

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica

Universitat de Barcelona

ARC: an Alexa based suite of skills for
Residential Care services

Josu Pastor Almor

Director: J. Daniel Prades

Realitzat a: Departament d’Enginyeries: Electrònica

Barcelona, 18 de maig de 2017

ARC: Alexa Residential Care

2

CONTENTS

CHAPTER 1-Introduction…………………………………………………………………………...5

 1.1 Amazon Echo and Alexa…………………..……………..……………..……………............5

 1.2 Motivation………..……………..……………..……………..……………..…………………..6

 1.3 Objectives……………..……………..……………..……………..……………..……………..7

 1.4 Technological context……………..……………..……………..……………..………………7

 1.4.1 Alexa Skills Kit……………..……………..……………..……………..………………....7

 1.4.2 Flask and Flask-ASK……………..……………..……………..……………..………….7

 1.4.3 Using Alexa……………..……………..……………..……………..……………..……...8

 1.4.4 Echosim.io……………..……………..……………..……………..……………………...9

 1.5 Kanban……………..……………..……………..……………..……………..………………..9

CHAPTER 2-Project structure……………..……………..……………..……………..…………10

 2.1 LAMP server……………..……………..……………..……………..……………………….11

 2.2 ARC-Notifications……………..……………..……………..……………..………………….12

CHAPTER 3-Project Detail……………..……………..……………..……………..……………..13

 3.1-LAMP (linux, apache, mysql, php) ……………..……………..……………..…………….13

 3.1.1 Introduction……………..……………..……………..……………..……………………13

 3.1.2 Python modules……………..……………..……………..……………..………………13

 3.1.3 MYSQL……………..……………..……………..……………..……………..…………19

 3.1.3.1 Introduction……………..……………..……………..……………..………………19

 3.1.3.2 ER model and data model……………..……………..……………..…………….20

 3.1.3.3 Usage across project parts……………..……………..……………..……………21

 3.1.4 ARC Control Panel (WEB) ……………..……………..……………..……………..….21

 3.1.4.1 Introduction……………..……………..……………..……………..………………21

 3.1.4.2 Objectives……………..……………..……………..……………..………………..21

 3.1.4.3 Technologies used……………..……………..……………..…………………….21

 3.1.4.4 Web Structure……………..……………..……………..……………..…………...22

 3.1.4.5 Development……………..……………..……………..……………..…………….23

 3.1.4.5.1 Login/create user……………..……………..……………..…………………23

 3.1.4.5.2 Views……………..……………..……………..……………..………………..24

 3.1.4.5.3 Bootstrap……………..……………..……………..……………..……………24

 3.1.5 SKILLS……………..……………..……………..……………..………………………...25

 3.1.5.1 AWS……………..……………..……………..……………..………………………25

 3.1.5.2 Https and certificate……………..……………..……………..……………………27

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

3

 3.1.5.2.1 Application across skills……………..……………..……………..………….27

 3.1.5.3 Internationalization……………..……………..……………..…………………….28

 3.1.5.4 Logs……………..……………..……………..……………..………………………30

 3.1.5.4.1 Application across our project……………..……………..………………….31

 3.1.5.5 ARC-Emergency……………..……………..……………..……………………….32

 3.1.5.5.1 Introduction……………..……………..……………..……………..…………32

 3.1.5.5.2 Objectives……………..……………..……………..………………………….32

 3.1.5.5.3 Prerequisites……………..……………..……………..………………………33

 3.1.5.5.4 Development……………..……………..……………..………………………35

 3.1.5.6 ARC-Medication……………..……………..……………..………………………..36

 3.1.5.6.1 Introduction……………..……………..……………..………………………..36

 3.1.5.6.2 Objectives……………………………………………………………………...36

 3.1.5.6.3 Prerequisites…………………………………………………………………..36

 3.1.5.6.4 Development…………………………………………………………………..39

 3.1.5.7 ARC-Chatbot………………………………………………………………………..42

 3.1.5.7.1 Introduction…………………………………………………………………….42

 3.1.5.7.2 Objectives……………………………………………………………………...43

 3.1.5.7.3 Prerequisites…………………………………………………………………..43

 3.1.5.7.4 Development…………………………………………………………………..44

 3.1.5.8 ARC-Telegram……………………………………………………………………...45

 3.1.5.8.1 Introduction…………………………………………………………………….45

 3.1.5.8.2 Objectives……………………………………………………………………...46

 3.1.5.8.3 Prerequisites…………………………………………………………………..46

 3.1.5.8.4 Development…………………………………………………………………..47

 3.1.6 ARC Bot…………………………………………………………………………………..48

 3.1.6.1 Introduction………………………………………………………………………….48

 3.1.6.2 Technologies used…………………………………………………………………48

 3.1.6.3 Development………………………………………………………………………..48

 3.2-ARC-NOTIFICATIONS………………………………………………………………………51

 3.2.1 Introduction……………………………………………………………………………….51

 3.2.2 Objectives………………………………………………………………………………...51

 3.2.3 Development……………………………………………………………………………..51

 3.2.4 Limitations………………………………………………………………………………..55

 3.2.5 Final thoughts on ARC-Notifications…………………………………………………..55

CHAPTER 4-Conclusion…………………………………………………………………………..56

CHAPTER 5-Future improvements……………………………………………………………...57

ARC: Alexa Residential Care

4

 6.1 Amazon Account Linking…………………………………………………………………….57

 6.2 Web password hashing………………………………………………………………………57

 6.3 Homemade chatbot…………………………………………………………………………..57

 6.4 Notifications for Alexa………………………………………………………………………..57

 6.5 Added functionality to ARC-Bot……………………………………………………………..58

 6.6 Added messaging services for ARC-Emergency………………………………………….58

 6.7 AWS Lambda………………………………………………………………………………….58

BIBLIOGRAPHY……………………………………………………………………………………..59

ANNEXES…………………………………………………………………………………………….62

 Annex A: Skill Conversation trees……………………………………………………………....62

 Annex B: Web Reference………………………………………………………………………...65

 Annex C: LAMP Server Project Structure……………………………………………………...77

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

5

Chapter 1

INTRODUCTION

1.1 Amazon Echo and Alexa

Figure 1: Amazon Echo device

For decades, science fiction movies and novels have showed us what the future smart home

could be like and, particularly, artificial intelligence (AI) home assistants.

In 2017 different companies have attempted to create their own take on these assistants and

the result is a reduced, though varied, spectrum of solutions.

Google makes the Google Home, a “smartspeaker” that stands out for its Google Assistant

implementation and search algorithms. Microsoft has Cortana, a virtual AI assistant included

in every copy of Windows 10. Even Apple has Siri and plans on producing a device of their

own.

In 2015 Amazon introduced its own take on the matter, the Amazon Echo (shown in figure 1).

It’s a Bluetooth speaker that has a built-in microphone and connects to the Amazon Web

Services (AWS) through Wi-Fi.

ARC: Alexa Residential Care

6

Specifically, it connects to the voice-controlled AI assistant service Alexa, which also

happens to be the device’s wake word (i.e. the word used to start an interaction with it). This

allows a user to speak to Alexa directly, and ask her to play music, get weather information

and news, set alarms, control lights around the house and tell terrible jokes, amongst other

things.

But what truly sets the Echo apart from its competition is the ability to learn new Skills. Skills

work like apps on smartphones, they are made by developers and can be downloaded from

the Skill store through the Alexa phone app. Contrary to traditional apps however, Skills have

no visual interface and the interaction relies completely on voice. This has very interesting

implications when it comes to defining a user interface.

Alexa Residential Care (ARC) is a suite of skills designed to provide residential care services

to seniors through voice.

It is the first phase of a larger project still in early development, and so it must be viewed not

as production ready-software, but as a proof of concept for the set of ideas put forth by my

TFG supervisor, Dr. J. Daniel Prades, as well as his German college from the Braunschweig

University of Technology, Prof. Andreas Waag.

1.2 Motivation

When I first learned about this project I was very intrigued, having personally seen a family

member go through their latter stages of life and slowly making it evident that even the most

capable and independent of human beings is not immune to the nature of life decay. Memory

loss, confusion, lack of technological know-how and loneliness, amongst others, are not

trivial matters and we all have people in our lives that suffer from these conditions in one way

or another.

With this in mind, I was moved by the possibility of creating a set of tools with the objective of

helping out people in such need of assistance on their day to day activities.

On top of that, if we add the novelty of the interface design and the fact that a project of this

nature requires a healthy mix of technologies and design philosophies then we end up with a

very rich and interesting venture.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

7

1.3 Objectives

Alexa Residential Care (ARC) is a suite of skills designed to provide residential care services

to seniors through voice.

For voice interaction, the Amazon Echo platform and its assistant, Alexa, will be used.

In a first phase, 4 main skills will be implemented and tested in English.

 Skill 1: Medication reminder and dose explainer.

 Skill 2: Remote emergency notification.

 Skill 3: Text message dictating.

 Skill 4: AI conversational module.

Additionally, the skills should feature:

 Logging of all interactions, for supervision.

 Implemented in English, but the code should be ready for bulk translation into other

languages. Currently Alexa is available in English (UK, USA) and German.

 Implementation over existing calendar platform (e.g. Google Services API).

Finally, an interface for ARC management might be necessary

1.4 Technological Context

1.4.1 Alexa Skills Kit

The Alexa Skills Kit (ASK) is a collection of APIs, tools, documentation, and code samples

that allow a developer to build custom Skills for the Alexa platform.

The Skills can be made using any programming language, but in particular Alexa

developers tend to use either node.js or Python.

For this project, Python 2.7 was chosen due to the availability of Flask-ASK and the

developer having had experience using Flask.

1.4.2 Flask and Flask-ASK

Flask[1] is a microframework for Python based on Werkzeug, a WSGI utility, and Jinja 2, a

templating engine for Python.

ARC: Alexa Residential Care

8

Flask-ASK[2] is an extension to Flask that does the following:

 Has decorators to map Alexa requests and intent slots to view functions.

 Helps construct ask and tell responses as well as reprompts.

 Makes session management easy.

 Allows for the separation of code and speech through Jinja templates

 Verifies Alexa request signatures.

Of particular interest was the ability to use decorators to handle requests made by the

user. This is explained in detail in the following section.

1.4.3 Using Alexa

Voice interaction with Alexa can be distilled into the following components:

 Utterances: an utterance is a phrase uttered by the user.

 Intents: the intent is the interpreted intention of the user’s utterance.

 Slots: a slot is specific type of information uttered by the user, such as a date,

number, or anything that the developer decides to use. The distinction is made in

order to easily strip the utterance into relevant bits of information for Alexa to

process.

So for instance in the following interaction:

Human: Alexa, how’s the weather today?

The components would be:

 Utterance: “Alexa, how’s the weather today?”

 Intent: AskForecastIntent. This is an intention defined by the developer that deals with

the problem of requesting the weather forecast information.

 Slots: today. This is datatype data that takes the value of today’s date.

So using Flask-ASK we can map the utterance to a method in python thanks to the intent,

as shown in figure 2:

Figure 2:Python Flask-ASK intent method

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

9

This allows the development of python based skills with methods that are mapped to user

intents.

The Echo device is not in charge of making such distinctions, however. It merely listens to

the user and sends the utterance to the Alexa cloud service hosted by Amazon, where it is

distilled into the components mentioned above. We will go into detail of how this is

achieved further on.

1.4.4 Echosim.io

Echosim.io[3] is an Alexa skill testing tool provided by iQuarius Media. Using a microphone

connected to a computer and logging into our Amazon account, we can test a custom skill

using this site without having to purchase an Amazon Echo device. To use it, however,

one has to click and hold a button instead of speaking to it with a wake word, which is

cumbersome by comparison.

Lucky for us we got our hand on an Echo not long into development so we didn’t need to

use Echosim.io more than we had to.

1.5 Kanban

The development of the project was planned and followed through with the use of a Google

Sheets document in the form of a Kanban board. The developer had prior experience using

this system having previously worked as a web programmer for a startup company, where he

was able to see how such methodologies are implemented in a real work environment. This

proved to be immensely useful and facilitated the planning of the project.

ARC: Alexa Residential Care

10

Chapter 2

PROJECT STRUCTURE

The project can be subdivided into the following parts:

 LAMP server (Linux, Apache, MySQL, PHP)

o Database

o ARC Control Panel

o Skills

o ARC-Bot

 ARC-Notifications

Figure 3 shows the information flow within the ARC project:

Figure 3: Project information flow

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

11

2.1 LAMP server

The LAMP server was built and configured from scratch to feature the following services:

Database

The database contains the user settings for all ARC skills, as well as general ARC

settings.

ARC Control Panel

The ARC Control Panel is a website that allows a user to login, change their ARC settings

and view their ARC interaction logs.

Skills

The whole ARC project is centered around these skills, giving residential care services to

the elderly through an Amazon Echo device.

ARC-Emergency

This skill allows the user to send an emergency message using multiple messaging

services to a select group of contacts.

ARC-Medication

This skill acts as a medication reminder and doses explainer in conjunction with a

Google Calendar in the form of a medication scheduler.

ARC-Chatbot

This skill acts as an AI conversational module, in conjunction with an HTML-based

chatbot.

ARC-Telegram

This skill allows the user to dictate a message and send it to a preprogrammed

Telegram chat.

ARC-Bot

This Telegram Bot is the mediator between some of the skills and a Telegram chat of the

user’s choosing.

ARC: Alexa Residential Care

12

2.2 Notifications

This part of the project works in conjunction with ARC-Medication to add push-notifications to

the Amazon Echo, which at the time of this writing lacks this functionality.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

13

Chapter 3

PROJECT DETAIL

This section attempts to explain each part of the project.

3.1 LAMP Server (Linux, Apache, MySQL, PHP)

3.1.1 IntroductionError! Bookmark not defined.

Early on in development the Universitat de Barcelona granted us a server that we converted

to a LAMP[4] server (Linux, Apache, MYSQL, PHP). This was done to accommodate the need

for a database and a website that uses PHP. It also provided a good platform for hosting our

skills.

The software and versions we used to set up a LAMP environment were the following:

 Debian 8.8

 Apache 2.4.10

 MYSQL 14.4

 PHP 5.6.30

We were able to control the server remotely using SSH.

3.1.2 Python modules

In this section we will introduce the python modules and components that we used across

most of our skills in a similar or equal manner.

httplib2 (version 0.10.3)[5]: a comprehensive HTTP client library.

The class that we used is:

 Http – class that represents a client HTTP interface.

This library was used in:

ARC-Emergency

ARC-Medication

ARC: Alexa Residential Care

14

ARC-Chatbot

ARC-Telegram

ARC-Notifications

os (version 2.7)[6]: module that provides a portable way of using operating system

dependent functionality.

The top-level function that we used is:

o makedirs – recursive directory creation function.

The class that we used is:

 path - module that implements some useful functions on pathnames. The

functions that we used are:

o expanduser – converts the tilde character to a user’s home directory.

o join – join one or more path components intelligently.

o exists – returns True or False depending on if path parameter refers to an

existing path.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

ARC-Notifications

apiclient.discovery (version 1.0.2)[7]: a client library for Google’s discovery based APIs.

The top-level function that we used is:

o build – construct a Resource object for interacting with an API.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

ARC-Notifications

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

15

oauth2client (version 4.1.1)[8]: client library for accessing resources protected by OAuth

2.0.

OAuth 2.0[9]: industry-standard protocol for authorization. OAuth 2.0 focuses on client

developer simplicity while providing specific authorization flows for web applications,

desktop applications, mobile phones and living room devices. It is the authorization

protocol used by Google APIs.

The classes that we used are:

 client – an OAuth 2.0 client. The function that we used is:

o flow_from_clientsecrets – create a Flow from a clientsecrets file.

 tools – command-line tools for authenticating. The functions that we used are:

o argparser – ArgumentParser that contains command-line options expected by

tools.run().

o run – runs through all the steps to obtain credentials.

o run_flow – takes a Flow argument and attempts to open an authorization

server page in the user’s default web browser.

 file – utilities for making it easier to work with OAuth 2.0 credentials. The class

we used is:

 Storage – base class for all Storage objects. Store and retrieve a single

credential.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

ARC-Notifications

flask (version 0.12): microframework implementation of the web frameworks[10] concept.

The class that we used is:

 Flask – an instance of this class would be our WSGI application.

This library was used in:

ARC-Emergency

ARC-Medication

ARC: Alexa Residential Care

16

ARC-Chatbot

ARC-Telegram

flask_ask (version 0.9.3): easy Alexa Skills Kit integration for Flask.

The classes that we used are:

 Ask – an Ask object maps Alexa Requests to flask view functions and handles

Alexa sessions. These are the functions of this object that we used:

o intent – decorator routes an Alexa IntentRequest and provides the slot

parameters to the wrapped function.

o launch – decorator maps a view function as the endpoint for an Alexa

LaunchRequest and starts the skill.

 statement[11] – one of two classes in Flask-Ask for creating responses.

Statements terminate Echo sessions. The user is free to start another session,

but Alexa will have no memory of it (unless persistence is programmed

separately on the server with a database or the like).

 question – second class for creating responses. Prompts the user for additional

speech and keeps a session open.

Theses sessions are similar to HTTP sessions but they differ because of a lack

of cookies or local storage since the application connects to an Alexa service

instead of a browser.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

flask_sslify (version 0.1.5)[12]: Flask extension that configures a Flask application to

redirect all incoming requests to https.

The class that we used is:

 SSLify - secures a Flask application.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

17

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

ssl (version 1.16)[13]: SSL wrapper for socket objects.

The classes and constants we used are:

 SSLContext – instance of an SSL context.

 PROTOCOL_TLSv1_2 – channel encryption protocol constant.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

MySQLdb (version 1.16)[14]: thread-compatible interface to the popular MySQL database

server that provides the Python DB API.

The top-level function that we used is:

o connect – creates a connection to the database, returns a Connection object.

The class we used is:

 Cursor – cursor class emulated in MySQLdb. MySQL does not have cursors. The

functions that we used are:

o cursor – creates a cursor from a connection instance.

o execute – executes an SQL query.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Chatbot

ARC-Telegram

ARC-Notifications

ARC: Alexa Residential Care

18

ARC-Bot

python-gettext (version 3.0)[15]: Python Gettext .po to .mo file compiler.

The top-level functions that we used are:

o translation – loads a translation from a local .mo file.

o install – translates the application’s strings.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Telegram

ARC-Notifications

ARC-Bot

datetime (version 2.3)[16]: includes functions and classes for doing date and time parsing,

formatting, and arithmetic.

The class that we used is:

 datetime – A combination of a date and a time. Attributes: year, month, day, hour,

monute, second, microsecond and tzinfo. The functions that we used are:

o now – return the local date and time.

o date – return a date object with same year, month and day as the datetime

object use as a base.

o time – return a time object with same hour, minute, second and microsecond.

o utcnow – return the current UTC date and time, with tzinfo None.

o datetime – class constructor.

o strftime – return a string representing the date and time, controlled by an explicit

format string.

This library was used in:

ARC-Emergency

ARC-Medication

ARC-Telegram

ARC-Chatbot

ARC-Notifications

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

19

requests (version 2.16.2)[17]: allows sending of HTTP/1.1 requests.

The class that we used is:

 Session – which allows persistence of certain parameters across requests. The

functions we used are:

o session – class constructor.

o get – performs a get request.

o post – performs a post request.

This library was used in:

ARC-Emergency

ARC-Telegram

ARC-Chatbot

3.1.3 MYSQL

3.1.3.1 Introduction

In order for the skills to work properly the user has to set up a series of programmable

parameters.

Initially, a simple JSON file, housed in the same LAMP server that was hosting the skills,

was being used to meet this need and it worked well enough for some time. However, it

proved to be insufficient since it required the user to have access to the JSON file and edit

in all their parameters, which was tedious at best. Thus, the decision was made to develop

a website where the user could log in and customize these parameters to fit their particular

needs. These settings are kept in a database within the same LAMP server.

ARC: Alexa Residential Care

20

3.1.3.2 ER model and data model

Figure 4: Database ER model

Figure 5: Database data model

There are several reasons for the layout described in the above figures. First of all, two

tables make it simpler to program CRUD (Create, Read, Update, Delete) operations.

Second, whether it’s on the website or while using a skill, we really only need to know the

value of a setting, which is identified with the USERID, the SKILLNAME and the

SETTINGNAME. Therefore, it makes perfect sense to reduce that to a single table,

SETTING.

The password, contrary to good practice, is stored in plain text. This decision was made

because our project was not intended to be production-ready at the time of handing it in, it

was meant to be a proof of concept for the first phase of a larger project still in early

development. Therefore, we decided not to investigate hashing passwords for the time

being and instead invested our time in more valuable developments.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

21

3.1.3.3 Usage across project parts

The skills, ARC-Notifications and ARC-Bot all read parameters from our database in the

following manner:

Figure 6: Reading settings from the database

Using MySQLdb we create a connection to localhost specifying the mysql user, password

and database name.

Then turn that connection into a cursor and execute an SQL query to retrieve our setting

value from the SETTING table, specifying the user ID, skill name and setting name.

3.1.4 ARC Control Panel

3.1.4.1 Introduction

The website which can be accessed using the server’s url[18] was made to be a user

friendly solution to changing ARC parameters on the fly. We thought it would be a logical

solution to the problem of having multiple users with multiple settings each.

3.1.4.2 Objectives

The website should allow the user to:

 Create a user

 Log into their account

 Configure and save parameters (all skills, as well as general settings)

 View interaction logs

3.1.4.3 Technologies used

 PHP

 HTML CSS Bootstrap

ARC: Alexa Residential Care

22

3.1.4.4 Web Structure

The website is structured in the following manner:

Figure 7: ARC Control Panel file structure

 css: contains the css styles for the html, including the Bootstrap theme’s css and

our own.

 img: contains the images used in the site.

 js: contains the javascript used in the site, including the Bootstrap theme’s

javascript and our own.

 src:

o connect2db: contains php code to connect to the database. It is included in

multiple scripts within the site to avoid repeating code.

o loadConf: contains the php files that load the configurations from the

database into the skill configuration pages so that the user can view and edit

them.

o saveConf: contains the php files that save the configurations to the database

once the user submits their changes.

o login: contains the entire login and create user system.

Web

css

grayscale.css

style.css

img js

grayscale.js

validate.js

src

connect

connect2db.php

loadConf

load-
Emergency.php

load-General.php

load-
Medication.php

load-Chatbot.php

load-
Notifications.php

load-Telegram.php

login

autologin.php

config.php

create_user.php

do_create.php

do_login.php

login.php

logout.php

saveConf

save-
Emergency.php

save-General.php

save-
Medication.php

save-Chatbot.php

save-
Notifications.php

save-
Telegram.php

view

arc.php

view-
emergency.php

view-general.php

view-logs.php

view-
medication.php

view-chatbot.php

view-
notifications.php

view-telegram.php

vendor

bootstrap

index.html

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

23

o view: contains the views. Those would be the main page, arc.php, and all

the skill configurations pages (one for each skill as well as a general settings

page) plus the local logs view.

 vendor: bootstrap files.

 index.html: redirects automatically to the main page, arc.php

3.1.4.5 Development

The first requirement was to have a database where we could store this users’ account

information (username and password).

Once this problem was solved, the second requirement was to have a create/login system.

3.1.4.5.1 Login/Create User

Thankfully we had such a thing in hand, having done Computació Orientada a la Web at

Universitat de Barcelona in 2015. Coursing this subject, we learned how to develop a

fully functioning web-app, including how to set up a login system. We took that system

and implemented it fairly easily into our website. This is how it works in our project:

 arc.php: main page, if there is no session it redirects the page to login.php

 login.php: contains a login form (user, password). If there is already a session it

redirects to arc.php. If the form is submitted it switches to do_login.php. This page

also links to create.php.

 do_login.php: logs the user in if he exists in the database and redirects to arc.php.

If not, it redirects to login.php where a login error is displayed. It logs the user by

creating a session and storing 3 values: the username and the userID, both from

the database, and a Boolean variable used for displaying information in arc.php).

 config.php: starts a session.

 autologin.php: if the cookie exists, looks for the user in the database and assigns

his username to the session as well as his userID.

 create_user.php: contains a user creating form (user, password). If submitted,

sends the form data to do_create.php.

 do_create.php: goes into the database and grabs the largest userID and

settingID. It then does the following:

ARC: Alexa Residential Care

24

o Increases the userID by 1 and creates a new user in the database with the

submitted information.

o Adds new entries to the SETTING table, with their default value and

assigned to the newly created userID.

 logout.php: empties the session and cleans the cookies before redirecting to

login.php

Once the login system was set up and running we moved over to building the views.

3.1.4.5.2 Views

Each file named view-{skillname}.php is accompanied by two other files that do the

following:

 view-{skillname}.php: contains the settings form corresponding to the skill in

question. When submitted it sends the information to save-{skillname}.php.

 loadConf/load-{skillname}.php: this code is included via embedding of php code in

view-{skillname}.php. It fills the form with the settings in the database

corresponding to the particular userID and skill name.

 saveConf/save-{skillname}.php: takes the form data from view-{skillname}.php and

updates the user’s settings in the database.

We will go over every user setting once we dive into each skill. However, the user can

also change general ARC settings in view-General.php.

The general ARC settings that the user can edit are the following:

 Language: English US (EN) or German (DE).

 Log events: true or false. Log the user interactions when using ARC skills.

 Logs location: store logs locally or in a Google Calendar.

 Google Calendar ID: the ID of the Google Calendar used to log the interactions.

 Telegram bot token: identifier of ARC bot for Telegram.

3.1.4.5.3 Bootstrap

Once we had a functioning website we decided to spice things up with a nice Bootstrap

theme. We first encountered this front-end framework while coursing Factors Humans at

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

25

Universitat de Barcelona. This experience allowed us to choose a theme from

startbootstrap.com[19] and quickly apply it to our site.

The theme required little modification. We added a dropdown menu that displays the

username and gives the user the option to log out. We also added another dropdown

menu that lets the user view both logs.

Other than that, small cosmetic changes were made to the theme that made it fit our

site like a glove.

Finally, we made view-logs.php which cleanly displays the local logs on a table.

3.1.5 Skills

3.1.5.1 AWS

Skills are uploaded to the AWS through Amazon’s Developer Portal. There a developer

can add their own skills and configure them so that they work as intended.

These are the important settings that need to be set up for each skill:

 Name: the name of the skill that is displayed to customers in the Alexa app, where

they can download any skill available in the catalogue.

 Invocation name: the word used by customers to launch a skill. Skills are launched

in the following manner:

“Alexa, launch {invocation name}”

Instead of launch a variety of words can be used, such as use, start, begin and a

bunch of others.

 Intent Schema: the schema of user intents in JSON format.

ARC: Alexa Residential Care

26

Figure 8: Example Intent Schema

On figure 8 we can observe the intent schema for a skill that uses two intents and a

slot for one of them. Each intent can hold several slots.

 Custom Slot Types (Optional): referenced by the Intent Schema and Sample

Utterances. A custom slot type defines a list of representative values for the slot.

Custom slot types are used for lists of items that are not covered by Amazon’s built-

in set of types[20] and are recommended for most use cases. When using a custom

type, the developer defines the type and its values.

 Sample Utterances: these are sample phrases that the user might utter whilst using

the skill. The larger the sample, the bigger the accuracy of Alexa determining the

intent that the utterance belongs to.

Figure 9:Example Sample Utterances

Figure 9 shows a number of utterances grouped into two different intents.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

27

 Endpoint: here the developer can configure the server where the skill is being

hosted. There are two options:

o AWS Lambda: AWS Lambda is a server-less compute service that runs code

in response to events and automatically manages the underlying resources.

This is the recommended option for a production-ready skill.

o HTTPS: alternatively, one can host their skill on a server of their choosing, so

long as HTTPS is used for requests. This is the method we used.

 Certificate for endpoint: to protect the security of end users Amazon requires that

the developer uses a certificate while developing an Alexa skill. They offer three

options:

o My development endpoint has a certificate from a trusted certificate authority.

o My development endpoint is a sub-domain of a domain that has a wildcard

certificate from a certificate authority.

 NGrok[21] allows you to expose a local server behind a NAT or firewall

to the internet. Early on in development we used it so that it was

possible to start making and testing skills straight away. But it proved

to be an uncomfortable method and so we switched to serving https

from our skills being run on the LAMP server as soon as it was

possible.

o I will upload a self-signed certificate in X.509 format.

3.1.5.2 Https and Certificate:

Because we are serving the skills from a server of our choosing, the requests need to use

HTTPS in order for AWS to accept them.

We configured the web server to use a self-signed certificate. Amazon offers an excellent

tutorial on how to do this. [22]

Then we had to update our skills to serve https, which we did using the following python

modules:

 Flask-SSLify: this is a simple Flask extension that configures your Flask

application to redirect all incoming requests to https.

 ssl: this module provides access to Transport Layer Security encryption and peer

authentication facilities for network sockets, both client-side and server-side.

ARC: Alexa Residential Care

28

3.1.5.2.1 Application across skills

Https is applied to our skills by doing two things.

Firstly, we redirect all incoming requests to https using Flask-SSLify. This is done in the

following manner:

Figure 10:flask_sslify application on our skills

Secondly, we run our skill like so:

Figure 11: Launching a skill with https

Here we specify the host url, port, SSL context and self-signed certificate.

3.1.5.3 Internationalization:

Internationalization was achieved thanks to python’s gettext module. This simple solution

allows for a program to have multiple translations and to be able to run in any language

made available by the developer.

We applied internationalization to ARC-Notifications, ARC-Bot and all our skills with the

exception of ARC-Chatbot. The reason for this decision is that the chatbot we use

currently only speaks English, so internationalizing that skill made little to no sense.

Here is how we applied gettext to our skills.

Step 1: Replacing strings

For every string that Alexa is going to utter, it is necessary to bound the string in a

function call such as the one shown in figure 12.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

29

Figure 12: Strings bound in function call for internationalization

It also helps to group all would-be-spoken strings together, it makes it easier to find

and modify them.

Step 2: Extract the strings

With gettext we can extract the strings into a POT file, which is a template file for PO

files. This can be done in the following manner:

Python pygettext.py –d arc-emergency arc-emergency.py

Step 3: Translate the strings using Poedit

Poedit is a program that takes .pot files and lets us create new translations for our

strings. Once this is done we can save the translations, which generates the following

files for each language:

 .po: contains the actual translation.

 .mo: binary data file, used by the GNU gettext program to translate our code.

Again, each language has its own MO file.

Step 4: Add gettext code to our program

To make our program work with gettext the first thing we had to add is the import:

Import gettext

Followed by:

Figure 13: Python code used to translate the strings in a skill

Where “LANGUAGE” is a skill setting previously retrieved from the database. This

should be executed as early as possible, that way the skill is translated before Alexa

starts speaking to the user.

ARC: Alexa Residential Care

30

The install() method causes all the _() calls to return the translated string. If the

original translation is needed however we can simply assign a lambda function value

to _ that returns the string it was passed, as seen in figure 13.

3.1.5.4 Logs

There are two ways to log the interactions between the user and Alexa while using an

ARC skill. During testing of the Google Gmail API we considered the possibility of making

a log system, so we quickly learned to use the Calendar API and put it to use. It worked,

but it was slow. We approached the problem again a few months later once most of the

skills had been developed, our solution was to log the interactions to a JSON file in the

same server that was running the skills. This fixed the speed issue, but we still liked

viewing the logs in a calendar display, so we decided to keep both options.

As a result, the user can save logs if they please. And if that’s the case then they can

choose one of the two given options.

Local logs look like this (as seen in the ARC Control Panel):

Figure 14: ARC Local Logs

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

31

Meanwhile calendar logs look like this:

Figure 15: ARC Calendar Logs

3.5.4.1 Application across our project

Log settings are read, along with other settings, from the database. The log settings are:

 Log events: Boolean that indicates if the application is to log events or not.

 Logs location: local or using a google calendar

 Log calendar ID: used to identify the Google Calendar used to log the

interactions.

ARC: Alexa Residential Care

32

The value of the log events Boolean is checked every time either Alexa or the user say

something. In case of being True, a logging method is called. There are two options,

depending on the logs location setting:

 log_event_calendar: uses the quickAdd method from the Google Calendar API to

add an event to the specified calendar. Because we use it as a log system, the

event name has the following format:

<person>: <phrase>

Where person can either be Alexa or Human.

 log_event_local: opens the json log file corresponding with the user’s ID. It then

adds an entry with today’s date as the key and the following structure as the

value:

Figure 16: Local log entry structure.

When using a Google API, one needs to define the scopes. This indicates to the API the

functions that the application is authorized to execute.

In order to log events into a Google Calendar the following scope is needed:

https://www.googleapis.com/auth/calendar

3.1.5.5 ARC-Emergency

3.1.5.5.1 Introduction

This skill was developed in the hopes of providing an easy way for Echo users to send a

predetermined emergency message to select contacts with little to no effort.

3.1.5.5.2 Objectives

The objectives for building this skill were the following:

 Require simple dialog with the user so as to send the message as quickly as

possible.

 Use multiple messaging services, lessening the probability that the message won’t

be delivered due to external causes.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

33

3.1.5.5.3 Prerequisites

In order for this skill to work as intended some steps need to be taken beforehand.

AWS configuration

This configuration is made by the skill’s developer.

 Skill name: ARC Emergency

 Invocation name: emergency

 Intent schema: the intent schema used for this skill is the following:

Figure 17: ARC-Emergency intent schema

 Sample Utterances:

YesIntent yes

YesIntent yes please

YesIntent do it

YesIntent sure

YesIntent of course

YesIntent obviously

YesIntent go

NoIntent no

NoIntent no sorry

NoIntent not now

NoIntent go away

NoIntent leave me alone

NoIntent nevermind

NoIntent false alarm

NoIntent nevermind Alexa

NoIntent nevermind Computer

ARC: Alexa Residential Care

34

 Endpoint:

https://arc.el.ub.edu:443/arc_emergency

ARC Control Panel Settings

In the ARC Control Panel, the user can configure their settings for this skill. The

settings are the following:

General

 Enabled messaging services: The messaging services that the

skill will use to send an emergency message. The user has three

options to choose from:

o Gmail

o Telegram

o Gmail and Telegram

Gmail

 From: the email account from which the messages will be sent.

 To: the recipients, separated by commas.

 Subject: the email subject field.

 Message: the email text (the message).

Telegram

 Chat_ID: identifies the telegram chat that will receive the

message.

 Message: the Telegram message.

ARC Bot

In order to use the Telegram messaging service with this skill, a specific

telegram bot needs to be running.

The user also needs to create a group chat in the Telegram app and invite the

recipient contacts, as well as the telegram bot.

Finally, the telegram bot needs to have admin privileges within the group chat.

https://arc.el.ub.edu/arc_emergency

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

35

ARC bot was created by us for this specific purpose and will be expanded on

later.

3.1.5.5.4 Development

Python modules used

 apiclient->errors[23]: errors for the apiclient library.

We used the following exception when sending an email using the Google Gmail

API:

o HttpError – error class for unexpected or invalid HTTP data.

 email.mime.text->MIMEText[24]: class used to create MIME objects of major

type text.

We used the class constructor to create a MIMEText from our email message

string, as required by the Google GmailAPI.

 base64[25]: module that provides data encoding and decoding as specified in

RFC 3548[26]. We use the following method:

o b64encode – to encode our emails using the base64 algorithm.

The application’s execution is segregated according to the following decorators:

 @ask.launch – this decorator maps a view function as the endpoint for an Alexa

LaunchRequest and starts the skill. This function, in this case, reads the

parameters from the database and returns a welcome message in the form of a

question, asking the user if they want to send an emergency message to their

contacts.

 @ask.intent(“YesIntent”) – this decorator maps the YesIntent to a function that

calls other functions charged with sending the emergency message in the

various ways available, then later informs the user if the action was a success or

not.

 @ask.intent(“NoIntent”) – this decorator maps the NoIntent to a function that

returns a statement acknowledging the user’s change of mind regarding sending

the messages.

Telegram messages are sent by sending a POST request to:

ARC: Alexa Residential Care

36

https://api.telegram.org/bot{bot_token}/sendMessage?text={message}&chat_id={telegram_chat_id}

Emails are sent using the Google Gmail API using the following instruction:

service.users().messages().send(userId=user_id, body=message).execute()

The Google API scope needed to create and send emails is:

https://www.googleapis.com/auth/gmail.compose

3.1.5.6 ARC-Medication

3.1.5.6.1 Introduction

This skill is the most extensive of the suite. Its purpose is to act as a medication

reminder and doses explainer, in conjunction with a medication scheduler.

3.1.5.6.2 Objectives

The objectives for building this skill were the following:

 Use or create a user-friendly way to input the medication, times, and explanations.

 Avoid making an intrusive or annoying skill. This could be seen as a general rule

for developing any skill, but this one in particular had to have several branches of

dialogue so it was of particular importance to keep the principle in mind during

design and development.

3.1.5.6.3 Prerequisites

In order for this skill to work as intended some steps need to be taken beforehand.

AWS configuration

This setup is performed by the developer, not the skill user.

 Skill name: ARC Medication

 Invocation name: medication

 Intent schema: the intent schema used for this skill is the following:

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

37

Figure 18: ARC-Medication intent schema

 Sample Utterances:

YesNumberIntent yes {number}

YesNumberIntent yes please explain number {number}

YesNumberIntent number {number} please

YesNumberIntent number {number} thank you

YesNumberIntent number {number} thank you very much

YesNumberIntent yes {number} please

YesNumberIntent yes number {number} please

YesNumberIntent number {number}

NoIntent no

NoIntent no thanks

NoIntent no thanks a lot

NoIntent no thanks very much

NoIntent no thank you

NoIntent no thank you very much

NoIntent no I haven't

NoIntent not now

NoIntent go away

NoIntent leave me alone

YesIntent yes

YesIntent yeah

YesIntent yes I have

ARC: Alexa Residential Care

38

YesIntent yes thank you for asking

YesIntent sure

YesIntent of course

YesIntent obviously

 Endpoint:

https://arc.el.ub.edu:443/arc_medication

Google Calendar

This skill is linked to a Google Calendar that belongs to the user and acts as a

medication scheduler. This is done by creating an event for every time that the

patient must take medication. This is what needs to be specified for each event:

 Event title: dose of medication (e.g.“1 red pill” or “2 white pills with a

stripe”).

 Start time: the time at which the patient has to take this medication.

 Description: explanation for the dose or instructions (e.g. “Always take

some food after this medication” or “Take with water”).

ARC Control Panel Settings

In the ARC Control Panel the user can configure their settings for this skill. The

settings are the following:

General

 Calendar ID: identifies the Google Calendar containing the medication.

 Person name: Alexa refers to the user by this name.

 Last check: the last date that this skill was executed.

 Taken meds today: two options, true or false.

https://arc.el.ub.edu/arc_medication

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

39

3.1.5.6.4 Development

Python modules used

 dateutil (version 2.6.0)[27]: module that provides powerful extensions to the

datetime module available in the Python library.

The application’s execution is segregated according to the following decorators:

 @ask.launch – when the application is launched, the skill parameters are read

from the database. ARC-Medication has two parameters that help the application

figure out if the patient needs medication information or not. Those two

parameters are:

o takenMeds-date: the last date that the application was run. We assume

that the patient took their medication if they launched the skill, therefore

this is representative of the last date that the patient took their medication.

The format for the date is “year-month-day”.

o takenMeds-bool: datatype Boolean. Indicates whether the patient took

their medication today or not. This variable is only used if the value

takenMeds-date is today’s date.

When the parameters are read, the value of these two settings are looked at

before continuing execution of the app. If takenMeds-date has a value equal to

today, then takenMeds-bool can be seen as a reliable source of information. If

the opposite is true, then takenMeds-bool is set to False and takenMeds-date is

set to today’s date. These changes are performed both locally and in the

database, as soon as the values are known to the application.

Once these operations have ocurred, two things will happen depending on the

value of takenMeds-bool:

 If True, this means that the patient has already taken their medication

today and therefore does not need any instructions. Alexa returns a

statement informing the patient as such.

 If False, this means that the patient has NOT taken their medication

today, and therefore might require information. However, because we

don’t want our app to be overly intrusive, Alexa returns a question

asking the patient if they have taken their medication today or not.

ARC: Alexa Residential Care

40

Before diving into the rest of the decorators, we first have to talk about an inherent

problem that arises when designing an application with a voice-based interface.

If the application is complex enough, there might be different situations in which the

user replies to Alexa with the same response. Here’s an example:

1-Alexa: are you tired?

2-Human: yes.

3-Alexa: would you like me to dim the lights?

4-Human: yes.

Because an intent is mapped to a single method using a decorator, state variables are

required for the application to know at what point of the conversation tree it is at.

In the case of ARC-Medication, the user can be asked two different questions that

require a yes or no answer (YesIntent or NoIntent). We use a boolean variable called

TIME_TO_EXPLAIN to navigate this. When the app is launched the value of this

variable is False, and it is changed to True once Alexa reads the medication events

from the calendar and asks the user if they would like a dose explanation.

 @ask.intent(“YesIntent”) – If TIME_TO_EXPLAIN is False, the user will have

answered with a YesIntent to the question “Have you taken your medication

today?”. At this point the takenMeds variables are updated in the database and

Alexa returns a statement telling the user that they did a good job.

If, however, TIME_TO_EXPLAIN happens to be True then the user will have

answered with a YesIntent to the question “Would you like me to explain any of

those?”, referring to the medication events that Alexa will have read out loud

before the user’s yes intent. In this case, Alexa returns a question asking the

user which number of medication event they would like explained.

 @ask.intent(“NoIntent”) – If TIME_TO_EXPLAIN is False, the user will have

answered with a NoIntent to the question “Have you taken your medication

today?” In this case, the patient requires medication instructions. Firstly, the

takenMeds settings are updated in the database (takenMeds-date -> today,

takenMeds-bool -> True). Then, the medication events are extracted from the

calendar and formatted into an intelligible string that Alexa can read back to the

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

41

user. These events are also stored inside a list, for later use. Lastly, the

TIME_TO_EXPLAIN variable is changed to True and Alexa reads the instructions

to the user, after which it asks them if they need a dose explanation.

If, however, TIME_TO_EXPLAIN is False when this method is used, Alexa

returns a statement closing the session.

 @ask.intent(“YesNumberIntent”) – this intent is an answer to any of these two

questions:

Alexa: <medication events> + “Would you like me to explain any of

those?”

Alexa: <dose explanation> + “Are there any other events you would like

me to explain?”

In both cases, the user answers with the number of event that they want

explained.

Because the application has previously stored the events in a list, it can check

whether this number of event exists or not. If it exists, it takes the event’s

description and returns it in the form of a question (asking afterwards if they want

any other event explained).

If the number does not exist, however, it informs the user of this issue and asks

them to inquire about a different event.

Medication events are taken from the google calendar and formatted in a function

called get_instructions().

Using the Google Calendar API the skill calls upon the following method:

service.events().list(calendarId, timeMin, timeMax, singleEvents, orderBy)

The parameters being the following:

 -calendarId -> ID of Google Calendar acting as medication scheduler.

 -timeMin -> all events before this time are ignored.

 -timeMax -> all events after this time are ignored.

 -singleEvents -> whether or not we want repeated events.

 -orderBy -> parameters by which the items list is ordered.

ARC: Alexa Residential Care

42

We decided that relevant events should be the ones happening on the same day as

the inquiry. With that in mind we used datetime to get the earliest moment (00:00:00)

and the last moment (23:59:59) of the current day and use it as the time filter.

The API method returns a dictionary that contains a list of events, called ‘items’. This

list is saved in order to offer dose explanations.

Once the list is saved, the skill goes over every event and prepares a list of

instructions as strings. Each string has the following form:

‘Take’ + eventSummary + ‘ at ‘ + hour + ‘ ‘ + minute + m

With the variables being:

 -eventSummary -> Name of the event (e.g. “2 white pills”)

 -hour -> number from 0 to 12.

 -minute -> number from 0 to 59.

 -m -> AM or PM

After the loop the list of instructions is joined into a single string and returned.

3.1.5.7 ARC-Chatbot

3.1.5.7.1 Introduction

Alexa, though it’s an excellent home assistant, lacks the ability to have long coherent

conversations. By contrast, chatbots are special AIs that attempt to keep a conversation

with a person, providing automatic responses to entries made by the user.

Chatbots are commonly programmed using Artificial Intelligence Markup Language

(AIML), an XML-compliant language. It was designed by the creators of A.L.I.C.E.

(Artificial Linguistic Internet Computer Entity), one of the most robust programs of its

kind, and it makes it possible to customize an Alicebot or to create one from scratch.

Harnessing the potential of skills, our idea was to create a skill where the user would

say something to Alexa, who would send that message to a chatbot, get a response and

say it back to the person. By speaking to the chatbot through Alexa, the user would be

able to have a coherent spoken conversation with an AI using their voice.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

43

3.1.5.7.2 Objectives

The objectives for building this skill were the following:

 Achieve uninterrupted dialogue between the user and a chatbot.

3.1.5.7.3 Prerequisites

In order for this skill to work as intended some steps need to be taken beforehand.

AWS configuration

 Skill name: ARC Chatbot

 Invocation name: chatbot

 Intent schema: the intent schema used for this skill is the following:

Figure 19: ARC-Chatbot intent schema

 Custom Slot Types:

 Type: QUES

 Values:

 what is your name

ioesrs goast julius mandatory whatever

s dfgdfgdfngjd fgdjfafjilxco

aoiaeir oirasi delta airlines

this is a test of skill

and such and stuff and things and more

toast is good I think let's ask

don't do it or else please thank you

ARC: Alexa Residential Care

44

Alexa attempts to map a user’s utterance with the sample utterances

defined by the developer. This is a problem if we can’t predict what the

user is going to say at all.

Because this skill allows the user to freely talk with a chatbot, this skill

suffers from this problem.

Alexa maps the user’s utterance to the closest sounding sample

utterance, and thus assigns it the corresponding intent.

However, after some investigating we learned that if no match is found, it

assigns it to the intent with the largest amount of sample utterances.

Our solution to the problem was to create two different intents, one for

saying something to the bot and another to exit the chat. We made a slot

for the former, and defined several random values to the slot. After

thorough testing this proved to be an excellent solution.

 Sample Utterances:

ChatIntent {ques}

ExitIntent Bye bye

 Endpoint:

https://arc.el.ub.edu:443/arc_chatbot

ARC Control Panel Settings

In the ARC Control Panel the user can configure their settings for this skill. The

settings are the following:

 General

o Chatbot URL: URL of an html-based Chatbot chat.

3.1.5.7.4 Development

 bs4 – BeautifulSoup (version 4.6.0)[28]: Python library for pulling data out of

HTML and XML files. Works with a variety of parsers to provide idiomatic ways of

navigating, searching and modifying the parse tree.

https://arc.el.ub.edu/arc_chatbot

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

45

The application’s execution is segregated according to the following decorators:

 @ask.launch – the first step taken when launching this skill, after reading the skill

parameters from the database, is to perform a GET request on the chatbot’s

URL. If a status code 200 is returned, Alexa informs the user that they are now

speaking to the chatbot and asks them, using a Flask-ASK question, to say

something.

 @ask.intent(“ChatIntent”) – this function has a custom slot as a parameter. This

slot is the user’s entire utterance and is sent to the chatbot in the form of a POST

request. If a status code 200 is returned, then the chatbot’s response is extracted

using BeautifulSoup.

The returned chatbot html is converted to a BeautifulSoup instance, using the

lxml parser:

soup = BeautifulSoup(req.text, "lxml")

Because the chatbot’s response sometimes contains html elements such as links

which are irrelevant to a user interacting with a vocal interface (they can’t click

links or view images), these elements need to be extracted. This is done using

the same library:

[s.extract() for s in soup('script')]

[s.extract() for s in soup('bgsound')]

[s.extract() for s in soup('a')]

[s.extract() for s in soup('img')]

Then, the div with an id equal to “output” is confined:

soup = soup.find("div", id = "output").get_text(strip=True)

Finally, the remaining text is encoded with utf-8 and read by Alexa using a Flask-

ASK question, that way the conversation is on-going.

 @ask.intent(“ExitIntent”) – Alexa reads a closing statement in the form of a

Flask-ASK statement, thereby ending the skill’s session.

3.1.5.8 ARC-Telegram

3.1.5.8.1 Introduction

After we developed ARC-Emergency we had a sense of how to use skills in conjunction

with a telegram bot. We capitalized on this and decided to build an additional skill where

the user could speak any message and Alexa would send it to a telegram chat.

ARC: Alexa Residential Care

46

3.1.5.8.2 Objectives

The objectives for building this skill were the following:

 Send a spoken message as text to a telegram chat.

3.1.5.8.3 Prerequisites

In order for this skill to work as intended some steps need to be taken beforehand.

AWS configuration

 Skill name: ARC Telegram

 Invocation name: telegram

 Intent schema: the intent schema used for this skill is the following:

Figure 20: ARC-Telegram intent schema

 Custom Slot Types:

 Type: MESSAGE

 Values:

 what is your name

ioesrs goast julius mandatory whatever

s dfgdfgdfngjd fgdjfafjilxco

aoiaeir oirasi delta airlines

this is a test of skill

and such and stuff and things and more

toast is good I think let's ask

don't do it or else please thank you

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

47

This skill suffers from the same problem as ARC-Chatbot when it comes

to expected utterances from the user, so we adopted the same solution.

 Sample Utterances:

MessageIntent {message}

 Endpoint:

https://arc.el.ub.edu:443/arc_telegram

ARC Control Panel Settings

In the ARC Control Panel the user can configure their settings for this skill. The

settings are the following:

 General

o Telegram Chat ID: the chat’s ID.

3.1.5.8.4 Development

The application’s execution is segregated according to the following decorators:

 @ask.launch – as soon as the skill is launched by a user, this function reads the

settings from the database and asks the user for a message.

 @ask.intent(“MessageIntent”) – this function uses a custom slot as a parameter,

just like ARC-Chatbot, that contains the entire user’s utterance. The message is

then sent as a POST request to the following url:

https://api.telegram.org/bot{bot_token}/sendMessage?text={message}&chat_id={telegram_chat_id}

Whether the request is sent successfully or not, Alexa informs the user in both

cases with a closing statement.

https://arc.el.ub.edu/arc_telegram

ARC: Alexa Residential Care

48

3.1.6 ARC-Bot

3.1.6.1 Introduction

In order to send a message to a telegram chat from a platform that isn’t the Telegram app

one needs to create and use a telegram bot.

Bots[29] are Telegram accounts operated by software – not people – and they often have AI

features. They can do anything – teach, play, search, broadcast, remind, connect,

integrate with other services, or even pass commands to the internet of Things.

Bots are third-party applications that run inside Telegram. Users can interact with bots by

sending messages, commands, and inline requests.

A telegram bot, therefore, is central to any skill that intends to interact with Telegram.

3.1.6.2 Technologies used

o telebot (version 0.0.2)[30]: a Telegram bot library, with simple route decorators.

Why telebot?

Currently there is a plethora of Telegram bot APIs. Telebot, though a work in progress, is

simple to use and has enough functionality to suit our purpose.

3.1.6.3 Development

Before writing the bot’s code the first step we had to take was to create a bot.

Creating and setting up a bot

The BotFather[31] is a bot created by the Telegram team that users must use in order to

create and manage a bot of their own.

It has a great number of commands but we’re really only interested in a few.

 /newbot: the BotFather will follow this command by asking the user for a name by

which to call the new bot and a username so that users can find it.

 /setjoingroups: set whether a bot can join groups.

o Bots can’t initiate conversations with users. A user must either add them to

a group or send them a message first. For our project we needed a bot that

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

49

would send messages to a group of people (family, close friends, etc) so we

chose the former method.

 /mybots: edit a user’s bot. We can change the name, description, about, botpic and

commands, as well as obtain the bot’s API token.

Figure 21: BotFather in action

Once the bot had been created the next step was choosing an API to start developing our

bot. We tried a few options but ended up using telebot for reasons mentioned above.

Telebot is a python module and thus it’s imported in the usual manner:

Import telebot

To assign the program to an existing bot we need to use the following instruction:

bot = telebot.TeleBot(TOKEN)

where TOKEN is the bot’s API token, given by the BotFather.

And to start the bot:

bot.polling()

Now, Telegram’s Bot API allows the use of decorators to map user’s commands with

specific methods in the bot’s code. This isn’t what gives this particular bot its main

functionality, but we figured we might as well learn how to use it.

ARC: Alexa Residential Care

50

Figure 22: using decorators with telebot

In figure 22, the command /start is handled by the method send_welcome, where the bot

replies with a starting message.

ARC bot responds to these three commands:

 /start – Get hello message

 /info – Get bot information

 /help – Commands list

What we really wanted our bot to do, however, is to send a custom message to a specific

chat. To complete this we needed two things:

 Our bot has to be running.

 An https request has to be made, specifying the bot Token, the chat ID and the

message.

The https request is made from both skills that interact with Telegram.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

51

3.2 ARC-Notifications

3.2.1 Introduction

When we started developing the project we quickly ran into a problem. The Echo device

lacks push-notifications and thus requires that the user speak first before being able to do

anything.

Amazon announced in May 2017 that push-notifications were coming to the Echo sometime

this year, however when we first encountered the problem we had no knowledge of this.

We wanted ARC-Medication to inform the user about their pending medication. In other

words, we wanted to make a system where Alexa would periodically gather information from

the medication calendar and inform the user if they have to take anything at that time.

3.2.2 Objectives

The functional objectives for making ARC-Notifications were the following:

 Automated system.

 Periodically check medication calendar.

 Inform user in case of pending medication.

3.2.3 Development

Technologies used

 Curl

 Pico2wav

 subprocess

An Echo device couldn’t be used for what we had in mind, because we can’t program it to

say anything without having a person speak to it first.

However, the Alexa Voice Service API allows interaction with the Alexa Voice Service from

any device registered on Amazon.

So instead of an Amazon Echo we used a laptop with Ubuntu 16.04.

ARC: Alexa Residential Care

52

In order to interact with Alexa Voice Service without an Echo device one needs to register a

new device in the Alexa Developer Console. Once this is done we will have a Client ID and a

Client Secret.

We first need the Client ID to run auth_code.sh (figure 23). This small script generates an

authentication URL which should be opened on a browser and then be prompted to login with

Amazon (figure 24). The user is then redirected to a redirect URI we have configured after

logging in. This redirect URI contains an authentication code as a URL parameter (figure 25).

Figure 23: Executing auth_code.sh

Figure 24: Amazon Login

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

53

Figure 25: Authentication code

Now, using this code and the client information we got earlier we can run auth_token.sh. This

bash script trades the authentication code for an access token in order to make requests to

the Alexa Voice Service API from the registered device, in our case a laptop.

Figure 26: auth_token.sh with new authentication code

Figure 27: Executing auth_token.sh

ARC: Alexa Residential Care

54

After running the script we should have an access token and refresh token returned in a

JSON response.

Figure 28: JSON response with access token and refresh token

The refresh token is used to retrieve another fresh access token after it has expired (after 1

hour it’s no longer usable). This is done with refresh_token.sh.

Now that we have an access token we can finally interact with the Alexa Voice Service.

Up until this point we have been following Miguel Mota’s tutorial[32]. He also made a script

called alexa.sh that can be used like so:

./alexa.sh “Tell me a joke”

The text given to alexa.sh is converted into a wav file and sent to the Alexa Voice Service.

The response is then piped to a ‘play’ command to give the response on the laptop, or the

Echo device if it’s used as a Bluetooth speaker.

This is all well and good but we needed something more complex, so we made a python

script that uses the Google Calendar API to check for medication events in our medication

calendar, only the ones that occur in the current hour. If there is any medication that the

patient should take in this hour, it opens a subprocess and runs alexa.sh with the text ‘Simon

says you have pending medication’. Simon says is a command that Alexa recognizes and

repeats whatever comes next, so Alexa just says ‘You have pending medication’.

Because the process is difficult to setup, a solution is to make a cronjob for refresh_token.sh

so that we don’t have to manually get a fresh access token every hour.

If we do that we’re free to interact with the Alexa Voice Service. All we need now is to setup a

second cronjob for checkMeds.py to check the medication calendar every hour and notify the

user in case of pending medication.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

55

3.2.4 Limitations

This system, while a decent workaround for the lack of push notifications, has its downsides:

 Alexa can give you information, it cannot however ask a question. In specific Flask-

ASK terms, it can give a statement but not a question. For us this is an issue

because the idea was to notify the patient of their pending medication. When we

designed ARC-Medication we wanted Alexa to first ask the whether they had taken

today’s medication or not. Directly informing the user of their medication was

intrusive in our opinion. With this system, the user is notified of the fact that they

have pending medication, but it is then up to them to launch ARC-Medication to

find out what that medication is exactly.

 The system is not executed in a server, it is executed on a PC. Otherwise we can’t

get audio.

 The computer has to be near the Amazon Echo in order to play the notification

audio through it, using it as a Bluetooth speaker. This adds another limitation

where the computer running the notification system and the Echo device have to

be in the same building, unlike the LAMP server running the rest of the project

3.2.5 Final thoughts on ARC-Notifications

On May 16, not long after developing ARC-Notifications, Amazon announced[33] that

‘Notifications for Alexa’ feature was coming soon. This didn’t really put a wrench in our wheel

because:

 As a proof of concept, we were happy with our solution.

 We learned a thing or two along the way.

 Once the tools are out we’ll be able to modify our skills to feature push-notifications

without the need of this system.

Maybe it wasn’t the most productive use of our time but we thought it was an important

functionality to feature in the suite, so we’re glad we went through with it.

ARC: Alexa Residential Care

56

Chapter 4

CONCLUSION

This project aimed at the creation of a set of skills with the Alexa Skills Kit with the objective

of providing residential care services for senior patients.

Despite the project currently being in its initial phase, since it’s planned to be so much more,

we think that the proposed objectives have been achieved. We have developed a firm base

that allows incremental additions of functionality as the project grows and expands, as well as

providing a starting group of ideas for further inspiration.

Along the way we’ve encountered issues that hindered our original ideas for ARC but we’re

satisfied for the time being with the proposed solutions, especially considering that both the

Amazon Echo and the Alexa Skills Kit are under constant improvement by the good people at

Amazon. Making use of these new functionalities and services will allow ARC to get better

over time.

On a personal note I loved developing voice interfaces and figuring out how people interact

with machines this way. It helped me understand people a little bit better, and myself as well,

so I’m more than glad I took on the project.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

57

Chapter 5

FUTURE IMPROVEMENTS

5.1 Amazon Account Linking

Perhaps the most noticeable improvement that we could add to our project, account linking is

the process by which an Alexa user’s account is linked to an external service that also

requires authentication.

In our project this external service would be the ARC Control Panel and the database. As it

stands all ARC applications retrieve settings from the database, but the only way to know

what user ID they need is by hardcoding it into the code. Account linking would solve this

problem in an elegant manner.

5.2 Web password hashing

Before ARC is production ready a very important security measure that needs to be taken is

to secure the user passwords, using salted password hashing for instance. Securing any

ARC setting that might contain sensitive information would also be a good idea.

5.3 Homemade chatbot

For this iteration of ARC-Chatbot we used Amythebot[34]. In an earlier iteration, we used a

different chatbot called Mitsuku, but the owner stopped hosting it before we were able to

finish our project.

Chatbots come in different flavors, each one specializing on a given functionality.

ARC-Chatbot could benefit from a dedicated chatbot focused on aiding elderly people. This

chatbot could be created by modifying an Alicebot using AIML.

5.4 Notifications for Alexa

ARC-Notifications, while a good workaround for a current lack of push-notifications, would not

hold up to a proper implementation of the feature. On May 16th Amazon announced that

ARC: Alexa Residential Care

58

notifications for Alexa was coming soon. This is something that would simplify and improve

skills such as ARC-Medication, if implemented properly when the feature is made available.

5.5 Added functionality to ARC-Bot

ARC-Bot could benefit from allowing skill controls, making use of Telegram bot commands.

For example, a user could use commands to send a notification to Alexa to ask the user how

their day is going. This would allow remote checking of a patient’s state of well-being.

Another option would be to quickly configure skill parameters using the menu interface that

Telegram bots feature.

5.6 Added messaging services for ARC-Emergency

Messaging service Whatsapp has an unofficial API called yowsup[35]. It has limited

functionality compared to the Telegram API but ARC-Emergency could benefit from a third

messaging service option, specially one as popular as Whatsapp.

SMS was also considered in the planning stages of ARC-Emergency. The idea was scrapped

due to the cost of sending an SMS message, as the service is not data-based.

5.7 AWS Lambda

Amazon offers a server-less computer service called AWS Lambda that runs your code in

response to events and automatically manages the underlying compute resources. It is the

recommended hosting option for production-ready skills and the logical next step in

developing ARC.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

59

BIBLIOGRAPHY

[1] Flask Python module

http://flask.pocoo.org/

[2] Flask-ASK Python module

https://pypi.python.org/pypi/Flask-Ask

[3] Echosim.io – Alexa Skill Testing Tool

https://echosim.io

[4] LAMP server

http://lamphowto.com/

[5] httplib2 0.10.3

https://pypi.python.org/pypi/httplib2/0.10.3

[6] Python module – os

https://docs.python.org/2/library/os.html

[7] apiclient.discovery 1.0.2

https://github.com/google/google-api-python-client/blob/master/googleapiclient/discovery.py

[8] oauth2client.client 4.1.0

http://oauth2client.readthedocs.io/en/latest/source/oauth2client.client.html

[9] Oauth 2.0

https://oauth.net/2/

[10] Web frameworks

https://www.fullstackpython.com/web-frameworks.html

[11] Flask-ASK Building Responses

https://github.com/johnwheeler/flask-ask/blob/master/docs/responses.rst

http://flask.pocoo.org/
https://pypi.python.org/pypi/Flask-Ask
https://echosim.io/
http://lamphowto.com/
https://pypi.python.org/pypi/httplib2/0.10.3
https://docs.python.org/2/library/os.html
https://github.com/google/google-api-python-client/blob/master/googleapiclient/discovery.py
http://oauth2client.readthedocs.io/en/latest/source/oauth2client.client.html
https://oauth.net/2/
https://www.fullstackpython.com/web-frameworks.html
https://github.com/johnwheeler/flask-ask/blob/master/docs/responses.rst

ARC: Alexa Residential Care

60

[12] Flask-SSLify

https://pypi.python.org/pypi/Flask-SSLify

[13] ssl – TLS/SSL wrapper for socket objects

https://docs.python.org/2/library/ssl.html

[14] MySQLdb

http://mysql-python.sourceforge.net/MySQLdb.html#mysqldb

[15] gettext Python module

https://pypi.python.org/pypi/python-gettext/3.0

[16] datetime

https://docs.python.org/2/library/datetime.html

[17] requests

http://docs.python-requests.org/en/master/

[18] ARC Control Panel url

https://arc.el.ub.edu

[19] StartBootstrap Grayscale Theme

https://startbootstrap.com/template-overviews/grayscale/

[20] Slot Type Reference

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-
ref/slot-type-reference

[21] NGrok

https://ngrok.com/

[22] Configuring Your Web Service to Use a Self-Signed Certificate

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/testing-an-alexa-
skill

[23] apiclient.errors

https://google.github.io/google-api-python-client/docs/epy/googleapiclient.errors-module.html

https://pypi.python.org/pypi/Flask-SSLify
https://docs.python.org/2/library/ssl.html
http://mysql-python.sourceforge.net/MySQLdb.html#mysqldb
https://pypi.python.org/pypi/python-gettext/3.0
https://docs.python.org/2/library/datetime.html
http://docs.python-requests.org/en/master/
https://arc.el.ub.edu/
https://startbootstrap.com/template-overviews/grayscale/
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
https://ngrok.com/
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/testing-an-alexa-skill
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/testing-an-alexa-skill
https://google.github.io/google-api-python-client/docs/epy/googleapiclient.errors-module.html

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

61

[24] MIMEText

https://docs.python.org/2/library/email.mime.html

[25] base64

https://docs.python.org/2/library/base64.html

[26] RFC 3548

https://tools.ietf.org/html/rfc3548.html

[27] dateutil

https://pypi.python.org/pypi/python-dateutil/2.6.0

[28] Beautiful Soup

https://www.crummy.com/software/BeautifulSoup/#Download

[29] Telegram Bot Platform

https://telegram.org/blog/bot-revolution

[30] telebot

https://pypi.python.org/pypi/telebot/0.0.2

[31] The BotFather

https://core.telegram.org/bots#6-botfather

[32] Alexa Notifications using Curl

https://github.com/gravesjohnr/AlexaNotificationCurl

[33] Alexa notifications coming soon

https://developer.amazon.com/blogs/alexa/post/8cc45487-d5fb-413b-b6c7-
eeea4794d10c/amazon-announces-notifications-for-alexa-feature-is-coming-soon-sign-up-to-
stay-tuned

[34] Amythebot

https://www.pandorabots.com/pandora/talk?botid=878ba74dfe34402c

[35] yowsup (Whatsapp API)

https://github.com/tgalal/yowsup

https://docs.python.org/2/library/email.mime.html
https://docs.python.org/2/library/base64.html
https://tools.ietf.org/html/rfc3548.html
https://pypi.python.org/pypi/python-dateutil/2.6.0
https://www.crummy.com/software/BeautifulSoup/#Download
https://telegram.org/blog/bot-revolution
https://pypi.python.org/pypi/telebot/0.0.2
https://core.telegram.org/bots#6-botfather
https://github.com/gravesjohnr/AlexaNotificationCurl
https://developer.amazon.com/blogs/alexa/post/8cc45487-d5fb-413b-b6c7-eeea4794d10c/amazon-announces-notifications-for-alexa-feature-is-coming-soon-sign-up-to-stay-tuned
https://developer.amazon.com/blogs/alexa/post/8cc45487-d5fb-413b-b6c7-eeea4794d10c/amazon-announces-notifications-for-alexa-feature-is-coming-soon-sign-up-to-stay-tuned
https://developer.amazon.com/blogs/alexa/post/8cc45487-d5fb-413b-b6c7-eeea4794d10c/amazon-announces-notifications-for-alexa-feature-is-coming-soon-sign-up-to-stay-tuned
https://www.pandorabots.com/pandora/talk?botid=878ba74dfe34402c
https://github.com/tgalal/yowsup

ARC: Alexa Residential Care

62

ANNEXES

Annex A: Skill Conversation Trees

This section features the conversation trees for every ARC skill between Alexa and the user.

It follows this convention:

Figure 29: Conversation trees legend

ARC-Emergency

Figure 30: ARC-Emergency Conversation Tree

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

63

ARC-Medication

Figure 31: ARC-Medication Conversation Tree

ARC: Alexa Residential Care

64

ARC-Chatbot

Figure 32: ARC-Chatbot Conversation Tree

ARC-Telegram

Figure 33: ARC-Telegram Conversation Tree

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

65

Annex B: Web Reference

This section showcases the ARC Control Panel views and all available actions in each page.

Login page

Figure 34: login.php

This page has a form where the user inserts their authentication credentials in order to login

into ARC Control Panel. The ‘ABOUT’ and ‘CONTACT’ links are purely aesthetic.

Available actions:

 Login.

 Go to create user page.

ARC: Alexa Residential Care

66

Create user page

Figure 35: create_user.php

This page contains a form where the user can insert a username and password to create a

new ARC user.

Available actions:

 Create user.

 Go to login page.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

67

ARC Control Panel main page

Figure 36: arc.php

From this page the user can choose any skill to edit its particular settings.

Available actions:

 Go to ARC-Emergency configuration page.

 Go to ARC-Medication configuration page.

 Go to ARC-Chatbot configuration page.

 Go to ARC-Telegram configuration page.

 Go to ARC-Notifications configuration page.

 Go to General configuration page.

ARC: Alexa Residential Care

68

The user can also use the dropdown menus, available in every page once logged in, to view

their logs (shown in Figure 37) and to log out of their session (shown in Figure 38).

Figure 37:Logs dropdown menu

Figure 38:Log out dropdown menu

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

69

ARC-Emergency configuration page

Figure 39:view-emergency.php

This page shows the form containing the user’s ARC-Emergency settings.

Available actions:

 Switch between enabled messaging services.

 Configure skill settings.

 Go to ARC Control Panel main page.

When the user chooses a single messaging service instead of both, the form disables the

part of the form corresponding to the other messaging service. This is shown in Figure 40.

ARC: Alexa Residential Care

70

Figure 40: Telegram messaging service selected

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

71

ARC-Medication configuration page

Figure 41: view-medication.php

This page shows the form containing the user’s ARC-Medication settings.

Available actions:

 Configure skill settings.

 Go to ARC Control Panel main page.

ARC: Alexa Residential Care

72

ARC-Chatbot configuration page

Figure 42: view-chatbot.php

This page shows the form containing the user’s ARC-Chatbot settings.

Available actions:

 Configure skill settings.

 Go to ARC Control Panel main page.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

73

ARC-Telegram configuration page

Figure 43: view-telegram.php

This page shows the form containing the user’s ARC-Telegram settings.

Available actions:

 Configure skill settings.

 Go to ARC Control Panel main page.

ARC: Alexa Residential Care

74

ARC-Notifications configuration page

Figure 44: view-notifications.php

This page shows the form containing the user’s ARC-Notifications settings.

Available actions:

 Configure skill settings.

 Go to ARC Control Panel main page.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

75

General settings configuration page

Figure 45: view-general.php

This page shows the form containing the user’s general ARC settings.

Available actions:

 Configure general ARC settings.

 Go to ARC Control Panel main page.

ARC: Alexa Residential Care

76

Local logs page

Figure 46: view-logs.php

This page shows a table featuring the latest ARC logs stored in the LAMP server.

Available actions:

 Go to ARC Control Panel main page.

Treball de Fi de Grau de Josu Pastor Almor ARC: Alexa Residential Care

77

Annex C: LAMP Server Project Structure

This is the recommended folder structure for the ARC project within a LAMP server:

ARC

SKILLS

ARC-Emergency

arc-
emergency.py

client_secret.json

ARC-Medication

arc-
medication.py

client_secret.json

ARC-Chatbot

arc-chatbot.py

client_secret.json

ARC-Telegram

arc-telegram.py

ARC-Bot

arc-bot.py

ARC-Notifications

alexa.sh auth_code.sh auth_token.sh checkMeds.py client_secret.json refresh_token.sh

LOGS

ARC Control
Panel

ARC: Alexa Residential Care

78

