = f(X)dt+ g(X)dW (t), (2)

where dW (t) = ξ(t)dt. When g depends on X , Eqs. (1) and (2) have no mean-
ing, unless an interpretation of the multiplicative term g(X)ξ(t) is provided.
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These different interpretations of the multiplicative term must be given be-
cause, due to the extreme randomness of white noise, it is not clear what
value of X should be used even during an infinitesimal timestep dt. According
to Itô, that value of X is the one before the beginning of the timestep, i.e.,
X = X(t), whereas Stratonovich uses the value of X at the middle of the
timestep: X = X(t+ dt/2) = X(t) + dX(t)/2.

Before proceeding further with the consequences of the above discussion, we
will first give a precise meaning of the differential of random processes driven
by Gaussian white noise and its implications. Obviously, the differential of any
random process X(t) is defined by

dX(t) ≡ X(t + dt)−X(t). (3)

On the other hand, the differential dX(t) of any random process is equal (in
the mean square sense) to its mean value if its variance is, at least, of order
dt2 [13]: 〈[dX(t)− 〈dX(t)〉]2〉 = O(dt2). We observe that from now on all the
results of this paper must be interpreted in the mean square sense. The mean
square limit relation can be used to show that |dW (t)|2 = dt [20]. We thus
have from Eq. (2) that

|dX|2 = |g(X)|2dt+O(dt2), (4)

and we symbolically write

dX(t) = O
(

dt1/2
)

. (5)

Let us now turn our attention to the differential of the product of two random
processes since this differential adopts a different expression depending on the
interpretation (Itô or Stratonovich) chosen. In accordance to Eq. (3), we define

d(XY ) ≡ [(X + dX)(Y + dY )]−XY. (6)

This expression can be rewritten in many different ways. One possibility is

d(XY ) =

(

X +
dX

2

)

dY +

(

Y +
dY

2

)

dX, (7)

but it is also allowed to write the product as

d(XY ) = XdY + Y dX + dXdY. (8)
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Therefore, we say that the differential of a product reads in the Stratonovich
interpretation when

d(XY ) ≡ XSdY + YSdX, (9)

where

XS(t) ≡ X(t+ dt/2) = X(t) + dX(t)/2, (10)

and similarly for YS(t). Whereas we say that the differential of a product
follows the Itô interpretation when

d(XY ) ≡ XIdY + YIdX + dXdY, (11)

where

XI(t) ≡ X(t), (12)

and YI(t) ≡ Y (t). Note that Eq. (9) formally agrees with the rules of calcu-
lus while Eq. (11) does not. Note also that Eqs. (9) and (11) can easily be
generalized to the product of two functions, U(X) and V (X), of the random
process X = X(t). Thus

d(UV ) = U(XS)dV (X) + V (XS)dU(X), (13)

where XS is given by Eq. (10), and dV (X) = V (X + dX) − V (X) with an
analogous expression for dU(X). Within Itô convention we have

d(UV ) = U(X)dV (X) + V (X)dU(X) + dU(X)dV (X). (14)

Let us now go back to Eq. (1) and see that one important consequence of
the above discussion is that the expected value of the multiplicative term,
g(X)ξ(t), depends on the interpretation given. In the Itô interpretation, it is
clear that 〈g(X)ξ(t)〉 = 0 because the value of X (and, hence the value of
g(X)) anticipates the jump in the noise. In other words, g(X) is independent
of ξ(t). On the other hand, it can be proved that within the Stratonovich
framework the average of the multiplicative term reads g(X)g′(X)/2 where
the prime denotes the derivative [20]. The zero value of the average 〈g(X)ξ(t)〉
makes Itô convention very appealing because then the deterministic equation
for the mean value of X only depends on the drift term f(X). In this sense,
note that any multiplicative stochastic differential equation has different ex-
pressions for the functions f(X) and g(X) depending on the interpretation
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chosen. In the Stratonovich framework, a SDE of type Eq. (2) can be written
as

dX = f (S)(XS)dt+ g(S)(XS)dW (t), (15)

where XS = X + dX/2. In the Itô sense we have

dX = f (I)(XI)dt+ g(I)(XI)dW (t), (16)

where XI = X . Note that f (S) and f (I) are not only evaluated at different val-
ues ofX but are also different functions depending on the interpretation given,
and the same applies to g(S) and g(I). One can easily show from Eq. (10) and
Eqs. (15)-(16) that, after keeping terms up to order dt, the relation between
fS and fI is [20]

f (I)(X) = f (S)(X)− 1

2
g(S)(X)

∂g(S)(X)

∂X
, (17)

while the multiplicative functions g(S) and g(I) are equal

g(I)(X) = g(S)(X). (18)

Conversely, it is possible to pass from a Stratonovich SDE to an equivalent
Itô SDE [20]. Note that the difference between both interpretation only affects
the drift term given by the function f while the function g remains unaffected.
In addition, we see that for an additive SDE, i.e., when g is independent of
X , the interpretation question is irrelevant.

Finally, a crucial difference between Itô and Stratonovich interpretations ap-
pears when a change of variables is performed on the original equation. Then
it can be proved that, using Stratonovich convention, the standard rules of
calculus hold, but new rules appear when the equation is understood in the
Itô sense. From the point of view of this property, the Stratonovich criterion
seems to be more convenient. For the sake of completeness, we remind here
what are the rules of change of variables in each interpretation. Let h(X, t) be
an arbitrary function of X and t. In the Itô sense, the differential of h(X, t)
reads [20]

dh =
∂h(X, t)

∂X
dX +

[

∂h(X, t)

∂t
+

1

2
g2(X, t)

∂2h(X, t)

∂X2

]

dt, (19)
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whereas in the Stratonovich sense, we have the usual expression [20]

dh =
∂h(XS, t)

∂XS

dX +
∂h(XS, t)

∂t
dt, (20)

where
∂h(XS , t)

∂XS
=

∂h(X, t)

∂X

∣

∣

∣

∣

∣

X=XS

,

and XS is given by Eq. (10).

Equation (19) is known as the Itô’s lema and it is extensively used in mathe-
matical finance books [12,21–25].

The information on the properties of the Itô and Stratonovich interpretation
of SDE contained in this brief summary is sufficient to follow the derivations
of the next sections.

3 Market model

Option pricing becomes a problem because market prices or indexes change
randomly. Therefore, any possible calculation of an option price is based on a
model for the stochastic evolution of the market prices. The first analysis of
price changes was given one hundred years ago by Bachelier who, studying the
option pricing problem, proposed a model assuming that price changes behave
as an ordinary random walk [2]. Thus, in the continuum limit (continous
time finance [25]) speculative prices obey a Langevin equation. In order to
include the limited liability of the stock prices, i.e., prices cannot be negative,
Osborne proposed the geometric or log-Brownian motion for describing the
price changes [26]. Mathematically, the market model assumed by Osborne
can be written as a stochastic equation of type Eq. (2):

dR(t) = µdt+ σdW (t), (21)

where R(t) is the so-called return rate after a period t. Therefore, dR(t) is
the infinitessimal relative change in the stock share price X(t) (see Eq. (22)
below), µ is the average rate per unit time, and σ2 is the volatility per unit time
of the rate after a period t, i.e., 〈dR〉 = µdt and 〈(dR−〈dR〉)2〉 = σ2dt. There
is no need to specify an interpretation (Itô’s or Stratonovich’s) for Eq. (21)
because σ is constant and we are thus dealing with an additive equation. The
rate is compounded continuously and, therefore, an initial price X0 becomes
after a period t:

X(t) = X0 exp[R(t)]. (22)
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This equation can be used as a change of variables to derive the SDE for X(t)
given that R(t) evolves according to Eq. (21). However, as it becomes multi-
plicative, we have to attach the equation to an interpretation. Indeed, using
Stratonovich calculus (see Eq. (20)), it follows that X(t) evolves according to
the equation

dX = µXSdt+ σXSdW (t), (23)

where XS = X + dX/2. In the Itô sense (see Eq. (19)), the equation for X(t)
becomes

dX =
(

µ+ σ2/2
)

Xdt+ σXdW (t). (24)

Therefore, the Langevin equation for X(t) is different depending on the sense
it is interpreted. The main objective of this paper is to show that no matter
which equation is used to derive the Black-Scholes equation the final result
turns out to be the same.

Before proceeding further, we point out that the average index price after a
time t is 〈X(t)〉 = X0 exp(µ + σ2/2)t, regardless the convention being used.
In fact, the independence of the averages on the interpretation used holds for
moments of any order [18–20].

4 The Black-Scholes equation

There are several different approaches for deriving the Black-Scholes equation
starting from the stochastic differential equation point of view. These different
derivations only differ in the way the portfolio (i.e., a collection of different
assets for diversifying away financial risk) is defined [4,25,27,28]. In order to get
the most general description of the concepts underlying in the Black-Scholes
theory, our portfolio is similar to the one proposed by Merton [27], and it
is based on one type of share whose price is the random process X(t). The
portfolio is compounded by a certain amount of shares, ∆, a number of calls, Ψ,
and, finally, a quantity of riskless securities (or bonds) Φ. We also assume that
short-selling, or borrowing, is allowed. Specifically, we own a certain number
of calls worth ΨC dollars and we owe ∆X+ΦB dollars. In this case, the value
P of the porfolio reads

P = ΨC −∆X − ΦB, (25)

where X is the share stock price, C is the call price to be determined, and B
is the bond price whose evolution is not random and is described according to
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the value of r, the risk-free interest rate ratio. That is

dB = rBdt. (26)

The so-called “portfolio investor’s strategy” [22] decides the quantity to be
invested in every asset according to its stock price at time t. This is the
reason why the asset amounts ∆,Ψ, and Φ are functions of stock price and
time, although they are “nonanticipating” functions of the stock price. This
somewhat obscure concept is explained in the Appendix A. All derivations of
Black-Scholes equation assume a “frictionless market”, that is, there are no
transaction costs for each operation of buying and selling [4].

According to Merton [27] we assume that, by short-sales, or borrowing, the
portfolio (25) is constrained to require net zero investment, that is, P = 0 for
any time t [29]. Then, from Eq. (25) we have

C = δnX + φnB, (27)

where, δn ≡ ∆/Ψ and φn ≡ Φ/Ψ are respectively the number of shares per
call and the number of bonds per call. As we have mentioned above, δn and
φn are nonanticipating functions of the stock price (see Appendix A). Note
that Eq. (27) has an interesting economic meaning, since tells us that having a
call option is equivalent to possess a certain number, δn and φn, of shares and
bonds thus avoiding any arbitrage opportunity [29]. Equation (27), which is
called “the replicating portfolio” [12,22,23], is the starting point of our deriva-
tion that we separate into two subsections according to Itô or Stratonovich
interpretations.

4.1 The Black-Scholes equation derivation (Itô)

We need first to obtain, within the Itô interpretation, the differential of the
call price C. This is done in the Appendix B and we show there that

dC = δdX + φdB +Xdδn +Bdφn +O(dt3/2), (28)

where the relationship between δ, φ and δn, φn is given in Appendix A (cf.
Eq. (A.1)). We assume we follow a “self-financing strategy” [28], that is, vari-
ations of wealth are only due to capital gains and not to the withdrawal or
infusion of new funds. In other words, we increase [decrease] the number of
shares by selling [buying] bonds in the same proportion. We then have (see
Appendix A for more details)

Xdδn = −Bdφn, (29)
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and Eq. (28) reads

dC = δdX + φdB. (30)

Moreover, from Eqs. (26)-(27) one can easily show that

φdB = r(C − δX)dt+O(dt3/2),

(cf. Eq. (5) and Eq. (A.1) of Appendix A). Therefore,

dC = δdX + r(C − δX)dt+O(dt3/2). (31)

On the other hand, since the call price C is a function of share price X and
time, C = C(X, t), and X obeys the (Itô) SDE (24), then dC can be evaluated
from the Itô lemma (19) with the result

dC =

(

∂C

∂t
+

1

2
σ2X2 ∂

2C

∂X2

)

dt+
∂C

∂X
dX. (32)

Substituting Eq. (31) into Eq. (32) yields

(

δ − ∂C

∂X

)

dX =

[

∂C

∂t
− r(C − δX) +

1

2
σ2X2 ∂

2C

∂X2

]

dt. (33)

Note that this is an stochastic equation because of its dependence on the
Wiener process enclosed in dX . We can thus turn Eq. (33) into a deterministic
equation that will give the call price functional dependence on share price and
time by equating to zero the term multiplying dX . This, in turn, will determine
the “investor strategy”, that is the number of shares per call, the so called
“delta hedging”:

δ =
∂C(x, t)

∂x
. (34)

The substitution of Eq. (34) into Eq. (33) results in the Black-Scholes equation:

∂C

∂t
= rC − rx

∂C

∂x
− 1

2
(σx)2

∂2C

∂x2
. (35)

A final observation, in Eqs. (34)-(35) we have set X = x, since, as explained
above, Eq. (35) gives the functional dependence of the call price C on X and
t regardless whether the share price X is random or not.
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4.2 The Black-Scholes equation derivation (Stratonovich)

Let us now derive the Black-Scholes equation, assuming that the underly-
ing asset obeys the Stratonovich SDE (23). In the Appendix B we present
part of this derivation using the concept of nonanticipating function within
the Stratonovich interpretation. Nevertheless, here we perform an alternative
derivation that uses the Itô interpretation as starting point. We thus begin
with Eq. (31) that we write in the form

dC = δ(X, t)dX(t) + r [C(X, t)− δ(X, t)X ] dt+O(dt3/2). (36)

Now, we have to express the function δ within Stratonovich interpretation.
Note that X = XS − dX/2. Hence δ(X, t) = δ(XS − dX/2, t), whence

δ(X, t) = δ(XS, t)−
1

2

∂δ(XS , t)

∂XS

dX +O(dX2). (37)

Analogously C(X, t) = C(XS, t)+O(dX). Therefore, from Eqs. (36)-(37) and
taking into account Eq. (4) we have

dC = δ(XS, t)dX +

[

rC(XS, t)− rXSδ(XS, t)

− 1

2
σ2X2

S

∂δ(XS , t)

∂XS

]

dt+O(dt3/2). (38)

On the other hand, dC will also be given by Eq. (20)

dC =
∂C(XS, t)

∂t
dt+

∂C(XS , t)

∂XS
dX, (39)

From these two equations we get

[

δ(XS, t)−
∂C(XS , t)

∂XS

]

dX =

[

∂C(XS, t)

∂t
− rC(XS, t)

+ rXSδ(XS, t) +
1

2
σ2X2

S

∂δ(XS , t)

∂XS

]

dt. (40)

Again, this equation becomes non-stochastic if we set

δ(XS, t) =
∂C(XS , t)

∂XS
. (41)
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In this case, the combination of Eqs. (40)-(41) agrees with Eq. (35). Although
the call price is evaluated at a different value of the share price, this is irrele-
vant for the reason explained right after Eq. (35). Therefore, the Stratonovich
calculus results in the same call price formula and equation than the Itô cal-
culus.

We have used the stochastic differential equation technique in order to derive
the option price equation. However, this is only one of the possible routes.
Another way, which was also proposed in the original paper of Black and Sc-
holes [4], uses the Capital Asset Pricing Model (CAPM) [30] where, adducing
equilibrium reasons in the asset prices, it is assumed the equality of the so-
called “Sharpe ratio” of the stock and the option respectively. The Sharpe
ratio of an asset can be defined as its normalized excess of return, therefore
CAPM assumption applied to option pricing reads [25]

α− r

σ
=

αC − r

σC

,

where α = 〈dX/X〉, σ2 = Var(dX/X), αC = 〈dC/C〉, and σ2
C = Var(dC/C).

From this equality it is quite straightforward to derive the Black-Scholes equa-
tion [4,25]. As remarked at the end of Sect. 3, moments are independent of
the interpretation chosen, we thus clearly see the equivalence between Itô and
Stratonovich calculus for the Black-Scholes equation derivation.

4.3 The Black-Scholes formula for the European call

For the sake of completeness, let us now finish the paper by shortly deriving
from Eq. (35) the well-known Black-Scholes formula. Note that the Black-
Scholes equation is a backward parabolic differential equation, we therefore
need one “final” condition and, in principle, two boundary conditions in order
to solve it [31]. In fact, Black-Scholes equation is defined on the semi-infinite
interval 0 ≤ x < ∞. In this case, since C(x, t) is assumed to be sufficiently
well behaved for all x, we only need to specify one boundary condition at
x = 0 (see [24] and [31]), although we specify below the boundary condition
at x = ∞ as well.

We also note that all financial derivatives (options of any kind, forwards,
futures, swaps, etc...) have the same boundary conditions but different initial
or final condition [23]. Let us first specify the boundary conditions. We see
from the multiplicative character of Eq. (2) that if at some time the price X(t)
drops to zero then it stays there forever. In such a case, it is quite obvious
that the call option is worthless:

C(0, t) = 0. (42)
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On the other hand, as the share price increases without bound, X → ∞, the
difference between share price and option price vanishes, since option is more
and more likely to be exercised and the value of the option will agree with the
share price, that is,

lim
x→∞

C(x, t)

x
= 1. (43)

In order to obtain the “final” condition for Eq. (35), we need to specify the
following two parameters: the expiration or maturing time T , and the striking
or exercise price xC that fixes the price at which the call owner has the right
to buy the share at time T . If we want to avoid arbitrage opportunities, it
is clear that the value of the option C of a share that at time T is worth x
dollars must be equal to the payoff for having the option [2]. This payoff is
either 0 or the difference between share price at time T and option striking
price, that is, max(x − xC , 0). Hence, the “final” condition for the European
call is

C(x, t = T ) = max(x− xC , 0). (44)

In the Appendix C we show that the solution to the problem given by Eq. (35)
and Eqs. (42)-(44) is

C(x, t) = xN(d1)− xCe
−r(T−t)N(d2), (45)

(0 ≤ t ≤ T ), where

N(z) =
1√
2π

z
∫

−∞

e−u2/2du,

is the probability integral,

d1 =
ln(x/xc) + (r + σ2/2)(T − t)

σ
√
T − t

,

and
d2 = d1 − σ

√
T − t.

5 Conclusions

We have updated the option pricing theory from the point of view of a physi-
cist. We have centered our analysis of option pricing to the Black-Scholes
equation and formula for the European call, extensions to other kind of op-
tions can be straightforward in many cases and are found in several good
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finance books [21–25]. We have reviewed Black-Scholes theory using Itô cal-
culus, which is standard to mathematical finance, with a special emphasis in
explaining and clarifying the many subtleties of the calculation. Nevertheless,
we have not limit ourselves only to review option pricing, but to derive, for the
first time to our knowledge, the Black-Scholes equation using the Stratonovich
calculus which is standard to physics, thus bridging the gap between mathe-
matical finance and physics.

As we have proved, the Black-Scholes equation obtained using Stratonovich
calculus is the same as the one obtained by means of the Itô calculus. In
fact, this is the result we expected in advance because Itô and Stratonovich
conventions are just different rules of calculus. Moreover, from a practical
point of view, both interpretations differ only in the drift term of the Langevin
equation and the drift term does not appear in the Black-Scholes equation and
formula. But, again, we think that this derivation is still interesting and useful
for all the reasons explained above.
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A Nonanticipating functions and self-financing strategy

The functionals φn and δn representing normalized asset quantities are nonatic-
ipating functions with respect to the stock price X . This means that these
functionals are in some way independent of X(t) implying a sort of causality
in the sense that unknown future stock price cannot affect the present port-
folio strategy. The physical meaning of this translated to financial markets is:
first buy or sell according to the present stock price X(t) and right after the
portfolio worth changes with variation of the prices dX , dB, and dC. In other
words, the investor strategy does not anticipate the stock price change [3,23].
Therefore, in the Itô sense, the functionals δn and φn representing the number
of assets in the portfolio solely depend on the share price right before time t,
i.e., they do not depend on X(t) but on X(t− dt) = X − dX . That is,

δn(X, t) ≡ δ(X − dX, t), (A.1)
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and similarly for φn (recall that all equalities must be understood in the mean
square sense explained in Sect. 2).

The expansion of Eq. (A.1) yields (see Eq. (5))

δn(X, t) = δ(X, t)− ∂δ(X, t)

∂X
dX +O(dt),

but from the Itô lema (19) we see that

∂δ(X, t)

∂X
dX = dδ(X, t) +O(dt),

and finally

δn(X, t) = δ(X, t)− dδ(X, t) +O(dt). (A.2)

Analogously,

δ(X, t) = δn(X, t) + dδn(X, t) +O(dt), (A.3)

and a similar expresion for φ(X, t).

As to the self-financing strategy, Eq. (29), we observe that δ(X, t+ dt) is the
number of shares we have at time t + dt, while δ(X − dX, t) is that number
at time t. Therefore,

X(t)dδ(X − dX, t) = [δ(X, t + dt)− δ(X − dX, t)]X(t)

is the money we need or obtain for buying or from selling shares at time t.
Analogously, B(t)dφ(X − dX, t) is the money, needed or obtained at time t,
coming from bonds. If we follow a self-financing strategy, both quantities are
equal but with different sign, i.e.,

X(t)dδ(X − dX, t) = −B(t)dφ(X − dX, t) (A.4)

which agrees with Eq. (29).

B The differential of the option price

Let us derive the differential of the call price, dC, using either Itô and Stratono-
vich interpretations. The starting point for both derivations is the replicating
portfolio, Eq. (27),

C(X, t) = X(t)δn(X, t) +B(t)φn(X, t). (B.1)

15



Taking into account the Itô product rule Eq. (11), we have

dC = [δn(X, t) + dδn(X, t)]dX + [φn(X, t) + dφn(X, t)]dB

+X(t)dδn(X, t) +B(t)dφn(X, t),

which, after using Eq. (A.3), reads

dC = δ(X, t)dX + φ(X, t)dB+X(t)dδn(X, t)

+B(t)dφn(X, t) + O(dt3/2),

and this agrees with Eq. (28).

Within the Stratonovich calculus, the differential of Eq. (B.1) reads

dC = XS(t)dδn +B(t)dφn + δn(XS, t)dX + φn(XS, t)dB. (B.2)

From Eq. (A.1) we have

δn(XS, t) = δ(XS, t)−
∂δ(XS, t)

∂XS
dX +O(dX2), (B.3)

and analogously for φn. Substituting Eq. (B.3) into Eq. (B.2), and taking into
account Eqs. (4)-(5), (10) and (26) we obtain

dC = [X(t) + dX/2]dδn +B(t)dφn + δ(XS, t)dX

+

[

rB(t)φ(XS, t)− σ2X2
S

∂δ(XS, t)

∂XS

]

dt+O(dt3/2).

But from Eq. (A.1) and the self-financing strategy (A.4), we see thatX(t)dδn+
B(t)dφn = 0. Hence

dC =
1

2
dXdδn+ δ(XS, t)dX

+

[

rB(t)φ(XS, t)− σ2X2
S

∂δ(XS, t)

∂XS

]

dt+O(dt3/2). (B.4)

The substitution of the Stratonovich rule Eq. (20),

dδn =
∂δn(XS, t)

∂XS

dX +
∂δn(XS, t)

∂t
dt,

yields
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dC = δ(XS, t)dX + [rB(t)φ(XS, t)

− 1

2
σ2X2

S

∂δ(XS , t)

∂XS

]

dt+O(dt3/2), (B.5)

where we have taken into account Eq. (4) and the fact that ∂δn/∂XS =
∂δ/∂XS +O(dt1/2). Eq. (B.5) agrees with Eq. (38) and the rest of the deriva-
tion is identical to that of the main text.

C Solution to the Black-Scholes equation

In this appendix we outline the solution to the Black-Scholes equation (35)
under conditions (42)-(44).

We first transform Eq. (35) into a forward parabolic equation with constant
coefficients by means of the change of variables

z = ln(x/xC), t′ = T − t. (C.1)

We have

∂C

∂t′
= −rC(z, t′) +

(

r − 1

2
σ2
)

∂C

∂z
+

1

2
σ2∂

2C

∂z2
, (C.2)

(−∞ < z < ∞, 0 < t′ < T ). Moreover, the definition of a new dependent
variable:

u(z, t′) = exp
[

−1

2

(

1− 2r

σ2

)

z +
1

8
σ2
(

1 +
2r

σ2

)

(T − t′)
]

C(z, t′), (C.3)

turns Eq. (C.2) into the ordinary diffusion equation in an infinite medium

∂u

∂t′
=

1

2
σ2∂

2u

∂z2
, (C.4)

with a constant diffusion coefficient given by σ2/2, and initial condition:

u(z, 0) = xC exp
[

−1

2

(

1− 2r

σ2

)

z

+
1

8
σ2
(

1 +
2r

σ2

)

T
]

max (ez − 1, 0) . (C.5)

17



The solution of problem (C.4)-(C.5) is standard and reads [31]

u(z, t′) =
1√

2πσ2t′

∞
∫

−∞

u(y, 0)e−(z−y)2/2σ2t′dy. (C.6)

If we substitute the initial condition (C.5) into the right hand side of this
equation and undo the changes of variables we finally obtain the Black-Scholes
formula Eq. (45).
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