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1 INTRODUCTION

ABSTRACT

The cosmological information contained in anisotropic galaxy clustering measurements can
often be compressed into a small number of parameters whose posterior distribution is well
described by a Gaussian. We present a general methodology to combine these estimates
into a single set of consensus constraints that encode the total information of the individual
measurements, taking into account the full covariance between the different methods. We
illustrate this technique by applying it to combine the results obtained from different clustering
analyses, including measurements of the signature of baryon acoustic oscillations and redshift-
space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed
by the consensus constraints is smaller than that of the individual methods, highlighting the
importance of performing multiple analyses on galaxy surveys even when the measurements
are highly correlated. This paper is part of a set that analyses the final galaxy clustering data
set from BOSS. The methodology presented here is used in Alam et al. to produce the final
cosmological constraints from BOSS.

Key words: cosmological parameters — large-scale structure of Universe.

and the Alcock—Paczynski effect (Alcock & Paczynski 1979) can be
studied by means of their Legendre multipoles (e.g. Padmanabhan

Over the past decades, the size and quality of galaxy redshift sur-
veys have increased dramatically. Thanks to these data sets, the
information from the large-scale structure (LSS) of the Universe
has played a central role in establishing the current cosmological
paradigm, the A cold dark matter (ACDM) model (e.g. Tegmark
et al. 2004; Cole et al. 2005; Eisenstein et al. 2005; Anderson et al.
2012, 2014a,b).

Several methods can be used to extract the information encoded
in the large-scale distribution of galaxies. The power spectrum, P(k),
and its Fourier transform, the two-point correlation function £(s),
have been the preferred tools for LSS analyses. The anisotropies
in these measurements caused by redshift-space distortions (RSD)
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& White 2008) or by using the clustering wedges statistic (Kazin,
Séanchez & Blanton 2012). Thanks to the combined information of
baryon acoustic oscillations (BAO) and RSD, anisotropic clustering
measurements can simultaneously constrain the expansion history
of the Universe and the growth of density fluctuations, thus offering
one of the most powerful cosmological probes.

The potential of LSS observations as cosmological probes has led
to the construction of increasingly larger galaxy catalogues. Exam-
ples of these surveys include the Two-degree Field Galaxy Redshift
Survey (2dFGRS, Colless et al. 2001, 2003), the 6dF Galaxy Sur-
vey (6dFGS, Jones et al. 2009), the WiggleZ Dark Energy Survey
(Drinkwater et al. 2010), the completed Baryon Oscillation Spec-
troscopic Survey (BOSS; Dawson et al. 2013), which is part of the
Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al. 2011),
the ongoing SDSS-IV extended Baryon Oscillation Spectroscopic
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Survey (eBOSS; Dawson et al. 2016), and future surveys such as
the Hobby Eberly Telescope Dark Energy Experiment (HETDEX;
Hill et al. 2008), the Dark Energy Spectroscopic Instrument (DESI;
Levi et al. 2013) and the ESA space mission Euclid (Laureijs et al.
2011).

As the construction of galaxy surveys requires a considerable
amount of resources from the community, substantial efforts are
put into maximizing the information extracted from the obtained
data sets. This problem has often been posed as that of determin-
ing which statistic is the best to extract cosmological information
(e.g. power spectrum versus correlation function), often based on a
simple metric or a figure of merit. However, although the results ob-
tained by applying different statistics to a given data set are highly
correlated, as they are based on estimators and each measurement
is analysed over a limited range of scales, they do not contain ex-
actly the same information or are affected by noise in the same
way. This means that, if the covariance between the different mea-
surements is correctly taken into account, additional information
could be obtained by combining the results inferred from different
methods.

In most cases, the cosmological information contained in the
clustering measurements can be condensed into a small number
of parameters whose posterior distribution is well described by a
multivariate Gaussian. In this case, the obtained constraints can
be represented by the mean values of these parameters and their
respective covariance matrices. The analyses of the final BOSS
galaxy samples of our companion papers are examples of this sit-
uation (Beutler et al. 2016a,b; Grieb et al. 2016; Ross et al. 2016;
Séanchez et al. 2016; Satpathy et al. 2016). The BAO and RSD infor-
mation obtained in these analyses can be expressed as constraints
on the ratio of the comoving angular diameter distance to the sound
horizon at the drag redshift, Dy (z)/rq, the product of the Hubble
parameter and the sound horizon, H(z) X rg4, and the growth rate of
cosmic structures, characterized by the combination fog(z), where
fz) is the logarithmic growth rate and og(z) represents the linear
rms mass fluctuation in spheres of radius 8 2~! Mpc.

Here, we present a general methodology to combine several Gaus-
sian posterior distributions into a single set of consensus constraints
representing their joint information, taking into account the full co-
variance between the different estimates. We illustrate this technique
by applying it to the results inferred from the application of the same
clustering analyses performed on the final BOSS galaxy samples
to 996 MuLriDARK-PATCHY (MD-PATCHY) mock galaxy catalogues,
reproducing the properties of the survey (Kitaura et al. 2016). The
obtained consensus distributions represent a gain in constraining
power with respect to the results of the individual methods, high-
lighting the importance of performing multiple analyses on galaxy
surveys. The methodology presented here is used in our companion
paper Alam et al. (2016) to combine the cosmological informa-
tion from the different analysis methods applied to the final BOSS
galaxy samples (Beutler et al. 2016a,b; Grieb et al. 2016; Ross et al.
2016; Sanchez et al. 2016; Satpathy et al. 2016) into a final set of
consensus constraints.

The structure of the paper is as follows. In Section 2, we present
the general scheme for the combination of different Gaussian pos-
terior distributions into a set of consensus constraints that encode
the full information provided by these estimates. We consider the
cases in which the posterior distributions cover the same parameter
spaces and when they differ. In Section 3, we illustrate this proce-
dure by applying it to the results obtained from different BAO and
RSD measurements from a set of BOSS mock catalogues. Finally,
Section 4 contains our main conclusions.

2 THE COMBINATION OF GAUSSIAN
POSTERIOR DISTRIBUTIONS

In this section, we describe the general formalism to combine the
information from several posterior distributions into a set of con-
sensus constraints that fully account for their covariance. We begin
with the case in which all distributions contain the same parameters
and later extend these results to the more general case in which the
overlap can be partial.

2.1 The combination of posterior distributions on the same
parameter space

Let us assume that m different statistical analyses have been per-
formed on a given data set, each of them producing an estimate of
the same set of p parameters. If the posterior distributions of these
parameters are well described by a Gaussian, the results of any given
method i can be represented by an array of p measurements D; and
their corresponding p x p covariance matrix C;;. Considering all
m methods, the full set of measurements can be written in a single
array of dimension m x p as

Dy =Dy, -+, D), (1
with a total covariance matrix
Ci - G
Co=| : . : |. @
Coi -+ Coum

where each block C;; represents the cross-covariance matrix be-
tween the results of methods i and j.

A given model will predict values for these parameters, which
we will represent by the array T. Defining

Tio = (T, -+, T), 3)
that is, T repeated m times, and a total precision matrix as
Wit = C;,S s 4)

we can compute the x 2 of amodel, taking into account the combined
information of all measurements, as

X2 = (Dot — Tio) Wiot Dot — Tior) ()

Our goal is to compress the combined information of all the
measurements into a single set of p consensus values, D., with its
corresponding p x p covariance matrix, C, such that

xe =D —T) WD, —T), (6)
where
v =C,' ©)

is equal to the x? value of equation (5) up to an additive constant,
which would only correspond to a renormalization of the likelihood
function. In order to do this, we first write the full precision matrix,
W, in blocks of size p x p as
Wip - Wi
Va=| 1 =~ | ®
“Ijml e “IJmm

Note that, in general, ¥;; is not the inverse of the corresponding
block C;; in Cy.
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The solution for D, and C. can be easily found by expanding the
expression for the total x2 of equation (5) as
x> =Dl WDy — 2T} Vo Doy + Tio Wio Tor- ©)
Equivalently, for the consensus values, we will have
x*=D'W¥.D, —2T¥.D, + TV, T. (10)

Equating the last terms of equations (9) and (10), we find a general
expression for C, as

C.=v'= sz:\v,-j , (11)

Dczwglz Z\y,i D;. (12)

It is easy to see that in the case in which the different estimates
are independent, these expressions reduce to the known formulae

W=, (13)
i=1
and
m
D.=w 'y WD, (14)

i=1
where W;; corresponds to the precision matrix of measurement i.

Another interesting particular case is when the goal is to obtain
the consensus value of a single parameter (i.e. p = 1), given a set of
m measurements D;. In this case, equations (11) and (12) show that
the consensus mean and dispersion for this parameter will be given
by

D. =o? Z Z ¥i; D; (15)

—1

= (DD | . (16)
which correspond to the result found by Winkler (1981).

2.2 The combination of posterior distributions with
different parameters

In certain cases, it might be necessary to combine two or more
posterior distributions with different parameters. This situation is
encountered, for example, when combining cosmological distance
measurements obtained from BAO-only analyses with the informa-
tion obtained from full-shape fits to anisotropic clustering measure-
ments, which also constrain the growth-rate parameter combination
fo3(2).

The recipe described in the previous section can also be applied
in this case. As an example, let us consider the case in which the
first data set gives constraints on the first p — 1 parameters only,
with an associated (p — 1) x (p — 1) covariance matrix C,,. These
results can be considered as including a constraint on the remaining
parameter, but with an infinite uncertainty, that is,

CH:(C” 0). 17)

0 oo
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In the remaining blocks of the total covariance matrix C,y, the rows
and columns corresponding to the undetermined parameter will be
zero. This structure will be inherited by the total precision ma-
trix, where also the diagonal entry corresponding to this parameter
will cancel. It is then possible to apply the solution of equations
(11) and (12) to find the final consensus values that combine all
measurements.

In a more general situation, given a set of measurements of dif-
ferent parameter spaces, it is possible to apply the general recipe
described here to obtain consensus values on the parameter space
defined by the union of those of the individual measurements.

3 APPLICATION TO BAO AND RSD
MEASUREMENTS FROM THE BOSS

As an illustration of the procedure described in the previous section,
we have applied it to combine the information obtained from a set of
cosmological measurements made on the MD-ParcHy mock galaxy
catalogues (Kitaura et al. 2016), which are designed to mimic the
BOSS DR12 sample. These mocks are based on the ParcHy recipe
of Kitaura, Yepes & Prada (2014), in which dark matter density
and velocity fields are generated using augmented Lagrangian per-
turbation theory (Kitaura & Hef3 2013). The initial conditions of
the MD-ParcHy mock catalogues are based on the same cosmologi-
cal model as the Bi-MuLtIDARK N-body simulations (Klypin et al.
2014), corresponding to the best-fitting ACDM cosmology to the
Planck 2013 cosmic microwave background (CMB) measurements
(Planck Collaboration XVI 2014). The halo density field is then
modelled using perturbation theory and non-linear stochastic bias-
ing with parameters calibrated against the BiG-MuLTIDARK simula-
tions, as described in Rodriguez-Torres et al. (2016). These haloes
are populated with galaxies by abundance matching between the
DRI12 combined sample and the simulations using HADRON (Zhao
et al. 2015). The full survey selection is applied to a light-cone built
by interpolating the galaxy positions at 10 different intermediate
redshifts. The final mock catalogues correctly reproduce the DR12
two- and three-point statistics (Kitaura et al. 2016). From the total
set of 2045 mock catalogues produced, we use 996 in our analysis.
We followed Alam et al. (2016) and divided each mock catalogue
into three overlapping redshift bins of roughly equal effective vol-
ume, defined by 0.2 <7< 0.5,04 <z<0.6and 0.5 <z <0.75. We
focus first on the combination of the results of the BAO-only and
full-shape fits separately and then combine these constraints into a
final set of consensus values.

3.1 Post-reconstruction BAO-only fits

The cosmological information encoded in the BAO signal can
be expressed in terms of the geometric parameters Dy(z)/rq and
H(z) x rq. In this section, we focus on the combination of mea-
surements of these quantities derived from BAO-only analyses. For
this, we applied the reconstruction algorithm (Eisenstein et al. 2007;
Padmanabhan et al. 2012) as described in Cuesta et al. (2016) to
each MD-Parcuy mock catalogue. This procedure approximately
recovers the linear density field, enhancing in this way the signifi-
cance of the BAO signal in our clustering measurements.

For each mock catalogue, we then applied the methodologies
of Ross et al. (2016) and Beutler et al. (2016b) to perform BAO-
only fits in each of our three redshift bins. We now present a brief
description of the methodologies used in these analyses and refer
the reader to those papers for more details.
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Figure 1. The mean 68 and 95 per cent two-dimensional constraints on the parameters Dy (z)(réid /ra) and H(z)(rq /rgd) obtained by applying the BAO-only
analyses of Ross et al. (2016, orange) and Beutler et al. (2016b, blue) to 996 MD-ParcHy BOSS mock catalogues for the redshift bins indicated in the legend.
The results are in excellent agreement with the true underlying values of these parameters, indicated by the dotted lines. The full information from these
measurements can be combined into a set of consensus constraints (black solid lines), as described in Section 2. The dashed lines correspond to the combination

of the results obtained by averaging the logarithm of the two posterior distributions.

Ross et al. (2016) use the information of the post-reconstruction
correlation function multipoles of order £ = 0, 2 for scales 20 < s <
180 4! Mpc. The methodology employed in this analysis follows
that of Xu et al. (2015), Anderson et al. (2014b) and Ross et al.
(2015) and is based on templates of & ,(s) that are constructed for
the fiducial cosmology (i.e. the cosmology assumed when obtaining
the clustering measurements). To account for the Alcock—Paczynski
distortions (Alcock & Paczynski 1979), the BAO features in these
templates are altered as a function of the relative change in Dy(2)
and H(z) with respect to those of the fiducial cosmology. To isolate
the signal of the anisotropic BAO feature, these templates are also
allowed to vary in amplitude and are combined with third-order
polynomials that marginalize over any shape information.

Beutler etal. (2016b) extract the BAO information from the power
spectrum multipoles Py (k) measured using the fast Fourier trans-
form based estimator proposed by Bianchi, Percival & Bel (2015)
and Scoccimarro (2015). The methodology used to extract the BAO
signal is based on that of Seo et al. (2016). A model for the full
anisotropic power spectrum is constructed by combining a smooth
component describing its broad-band features and an oscillating
one that accounts for the BAO signal. This model is used to con-
struct theoretical predictions for the multipoles P, (k) for scales k <
0.3 2 Mpc~!, which are convolved with the window function of the
survey and combined with third-order polynomials in an analogous
way as the configuration-space analysis.

Fig. 1 shows the mean two-dimensional constraints on Dyi(z)/r4
and H(z) x rq for each redshift bin, rescaled by the sound horizon at
the drag redshift for our fiducial cosmology, ri4 = 147.78 Mpc, to
express them in units of Mpc and km s~! Mpc~'. The results inferred
from the configuration and Fourier-space analyses are completely
consistent and in excellent agreement with the true underlying val-
ues of these parameters, which are shown by the dotted lines. This
indicates that both methods are able to extract essentially the same
information from the clustering measurements. However, the re-
sults obtained from each set of measurements on individual mock
catalogues are affected by noise in different ways. This can be seen
in Fig. 2, which shows scatter plots of the two sets of constraints ob-
tained from each mock catalogue for our intermediate-redshift bin.
Although they are highly correlated, the correlation coefficients be-
tween the results derived from the two methods are not exactly
one, which means that additional information can be obtained by
combining them.
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Figure 2. Scatter plots of the BAO-only constraints on Dy (z)(r(fl“d /ra) and
H(z)(rqa/ rg‘d) obtained from the configuration and Fourier-space BAO-only
analyses of 996 MD-ParcHy mock catalogues for 0.4 < z < 0.6. Although the
results obtained from these methods are highly correlated, their correlation
coefficients, r, are not exactly one, indicating that additional information
can be obtained from their combination.



HP () rq
Dyi(22)/ra |
H¢(z9)rq ]
Dy(22)/ra
o o =} <
=~ ~ =~ =~
~ g < —
~ & = &
N ~— 0 ~—
Q

Figure 3. Correlation matrix corresponding to the full covariance Cyo of
the BAO-only constraints on Dyi(z)/r4, and H(z) X rq, constructed from the
individual MD-Parcuy mock catalogues in configuration and Fourier space.
The blocks C;; indicated by the dashed lines correspond to the auto- and
cross-covariance matrices of the two methods.

The results obtained from the two methods on each individual
mock catalogue can be used to construct the total covariance matrix
Cor- As an example, Fig. 3 shows the normalized correlation matrix
corresponding to the results of the intermediate-redshift bin. The
dashed lines divide the matrix into the blocks associated with C;;.
Due to the high correlation between the results of the power spec-
trum and correlation function fits, the structure of the off-diagonal
block Cj; is very similar to that of the auto-covariances. Inverting
the matrix C,, to obtain the total precision matrix W, and using
equations (11) and (12), the results of both methods can be com-
bined into sets of consensus constraints for each redshift bin, which
are shown by the black solid lines in Fig. 1. As described in Sec-
tion 2, these constraints contain the joint information of the two sets
of results.

Anderson et al. (2012, 2014a,b) derived consensus anisotropic
BAO constraints from the combination of the results inferred from
the analysis of the Legendre multipoles of the correlation function
and clustering wedges statistic (Kazin et al. 2012). These consen-
sus constraints were computed by averaging the logarithm of the
two-dimensional posterior distributions on Dy(z)/rq and H(z) X rg
obtained from each method:

1 m
1nPc=%;lnP,-. (18)

The dashed lines in Fig. 1 show the result of applying this procedure
to the constraints inferred from the Fourier- and configuration-space
fits to our mock catalogues. As the original distributions are similar,
their average is also in agreement with the full consensus constraints
but results in a slightly larger allowed region for Dyi(z)/rq and
H(z) x rq. This difference can be quantified in terms of the figure
of merit, FoM, given by

FoM = (det[C])""/%. (19)

The FoM values of the consensus constraints are larger than those
of the average profile by a factor of 1.07, 1.08 and 1.10 for the low-,
intermediate- and high-redshift bins, respectively. As we will see in
the following sections, this is a common feature of the result of the
average profile.

Combining Gaussian posterior distributions 1497

3.2 Pre-reconstruction full-shape fits

In this section, we focus on the combination of the results inferred
from full-shape fits (which we refer to as BAO+RSD analyses)
to various pre-reconstruction anisotropic clustering measurements.
Using the information encoded in the full shape of these measure-
ments, it is possible to constrain the same geometric parameters
as the BAO-only studies, Dyi(z)/rq and H(z) X rq4, and the growth
rate of cosmic structure, characterized by the combination fog(z),
where

_ dIn D
" dlna

(20)

is the logarithmic derivative of the growth factor. We consider the
analysis methods applied to the final BOSS data in our companion
papers (Beutler et al. 2016a; Grieb et al. 2016; Sanchez et al. 2016;
Satpathy et al. 2016), which we briefly summarize below.

Satpathy et al. (2016) fit the full shape of the monopole and
quadrupole of the two-point correlation function for scales be-
tween 25 and 150 h~! Mpc by using a model based on convolu-
tion Lagrangian perturbation theory (Carlson, Reid & White 2013;
Wang, Reid & White 2014) and the Gaussian streaming model
(Scoccimarro 2004; Reid & White 2011). Sanchez et al. (2016)
use a new model of the non-linear evolution of density fluctuations
(Crocce, Blas & Scoccimarro, in preparation) and RSD (Scocci-
marro, in preparation) to extract cosmological information from the
full shape of three clustering wedges in configuration space, &3, (s),
for scales s between 20 and 160 2~' Mpc.

Beutler et al. (2016a) apply a model based on Taruya, Nishimichi
& Saito (2010) to the power spectrum multipoles P,(k), for £ =
0, 2, 4, up to scales of k = O.lShMpC*l for the monopole and
quadrupole, and k= 0.1 2 Mpc~! for the hexadecapole. The analysis
of Grieb et al. (2016) is based on measurements of three power
spectrum wedges, P3,,(k), obtained by filtering out the information
of Legendre multipoles £ > 4, for scales k < 0.2hMpc~!. These
measurements are fitted with theoretical predictions based on the
same model as the configuration-space analysis of Sanchez et al.
(2016). All Fourier-space analyses require an accurate description
of the impact of the window function of the survey on the power
spectrum measurements, which for these analyses was based on the
recipe of Beutler et al. (2014).

These different analysis methodologies have been validated using
the results of N-body simulations and mock catalogues and found
to give accurate cosmological constraints without introducing any
significant systematic errors (Tinker et al., in preparation). We ap-
plied these methods to each of our mock catalogues in the same
way as they were applied to the real BOSS data. Fig. 4 shows the
mean 68 and 95 per cent confidence level constraints on Dy(z)/r4,
H(z) x rq and fog(z) of the results inferred from each individual
mock catalogue for our intermediate-redshift bin. The filled con-
tours correspond to the results obtained from the correlation func-
tion multipoles & »(s) (magenta), the power spectrum multipoles
Py, 2. 4(k) (blue), the correlation function wedges &3,(s) (orange)
and the power spectrum wedges Psy (k) (green). The results ob-
tained from these measurements are completely consistent and in
good agreement with the correct values for the cosmology of the
mock catalogues, shown by the dotted lines. However, the differ-
ent measurements and range of scales included in each analysis,
as well as the models applied to these data, lead to results with
larger differences than in the BAO-only case. We used the method-
ology described in Section 2 to obtain a set of consensus values
representing the joint information from these analyses.
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Figure 4. The mean 68 and 95 per cent two-dimensional constraints on the parameters Dy (z)(rélid /ra), H(z)(ra/ rgd) and fog(z) inferred from our mock BOSS
catalogues for 0.4 < z < 0.6. The filled contours correspond to the results obtained by means of full-shape fits of the Legendre multipoles, &,(s) (magenta)
and Py (k) (blue) and clustering wedges &3y (s) (orange) and P3y, (k) (green), using the methodology of our companion papers (Beutler et al. 2016a; Grieb et al.
2016; Sanchez et al. 2016; Satpathy et al. 2016). The obtained constraints are in good agreement with the true underlying values of these parameters, indicated
by the dotted lines. The black solid contours correspond to the combination of these measurements into a set of consensus constraints, computed as described
in Section 2. The dashed lines correspond to the combination of the results obtained by averaging the logarithms of the four posterior distributions.
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Figure 5. Correlation matrix corresponding to the total covariance Cio
of the full-shape fits of the Legendre multipoles and clustering wedges in
configuration and Fourier space constructed from the individual MD-PatcHY
mock catalogues. The blocks C;; indicated by the dashed lines correspond
to the auto- and cross-covariance matrices of the different methods.

‘We used the results obtained from the application of the different
methods to our mock catalogues to construct the full covariance
matrices Cy in our three redshift bins. As an example, Fig. 5
shows the corresponding correlation matrix for the intermediate-
redshift bin. The dashed lines divide the matrix into the blocks
C,;, corresponding to the auto- and cross-covariance matrices of
the methods. The different estimates of each parameter are highly
correlated. The differences between the methods are also reflected
in the structure of the correlation matrix, which is more complicated
than for the BAO-only case.

We used equations (11) and (12) to derive consensus constraints
for each mock catalogue. The back solid contours in Fig. 4 corre-
spond to the mean consensus constraints. As the consensus results
combine the information of all four measurements, they provide
tighter constraints than each of them individually. This highlights
the gain obtained from the combination of the methods, with respect
to the individual analyses.

Downl oaded wliﬁ§s4ﬁﬂdc!\§?réflélgl c(%TQMr)as/ article-abstract/ 464/ 2/ 1493/ 2282858

by Universitat de Barcel ona. CRAl user
on 01 February 2018

The grey dashed lines in the same figure correspond to the re-
sults obtained by averaging the logarithm of the posterior distribu-
tions recovered from the different methods. The difference between
these constraints and the consensus values can be quantified by
extending the definition of the FoM from equation (19) to the three-
dimensional covariance matrices of the consensus and average con-
straints. In this case, the FoM values of the consensus constraints
are larger than those of the average profile by a factor of «~2.5 in all
redshift bins. This difference clearly shows that the average profile
does not reproduce the full information of the different estimates.

3.3 Final consensus constraints

In this section, we focus on the combination of the consensus BAO-
only constraints derived in Section 3.1, which are sensitive only
to the geometric quantities Dyi(z)/rq and H(z) x rq, with those of
the full-shape BAO+RSD measurements derived in Section 3.2,
which also include fog(z). As these posterior distributions contain
different parameters, we proceed as described in Section 2.2 and
interpret the BAO-only results as providing an estimate of fos(z)
with infinite uncertainty. The blue and green contours of Fig. 6 show
the consensus constraints on our intermediate-redshift bin for the
BAO-only and BAO+RSD cases, respectively. As can be seen in
the left-hand panel, the constraints in the Dy (z)/rq—H(z) X rq plane
follow different correlations, which suggests that their combination
could lead to a significant improvement of the constraints.

We used the BAO-only and BAO+RSD consensus values in-
ferred from each mock catalogue in Sections 3.1 and 3.2 to obtain
the covariance matrix Ciy associated with these constraints. Fig. 7
shows the associated correlation matrix, wherein the diagonal entry
corresponding to the BAO-only estimate of fog(z) is undetermined
(shown in grey), and its corresponding row and column are set to
zero. This structure is repeated in the total precision matrix Wy
but with the corresponding diagonal entry also set to zero. The
application of equations (11) and (12) leads to a final set of consen-
sus constraints, encoding the full information of the BAO-only and
BAO-+RSD analyses. The results corresponding to the intermediate-
redshift bin are shown by the filled contours in Fig. 7, wherein the
reduction in the allowed region of the parameter space with respect
to the BAO and RSD results is clear.
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Figure 6. The mean 68 and 95 per cent two-dimensional consensus constraints on the parameters DM(z)(rfd /ra), H(z)(ra /r(?d) and fo g(z) inferred from our
mock BOSS catalogues for 0.4 < z < 0.6. The blue and green contours correspond to the combination of the BAO-only and full-shape BAO+RSD fits,
respectively. The dotted lines indicate the correct values of these parameters. The filled contours correspond to the combination of these results into a final set
of consensus constraints, containing the joint information of the two sets of measurements. The dashed contours in the left-hand panel correspond to the result

obtained by averaging the logarithms of the two posterior distributions.
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Figure 7. Correlation matrix corresponding to the joint covariance Cyo of
the BAO-only and full-shape consensus results derived in Sections 3.1 and
3.2. The dashed lines indicate the blocks C;; corresponding to the auto- and
cross-covariance matrices of the two methods. As BAO-only measurements
cannot constrain the value of fog(z), the corresponding diagonal entry is
undetermined (shown in grey), and its row and column are set to zero.

Fig. 8 shows the correlation matrix corresponding to the covari-
ance of the full consensus constraints recovered from our BOSS
mock catalogues in the three redshift bins. The 3 x 3 blocks along
the diagonal correspond to the consensus covariance C. at each
redshift, which shows a similar structure. As can be seen from the
oft-diagonal blocks, the consensus constraints of the low- and high-
redshift bins are essentially independent, but both exhibit a strong
correlation with the results of the intermediate one due to the large
redshift overlap. Alam et al. (2016) use this covariance matrix as the
basis of the cosmological implications of the consensus constraints
combining the results of the same BAO-only and BAO+4-RSD meth-
ods studied here.

So far we have assumed that the posterior distributions being com-
bined are not affected by systematic errors. If they are, these errors
will be propagated into the consensus values and might lead to bi-
ased cosmological constraints. If the different methods are affected
by uncorrelated systematic errors, their impact on the consensus re-
sults would be reduced. However, if these systematic errors shift the
value of a given parameter from the correct result always in the same
direction, this deviation will also be presented in the combined con-
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Figure 8. Correlation matrix corresponding to the covariance of the full
consensus constraints in our three redshift bins recovered from our BOSS
mock catalogues.

straints. The methodologies implemented here to extract cosmolog-
ical information from BAO+RSD fits show a small deviation from
the correct value of fo g(z) in the low- and intermediate-redshift bins.
These shifts are inherited by the final consensus constraints, which
show a deviation from the true value of 0.59, 0.42 and 0.06¢ for the
low-, intermediate- and high-redshift bins, respectively. Although
these systematic shifts are smaller than the statistical uncertainties
associated with the consensus constraints, they are taken into ac-
count in Alam et al. (2016), wherein they are used to construct a
systematic error budget for the measurements obtained from the
final BOSS galaxy samples.

4 CONCLUSIONS

We presented a general framework to combine the information of
multiple Gaussian posterior distributions into a set of consensus
constraints representing their joint information. This methodology
can be applied to combine the cosmological information obtained
from different clustering measurements based on the same galaxy
sample, which can often be expressed as Gaussian constraints
on a small number of parameters. The application of this tech-
nique requires the knowledge of the full cross-covariances of the

MNRAS 464, 1493-1501 (2017)

Downl oaded from https://academn c. oup. com nmras/articl e-abstract/464/2/ 1493/ 2282858
by Universitat de Barcel ona. CRAl user
on 01 February 2018



1500 A. G. Sdnchez et al.

different methods. For clustering measurements, this information
can be obtained using a brute-force approach, applying the same
methods being combined to a set of mock galaxy catalogues and
measuring the correlations between the obtained results.

We illustrate our technique by applying it to combine the results
obtained from different BAO-only and BAO+RSD measurements
from an ensemble of mock catalogues of the final BOSS. The ob-
tained consensus constraints represent a reduction in the allowed
region of the parameter space with respect to the results of the indi-
vidual methods. This shows the value of using the combination of
the results of multiple clustering analyses as a strategy to maximize
the constraining power of galaxy surveys.

In our companion paper Alam et al. (2016), the methodology
described here is used to obtain a set of consensus constraints that
encode the results obtained by applying the same methods studied
here to the final BOSS galaxy samples. These results are then used to
explore the cosmological implications of the data set in combination
with the information from CMB and Type la supernovae data.

We anticipate that the procedure detailed here can help us to
optimize the use of the cosmological information encoded in future
clustering and lensing analyses.
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