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Exploring complex networks by means of adaptive walkers
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Finding efficient algorithms to explore large networks with the aim of recovering information about their
structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers
with previously assigned home nodes navigate through the network during a fixed amount of time. We consider
that the exploration is successful if the walker gets the information gathered back home, otherwise no data
are retrieved. Consequently, at each time step, the walkers, with some probability, have the choice to either go
backward approaching their home or go farther away. We show that there is an optimal solution to this problem
in terms of the average information retrieved and the degree of the home nodes and design an adaptive strategy
based on the behavior of the random walker. Finally, we compare different strategies that emerge from the model
in the context of network reconstruction. Our results could be useful for the discovery of unknown connections
in large-scale networks.
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I. INTRODUCTION

During the last decades, much scientific interest has been
devoted to the characterization and modeling of many natural
and artificial systems that exhibit so-called emergent behavior.
These systems, referred to as complex systems, are suitably
described through their networks of contacts, that is, in terms
of nodes (representing the system’s components) and edges
(standing for their interactions), which allows to catch their
essential features in a simple and general representation.
Complex networks [1–4] have therefore become an important,
largely used framework for the understanding of both the
dynamical and topological aspects of systems such as the
brain [5], protein-protein interaction networks [6], Internet
and the World Wide Web (WWW) [7].

In the meantime, it has also become clear that many of the
mentioned networks, particularly those which are described
by a power law degree distribution P (k) ∼ k−γ (scale-free
networks [1–4]), are only partially known. Think, for instance,
of online social networks like Facebook or Twitter, which are
made up of millions of heterogeneous and nonidentical nodes.
In such large networks, a complete map is hardly available
and difficult to get [8]. Thereby, providing efficient tools for
their exploration has become a crucial challenge. In general,
network features are discovered by means of algorithms based
on search and traffic routing [9–11]. In many cases, the second
of these can be performed by means of moving “agents,”
which explore the topological space and recover information.
Nonetheless, it is still a key issue of the investigation and
characterization of the efficiency of different strategies [12–14]
as far as the quality and quantity of information gathered are
concerned.

On the other hand, it has also been shown that local
topological metrics, like the degree of a node, greatly affect
the dynamical properties of complex networks. This is the
case of immunization algorithms, which are more effective
the larger is the degree of the vaccinated node [15]. As a
matter of fact, one of the best strategies is to immunize a

neighbor of a randomly chosen node instead of the node itself.
This is because a randomly chosen node has degree k, while a
neighbor would have degree k with probability kP (k). Another
striking example closely related to the problem here addressed
in which the degree of the nodes determines the dynamical
properties is the scaling law characterizing flow fluctuations
in complex networks [16–19]. Admittedly, the mean traffic 〈f 〉
and its standard deviation σ can be related through the simple
scaling form σ ∼ 〈f 〉α [16–18]. However, this relation, which
was previously thought to be universal with α being between
1/2 and 1, is not satisfied for all values of k (i.e., the exponent is
not universal and depends, among other factors, on the degree
of the nodes [19]).

In this paper, we address the problem of network explo-
ration from the point of view of a single node from which
an agent is sent through the network to collect information,
henceforth understood as the fraction of nodes visited when
the walker gets back home. Our aim is to find out an optimal
strategy to maximize both the number of the visited nodes and
the chance to meet again the starting point, independently of
where the starting node is locate. To this end, we consider
an arbitrary (heterogeneous) network of N nodes and a
single agent (explorer or walker) initially located on a given
node (home node), and let it move during a time frame T ,
the walker’s lifetime. Every time the agent comes back to the
starting point, all the nodes it has visited until that moment
are marked as visited and the total information gathered is
updated. Obviously, it could also be possible to send several
agents at once, but it has been demonstrated for several similar
situations [20] that increasing the number of walkers (and
reducing their lifetime proportionally) does not produce better
results. Consequently, we focus on the performance of single
agents.

The most important novelty of our proposal is that the
agents are not Markovian random walkers, nor a modified
version of random walks’ dynamics in which additional
rules (for instance, preferential or self-avoiding random walks
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[13,21]) are introduced. Indeed, we introduce a parameter
q which governs how likely it is for a walker, at each time
step, to go forward or backward (with respect to the walker’s
home). Thus, by changing the value of this parameter, the
two probabilities can be tuned and hence different strategies
are defined. In one limiting case, the walkers will tend to
move back home, whereas in the other limiting setting, they
will tend to move away from home. In between these two
asymptotic behaviors, we recover a classical random walk, for
which all directions are equally probable. We explore different
strategies and their dependencies with both the degree of the
home nodes and the walkers’ lifetimes. Moreover, we show
that it is possible to build up an adaptive algorithm whose
efficiency in terms of the information gathered and the quality
of the reconstructed network is, in general, the best.

The rest of the paper is organized as follows. Section II
introduces the model which is characterized in Secs. III to IV.
Our proposal for an adaptive strategy is presented in Sec. V. In
Sec. VI we present the application of the algorithms previously
discussed to the reconstruction of the degree distribution.
Finally, the last section (Sec. VII) is devoted to rounding off
the paper.

II. BASELINE MODEL OF WALKERS

Let us first discuss a baseline model in which a given
set of walkers explore the network starting from a home
node. As previously discussed, to collect the results of
walkers’ explorations, they should go back home. Therefore,
we introduce two probabilities when the walker is at a given
node, provided it has tracked the information about the path
followed from the home node to the current position. These two
probabilities correspond to the forward (F ) and backwards (B)
motion along the already tracked path and read, respectively, as

PF (ki) = q2(ki − 1)/[1 + q2(ki − 1)], (1)

PB(ki) = 1/[1 + q2(ki − 1)], (2)

where the label i indicates the node that the explorer is going
to leave and ki is its degree. These equations stand for every
step whenever the agent is not in the starting node (the home
h). While at home it can only go forward, thus at that position
we have P h

F = 1 and P h
B = 0. Figure 1 shows an example of

the motion of an agent.
From Eqs. (1) and (2), we recover the pure random walk

(without any bias, i.e., all possible directions are equally
probable) for q = 1. For very large values of the parameter
q, no backward step is allowed. Consequently the explorers
can get back to their starting node only by chance, through a
different path, not being aware that they are coming back, but
being able to recognize where they are (at home). Conversely,
when q goes to 0, after the first move, no more steps forward
are allowed. Therefore, only the first neighbors of the starting
node can be explored. We also consider that the walker’s
lifetime is T steps, which represents the time allowed for
the network exploration before the dynamics stops. We define
the information gathered as the fraction of nodes marked as
visited after T time steps: I = V/N , where V is the number
of visited nodes and N is the size of the network. Moreover, if
the agent is not at home at time T , the new nodes visited after

its last return to the home node are not computed in V (i.e.,
we consider that only the information brought counts).

We first discuss the expected behavior of I at the two
limiting values of q (very high or very small). On one hand,
for very low q values only the nearest neighbors are visited
and hence I will be small independently of T . On the other
hand, for very large values of q the walkers only return to
home by chance, being the search also inefficient provided the
exploration time is not very large (see next section). Then, if we
fix the total number of steps we can expect that the information
collected will have a maximum as a function of q. Therefore,
there should exist, for any given network, a precise value
q∗(T ) such that, if we average over all the possible choices
of the home node and over many realizations of the dynamical
exploration, the mean information 〈I (q∗)〉 is maximal. In other
words, there is no other value q ′ for which 〈I (q ′)〉 > 〈I (q∗)〉,
where “ 〈 · 〉 ” stands for the mean performed over all the nodes
in the network and “ · ” for the average over many realizations.

The previous analysis indicates that the best efficiency in
terms of the maximal recovery of information can only be
obtained for two values of q∗. In the next section, we explore
the dependency of I on the network properties (as given by the
degree of the home node) and walkers’ lifetimes. Admittedly,
when this time is very long (T � N ) we should expect to
recover most information by setting q∗ → ∞. However, even
if this is the best choice on average, it might not be the case
when the home of the walker is at a low degree node. On the

(a) (b)

(d)(c)

FIG. 1. (Color online) Example of the motion of an agent: Four
snapshots taken at four sequential time steps. The red node labeled
with “H” is the home node and the nodes that have been visited are
colored in blue. (a) T4. Gray arrows stand for previous steps forward,
while the green arrow stands for the last one. (b) T5. The agent takes a
step backward (red arrow) reverting and removing from its “memory”
the last step forward. (c) T6. At this point it is the step taken at time
instant T3 that has to be regarded as the last step forward (green
arrow); the walker takes another step backward (red arrow) reverting
it. (d) T7. The walker takes a step forward toward a new node.
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other hand, for shorter searching times, a value of q = q∗ < 1
gives almost the same performance for I , but this time the
results are independent of the degree of the home node and
〈I (q∗)〉 is a global maximum (the caveat is that q∗ cannot be
known a priori).

III. CHARACTERIZING THE PERFORMANCE
OF THE WALKERS

In this section we study the dependency between the
information gathered by an agent and q, for different choices of
the home node and for different values of the walkers’ lifetimes
T . Hereafter we will use as a benchmark a scale free network
of N = 104 nodes and mean degree 〈k〉 = 10 generated by the
uncorrelated configuration model [22]. We, however, note that
all the results reported are valid for any network with a power-
law degree distribution provided that it does not have a tree-like
topology. Actually, the only relevant difference in the case of
a tree-like network is that we will observe a different behavior
for large values of q. This is because leaves would make it
very difficult for a walker to come back through a different
path making their performance very poor, even for very large
values of T and for very large degrees of the home nodes.

In Fig. 2 the information 〈I 〉 is plotted as a function
of q for several home nodes and a searching duration of
T = N = 10 000 steps. As it is clearly shown, starting from
small values of the parameter q, 〈I 〉 initially increases, but
soon afterwards there is an abrupt decay to give way to a
new increase as q grows further. For very large values of
q, the information gathered saturates to an asymptotic value.
Interestingly enough, as seen in the figure, the amount of
information gathered for both very small values of q and
when q � 1, as well as the size of the abrupt decay, depends
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FIG. 2. (Color online) Information I (averaged over 3000 real-
izations) gathered by a walker during a searching time T = 10 000 as
a function of the q parameter. Each curve refers to a different home
node and different colors and line styles refer to different degrees
of the starting node. From the top to bottom: k = 100 (dashed black
line), k = 54 (solid red line), k = 30 (dotted purple line), k = 22
(solid yellow line), k = 13 (dot-dashed green line), k = 7 (solid light
blue line), k = 5 (dashed blue line). Inset: The same quantity in a
linear scale.
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FIG. 3. (Color online) Mean information 〈I 〉 gathered by a walker
performing its search starting from any home node during a time lag
of T steps, as a function of the q parameter. The mean is performed
over all the nodes in the network and averaging over 100 realizations
for each. Different colors and line styles refer to different durations
of the searching. From the bottom to the top: T = 500 (light blue
dot-dashed line), 1000 (red solid line), 2000 (dashed purple line),
3000 (dotted green line), 5000 (dot-dashed yellow line), 10 000 (solid
black line), 20 000 (dashed blue line), and 50 000 (dotted light blue
line). Inset: Zoom of the peak. Notice that qp displays a small shift
increasing T , up to T = 10 000 when it reaches an asymptotic value.

on the degree of the node from which the walker started the
exploration. However, there exists a universal value of q = qp

at which almost all curves corresponding to different degrees
of the home node collapse (i.e., there is a local maximum which
is roughly independent of the connectivity of the home node).
Nevertheless, whether this point is also a global maximum for
I (q) or just a local one depends on the degree of the initial
node. Indeed, when the home node is highly connected, for
this searching duration, an agent performs better for q → ∞,
but if this is not the case, qp gives the optimum efficiency.

In Fig. 3 we plot the same quantity as in Fig. 2 but averaged
over all the possible home nodes (then the dependency with
the degree washes out) and considering different lifetimes T .
The figure makes it more clear that at q = qp the value of 〈I 〉 is
a global maximum unless T is many times larger than the net-
work size N . This definitively means that if we are interested in
the information an agent may gather for a very long searching
time, what we have to do is to set q � 1. Otherwise, if we
are interested in more realistic situations where there can be
limitations on the duration of the exploration (for instance, due
to energy constraints), the best choice would be to set q = qp.
The latter option has a caveat, however: The precise value of
qp depends in an unknown way on the topological features of
the underlying network. Nevertheless, one can obtain useful
insights into the problem by inspecting how the behavior of a
walker changes when q varies.

Looking more carefully at the results plotted in Fig. 3, one
can distinguish three regions that qualitatively correspond to
the three distinct behaviors of the walker. In the first one, for
q < qp, 〈I 〉 monotonously increases as a function of q; in
the second one, 〈I 〉 experiences an abrupt decay; whereas the
third region shows that 〈I 〉 starts to increase again, until it
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saturates to a value that depends on T . It is easy to realize
that the first increase corresponds to small enough values of
q. In this region, the walker moves just a few hops away from
home and consequently it takes only a few steps to get back
home. The larger the value of q is, the longer the mean path
covered by the walker will be. Since for very small values
of q the exploration is local, the relevance of the home-node
degree is very high (see Fig. 2). Then, increasing q, we are
allowing the walker to explore farther nodes, that is, to collect
new information, and the initial differences due to the degree
of the home node become progressively smaller. At q = qp

they have almost vanished.
In the second region, for q slightly larger than qp, the walker

often gets lost and its performance is, on average, less efficient.
In other words, the explorer wastes an important fraction of
the lifetime T gathering information that it will not be able to
bring back home before the time is over. The precise value at
which this starts to occur is slightly affected by the duration
of the exploration, as shown in the inset of Fig. 3. This can be
explained as a combination of two factors. On the one hand,
to increase q means to increase the number of nodes visited,
but also the risk to get “lost.” Indeed, if an agent is performing
a long trip and it is going to bring a lot of information back
home, when the searching time is suddenly over, the loss is
big. On the other hand, the very first trips are those that provide
the largest fraction of new information since the majority of
nodes are being visited for the first time. Thus, getting lost
after a couples of returns causes a much worse loss than if the
same happens after a few round trips. Again it is a matter of
balance and the optimum value qp is smaller when the lifetime
is shorter. The second region ends at a value of q for which
the previous balance is the worst possible one, thus giving
rise to another increase, which marks the start of the third
region. Here, for even larger values of q, it begins to be quite
frequent that, wandering across the network almost randomly,
the explorer returns to its home node through a different path
just by chance. This new behavior entails a new increasing
of 〈I 〉 due to the fact that this kind of random returns start
to balance the inefficiency of the walkers that get lost. The
likelihood of these events increases with q and it is maximum
when q → ∞, that is, when PB = 0 at each time step.

The previous dependency of 〈I 〉 on the walker’s lifetime T

defines two optimal values for q, either 〈I (q)〉 takes its maxi-
mum value at q∗ = qp or at q∗ = ∞. However, we stress again
that for q � 1, the walker gets back home by chance (recall
that for these values of q the backward probability PB = 0).
Consequently the asymptotic values of 〈I 〉 in the q = ∞ limit
strongly depends on the degree of the home nodes (see Fig. 2).
Therefore, setting q∗ = qp could be a better choice even when
T is large enough. To be able to take advantage of the agents’
behavior at qp, we need to characterize deeper the transition
that occurs for that value of the parameter. To this end, in
the next section we focus on the behavior of some dynamical
quantities which display a relevant change around qp.

IV. EXPLORATION MECHANISMS AND
ESTIMATION OF qp

In Fig. 4 we plot the average maximum number of
sequential steps backward ( 〈SB〉 ) and forward ( 〈SF 〉 ) that a
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FIG. 4. (Color online) Mean maximum number of consecutive
steps forward 〈SF 〉 (black line) and backward 〈SB〉 (red line) taken
by a walker during a time lag of T = 10 000 steps. The mean is
performed over all the nodes and averaging over 2000 realizations
for each of them. First inset (above): Zoom around the value of q

at which the two curves get apart. Second inset (below): The ratio
〈SB〉/〈SF 〉 in the same range. According to the arguments discussed
in the text, the peak should lie between the two values indicated with
the dashed lines (qp ∈ [0.220 ; 0.237]) and this is in a good agreement
with what we can observe in Fig. 3.

walker takes in a time lag T = 10 000 as a function of q. These
two quantities, estimated by averaging over many realizations
and over all the possible home nodes, give a useful picture
of the transition between the first and the second regimes
previously described. They initially increase together, then
〈SB〉 starts increasing slower than 〈SF 〉, it reaches a maximum
and starts decreasing, asymptotically going to zero. Notice
that for small q the value of 〈SF 〉 is small. Consequently, 〈SB〉
is bounded [even if PB(k) ∼ 1 ∀k] since, when an agent is
back to its home, no more steps backward can be taken. The
value of q for which 〈SB〉 and 〈SF 〉 take the maximum value
before getting apart roughly corresponds to qp. It is when the
walker goes as far as possible from its starting point, being
still able to come back on its own steps. Increasing q a little
bit further provokes that the number of steps forward exceeds
that of steps backward and the home node is not recovered any
more, so that the searching efficiency rapidly decreases. This
phenomenology helps us to find out a heuristic definition for
the peak. It is indeed possible to state that qp is the precise
value of q for which a walker is allowed to take enough steps
forward to be able to visit a large region of the network, but at
the same time it is also allowed to take enough steps backward
so as to return to its home not by chance.

Admittedly, it is possible to translate this heuristic state-
ment into a quantitative condition starting from one simple
observation. There exists, for any k, a value of q such that
PF (k) = PB(k) and from Eqs. (1) and (2) we know that this
value is q(k) = 1/

√
k − 1. If q = q(kmax) it is guaranteed that

PF � PB ∀k, so the mean path is short and the explorer will
come back home very often. If q = q(kmin), the situation is the
opposite, PF � PB ∀k, so for the agent it is very difficult
to recover its home. Therefore, the conclusion is that the
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FIG. 5. (Color online) Estimator (4) against the measured value
of qp for several networks. All the networks have been generated
by the uncorrelated configuration model changing the exponent γ

of the degree distribution together with the maximum degree kmax

and the minimum degree kmin, varying from quite heterogeneous
topologies to random regular graphs. Different symbols stand for
different network sizes: squares for N = 1000, circles for N = 2000,
and triangles for N = 5000. Each group of symbols corresponds to
a given set of parameters. From the smallest value of qp we have
{γ = 1.5, kmax = 50, kmin = 2} (purple); random regular network
with k = 10 (blue); {γ = 2.5, kmax = 50, kmin = 2} (yellow); {γ =
2.5, kmax = 30, kmin = 2} (light blue); random regular with k = 5
(green); {γ = 0.1, kmax = 5, kmin = 2} (red); random regular with
k = 3 (black). The values of qp have been measured for an exploring
time T = N .

peak lies between these two extremal values. A reasonable
estimation could be obtained by imposing that PF /PB = 1
on average while an explorer walks around. At each time
step, the probability that a walker is on a node of degree k is
Pw = kp(k)/〈k〉, where p(k) is the degree distribution of the
considered network. Hence, this condition can be rewritten as∫

k

PF (k)

PB(k)

kp(k)

〈k〉 dk = q2
∫

k

(k − 1)kp(k)

〈k〉 dk = 1, (3)

thus we obtain the estimator

q∗ = 1√
〈k2〉/〈k〉 − 1

. (4)

In Fig. 5 we have plotted q∗ against qp for several networks of
different sizes and different topologies (degree distributions)
finding a very good agreement in all of the considered cases. It
can be confirmed that the precise value of qp only depends on
the first and second moment of the degree distribution, while
no explicit dependence on the network size can be observed,
at least for finite N .

To complete this phenomenological picture it can be useful
to look at another quantity strictly related with what we have
said in the previous paragraphs. In Fig. 6 we plot the mean
time that a walker needs to come back to its home node (〈T R〉)
as a function of q. In this case we did not set a lifetime.
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FIG. 6. (Color online) Mean time (〈T R〉) that a walker starting
from any node in the network needs to come back to its home node
as a function of q. The average is performed over all the nodes, and
for each of them over 5000 realizations. First inset (above): The same
quantity represented in a log scale with error bars (standard deviation
among home nodes). Second inset (below): The relative standard

deviation of the values T
(i)
R .

We then let Nw walkers wander through the network starting
from a given node. Each time an agent recovers its home it
is not allowed to leave it anymore and the duration of the
trip is recorded. We wait until every walker has come back

and calculate the average return time T
(i)
R , where i ∈ [1,N ]

stands for the considered home node. Finally we average over
all the possible starting nodes. What we obtain is a curve that
closely resembles that of the order parameter in a second-order
phase transition, with the critical point located slightly above
qp. Furthermore, if we look at the dispersion of the values
of T

(i)
R we recover a behavior quite similar to that of the

susceptibility (i.e., a divergence at the critical point [23]).
Actually, the divergence takes place very close to qp, but
even closer to the value of q for which the average number
of consecutive backward steps is maximum (see the inset in
Fig. 4). With a slightly larger value of q, the return time starts
to rapidly increase, with a corresponding abrupt increment in
the dispersion. This indicates that, even if the trip duration
uses to be small, sometimes, with a probability that increases
by increasing q, the agent needs a very long time to reach
his or her home node. Thus, a lot of information is lost if the
process is stopped before the explorer is able to complete its
last journey. Again, this scenario corroborates the intuition that
qp is the maximum value of q able to guarantee that the walker
will not get lost.

V. ADAPTIVE STRATEGY

For any given network we are now able to predict where
the peak is located, given the first and the second moments
of the degree distribution. However, we are interested in
developing a searching strategy that can be useful when we
have no information at all about the underlying topology. In
this section, we are going to set up an adaptive algorithm
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aimed at optimizing the performance of an agent exploring a
heterogeneous network in a number of steps T that is equal
to (or less than) the number of nodes N . The basic idea is
simple. We have a walker and a value of q associated to it.
We let it wander and when it is at home again we evaluate the
contribution of this last round trip to the information gathered
until that moment and, if necessary, the value of q is modified.
To build up such an algorithm, three main elements are needed.
The first one is an appropriate quantitative way to evaluate
the performance of the agents. The second one is a criterion
to decide whether or not q would be modified. Finally, the
adaptive rule applies whenever the choice is to change the
value of q. This third element is an algorithm able to connect
what the agent has learned about the network until its last
return, the efficiency of its performance and the current value
of q in order to provide a new, more suitable, value for the
parameter.

Let us start with the first element. Since the aim of the
exploration is to collect the maximum amount of information
in a fixed time frame, to be efficient means to visit as many
new nodes as possible per unit of time (step). The final
efficiency of a searching process can thus be defined as
E = I/T . This definition can be expressed as a function of
the number of round trips. If we indicate with tr the time
of the rth return of the explorer (0 < t1 < t2 < . . . < T ), we
have E(tr ) = V (tr )/tr , where V (tr ) stands for the number
of visited nodes after tr steps [V (tr )N = I (tr )]. It is also
possible to measure the efficiency of a single trip as er =
[V (tr ) − V (tr−1)]/(tr − tr−1)], but this is not a very useful
procedure as er is very noisy. Therefore, to compare the
performance at time tr with that at time tr−1 it is better to
consider the efficiency variation �E(tr ) = E(tr ) − E(tr−1).
Hence, a good criterion to decide whether a change of q is
needed is �E(tr ) < 0.

Notice that if we start with a small value of q, the number of
steps forward and backward will be the same (see Fig. 4) and
the explorer will pass on each visited node at least two times.
Therefore the first return time t1 will be twice the number of
steps ahead that the walker was allowed to take. The maximum
number of different nodes that the agent may have visited
during its trip is therefore equal to the number of steps it took
forward. This happens whenever the walker does not cross
each link more than twice (forward and backward). Thus, the
efficiency has an upper bound, E � 1/2, that can be easily
reached for any small value of q when the explorer performs
its first trip. In particular, for q = 0 we surely have E(t1) = 1/2
since only one step forward is allowed and the agent will visit
one node in two time steps. Consequently, we expect E(tr )
to start from a value very close to 1/2 and then necessarily
decreases. Hence, changing q has the effect of decelerating
the decay of E(t), or at most, to make E(t) reach a stationary
value.

When q is varied, we should also take special care in not
letting the agent to get lost. For this reason, since the real value
of qp is unknown, we need to start from a very small value
of q to ensure that q � qp. Then, we want to let q increase in
a controlled way. Hence, we need to fix an upper bound for
q based on the information the agent is recovering about the
degree of the visited nodes. A first, very simple election could
be to use the estimator of qp provided by Eq. (4). One can

replace the probabilities Pw(i) = kip(ki)/〈k〉 with the visit
frequencies Fw(i) = ni/t , where i is the node index, ni the
number of times the walker has visited that node, and t the
elapsed time (number of steps). Thus we obtain the empirical
estimator

q∗
e = 1√∑Vt

i [kiFi(ki)] − 1
, (5)

where Vt is the number of visited nodes at time t . Obviously,
when t → ∞ this empirical estimator is equal to the estimator
(4). The problem, however, is that this is not an upper bound.
Actually, the degree distribution the walker recovers during
the first trips is very noisy and q∗

e fluctuates a lot. In some
cases, it takes values quite smaller than the real qp. This would
prevent the explorer from increasing q trapping him or her in
the neighborhood of the starting node. Therefore, we need a
quantity that satisfies the following requirements.

(1) It has to be less noisy than q∗
e .

(2) It has to take values smaller than qp very unlikely.
(3) When evaluated over the whole network, its value has

to be close to that of qp.
(4) It has to be the same as qp and q∗

e when we consider a
homogeneous network.

To satisfy the first requirement, we need to avoid to use
the frequencies Fi taking into account all the visited nodes
with the same weight, regardless of how many times they have
been visited. So we are looking for an appropriate function
f ({ki}) of the degrees of the visited nodes, such that qUB =
1/

√
f ({ki}) − 1. We propose the following expression that

satisfies all the requirements:

f ({ki}) =
√

〈k2〉(t) =
√∑

i∈Vt

k2
i /Vt .

Notice that in general
√

〈k2〉 � 〈k2〉/〈k〉, where the equality
holds in the case homogeneous networks. Therefore, we have

qUP = [
√

〈k2〉(t) − 1]−1/2. (6)

With all the previous remarks, the adaptive algorithm can be
formulated as follows (see Fig. 7).

(1) Set q ∼ 0.1 and let the agent perform its first round trip.
(2) Calculate E(t1) = V (t1)/t1 and let the agent perform

another trip.
(3) Calculate the new value of the efficiency and check if

�E(t2) = E(t1) − E(t2) < 0. If it is not the case, let the agent
explore again, until the condition �E(tr ) < 0 is satisfied.

(4) Calculate f ({ki})=
√

〈k2〉(tr ) and then qUB[f ({ki})].
(5) Check if q + dq < qUB , where dq is a small positive

quantity (in general dq = 0.01 is a good choice).
(6) If the condition (5) is satisfied, update the value of q

adding dq: q → q + dq.
(7) If the condition (5) is not satisfied, but q < qUB < q +

dq, update the value of q so that q → qUB .
(8) If q > qUB then

(8a) if q − dq < qUB then q → qUB ,
(8b) if q − dq > qUB then q → q − dq.

Figure 8 shows results for the final efficiency E(T ) and
the information gathered I (T ) for the three best strategies: the
adaptive one, q → ∞ and q = qp (although this is not really
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FIG. 7. (Color online) The figure represents, in a flowchart, a
possible implementation of the algorithm described in the main text
for the adaptive strategy. Here the efficiency E takes the initial value
E0 = 1. The notation is simplified to make the diagram easier to read:
E(tr ) is indicated as Er and V (tr ) just as V .

a strategy since we need to know the precise value of qp).
Both quantities confirm that, unless T is more than twice the
network size N = 10 000, the best performance is obtained
for q = qp. Nevertheless, our adaptive strategy gives results
that are very close to those obtained for q = qp and are always
better than those obtained for q � 1 (at least for T � 2N )
both in terms of efficiency and in terms of the total amount of
information recovered.

All these results are coherent with the description of the
walkers’ behavior commented on in the previous section. In
particular, it is reasonable that when q � 1 the efficiency
initially increases with T since in this case the shorter the
searching duration, the larger the probability that an agent gets
lost. On the contrary, for qp and the adaptive strategy, which
precisely aims at capturing the behavior of the agents at qp, the
information is mainly collected by means of quite short round
trips. Consequently, increasing the searching time reduces the
efficiency because it increases the chance to visit many times
the same nodes. In any case, when T � N and I ∼ 1, the
problem of visiting already visited nodes becomes relevant
also for the strategy q � 1. Finally, it is worth stressing that
while for q � 1, the dispersion among the values E(i) and
I (i) for different home nodes is very high, in the case of
the other two strategies, the same does not happen. This is
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FIG. 8. (Color online) Top panel: the total efficiency 〈E〉 =
〈V 〉/T as a function of the searching time T in the case of three
searching strategies (averaged over all the nodes and 100 realizations
for each of them): q � 1 (blue triangles), q = qp (red squares), and
the adaptive strategy (black circles). Bottom panel: Mean information
〈I 〉 as a function of T , again for the three best searching strategies
(represented with the same colors as above). Error bars represent
the dispersion (standard deviation) among the values obtained for
different home nodes.

a clear indication of the fact that the adaptive strategy recovers
one of the most interesting features of the agents’ behavior
at qp, namely, the homogeneity of the performance starting
from different home nodes. We next discuss one potential
application of the searching strategies previously discussed.
This would also allow for a better distinction of what strategy
is the best.

VI. RECOVERING THE DEGREE DISTRIBUTION

An important global descriptor of every network is its de-
gree distribution P (k). However, this information is not always
at hand. For instance, suppose you belong to a network of
which you only know your local neighborhood (like an online
social network or a city map). The problem is then to know
what is your position in the network as far as the degree is con-
cerned or to make an exploration that allow you to gather infor-
mation about the entire map. In other words, we want to study
if the sample of nodes visited by an agent is more or less repre-
sentative of the global system, at least with regard to its P (k).

In Fig. 9 we plot the number of nodes of degree k, N (k),
found in a typical realization of the different strategies, for
two different values of T and for different choices of home
nodes. As we expected, the usual random walker and the
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FIG. 9. (Color online) Number of nodes of degree k as measured by a walker searching during T = 2000 (void symbols) or T = 10 000
(filled symbols) time steps, in a single realization of the process. Red circles refers to a home node of degree k = 5, blue squares to a home node
with degree k = 22, and green triangles to the node with the largest degree in the network (k = 100). The searching strategies are, respectively,
(a)q = 1, (b) q � 1, (c) q = qp , and (d) the adaptive strategy. The black line is the real degree distribution.

agent with q � 1 are very bad when the home node has a
small degree (red curves). On the contrary, the performance
of the adaptive protocol and that of the walker when q = qp

are almost not affected by the walkers’ lifetimes (at least for
the considered values) and by the degree of the home node.
Note that Figs. 9(a) and 9(b) represent the common situation
in which a random walker starting at a lowly connected home
node gets lost. Indeed, for such cases, the only information
brought back is the degree of the node from which the walker
started the exploration of the network. However, as it is also
appreciated in the figure, when the home node has a relative
high degree, setting q � 1 constitutes the best strategy for
an accurate estimation of N (k). Nevertheless, as the walker
“does not know” what is the connectivity of its home node in
relation to the rest of the network, the last mentioned strategy
seems to be, as a rule of thumb, a bad choice. Additionally,
the figure also shows that in general what is difficult for an
agent to recover are the most peripheral nodes of the network.
Consequently, the nodes with a small degree are usually under
represented while the heavy tail of the degree distribution is
reconstructed with high accuracy.

To quantify the accuracy of the reconstructed networks,
we calculate the Kullback-Leibler (KL) divergence or relative
entropy [24], a nonsymmetric measure of the difference
between two probability distributions. This is a standard
method to evaluate how different an experimentally estimated
distribution is from the real one. For the probability distri-
butions P and Q of a discrete random variable their KL
divergence is defined to be

DKL(P ‖Q) =
∑

k

P (k) log
P (k)

Q(k)
, (7)

where P (k) is the real distribution and Q(k) the estimated
one. Using this measure, we explore how the accuracy of
the reconstruction depends on the searching strategy, the
walkers’ lifetimes and the degree of the home node. In what
follows, we report results for the mean values, averaged
over many realizations, and for the deviations around the
means.

In Figs. 10(a) and 10(b), we plot DKL as a function of T

for four different strategies (including the standard random
walk) and two different starting nodes (corresponding to,
respectively, maximum and minimum degree,). As expected,
DKL → 0 when T → ∞, in all the considered cases. The
q = qp strategy and the adaptive protocol perform much better
than the other two settings, with less dispersion and a very
much weaker dependence on the degree of the home node.
Hence, these last two strategies are more suited if we aim at
recovering P (k), especially when T is not too long. Moreover,
even if they both are good, the adaptive strategy is better than
q = qp, with a very small dispersion. Thus, although it is not
possible to perform better that q = qp in terms of nodes visited,
the adaptive strategy does better in terms of the accuracy of
Q(k), that is, when it comes to reconstruct P (k).

We have also analyzed the dependency of DKL on the degree
of the home nodes for fixed values of T . Figures 10(c) and
10(d) display DKL as a function of k for all the strategies,
in the case of a short lifetime (T = 2000). The differences
among strategies are really noteworthy, while for the larger
lifetime (T = 10 000) we verified that they persist just in
the case of quite small degrees of the home nodes. Finally,
the adaptive strategy is in general the best option, being
q = qp slightly better only in the case of home nodes with
degree k < 〈k〉.
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FIG. 10. (Color online) KL divergence (DKL) of the measured (normalized) degree distribution with respect to the real one. Different colors
refer to different searching strategies: orange squares (top curve) for q � 1, blue triangles (top curve) for q = 1 (pure random walk), red
squares (bottom curve) for q = qp , and black triangles (bottom curve) for the adaptive strategy. In panels (a)–(b) DKL is plotted as a function of
the searching duration T , averaged over 104 realizations. The considered home nodes are, (a) the node with the largest degree (k = 100) and (b)
a node with degree k = 5. In panels (c)–(d), DKL is plotted as a function of the degree of the home node, averaged over [1/p(kH )] realizations
for each starting node of degree kH . The searching time is T = 2000. (d) The adaptive strategy is plotted on a smaller scale together with the
strategy q = qp .

VII. CONCLUSION

In this paper, we have presented a model for network search
and exploration in which walkers evaluate at each time step
whether to go farther from a home node or get back with the
information retrieved up to that moment. These probabilities
depend on a single parameter q, which has been shown to
exhibit an optimal value, q = qp < 1 (q = 1 corresponds
to the Markovian random walk limit) for exploration times
comparable to the system size. When the walkers are allowed
to explore the network indefinitely or during long times, the
optimal value turns out to be q = ∞. However, although the
amount of information recovered when setting q = ∞ could
be maximal, the results are highly dependent on the degree of
the home node: The smaller the degree of the node assigned
to the walker, the less information the walker can get back
home. As a matter of fact, for most of the nodes (recall that in
a scale-free network most of the nodes are poorly connected),
q = ∞ is not the best strategy.

Capitalizing on the behavior of the walkers as a function of
q, we have also proposed an alternative algorithm in which
the agents are allowed to tune the value of the parameter
q to optimize the information retrieved. Through numerical
simulations, we have shown that this mechanism allows an
exploration as efficient as that performed setting q = qp.
Nevertheless, the adaptive scheme has the advantage that the
value of q is changed dynamically, and therefore it overcomes
the problem of fixing an a priori unknown optimal value qp . We
believe that this adaptive search protocol could be a valuable
addition to the current literature as it performs optimally

with a minimum (local) information about the network
structure.

As a demonstration of the potentialities of the algorithms
explored in this work, we have made use of the different
searching strategies to address the problem of network
discovery. As expected, the adaptive mechanism is the one
whose performance, in terms of the quality and quantity of
the information retrieved, is the best. Whether or not these
kinds of strategies can be further developed and applied to
the exploration of real networks is out of the scope of the
present paper, but we identify at least two scenarios in which
they can be useful: the discovery of new connections in com-
munication networks and the exploration of planar networks
(i.e., city networks) using minimal local information. We
therefore hope that our work guide future research along these
lines.
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[10] P. Echenique, J. Gómez-Gardeñes, and Y. Moreno, Europhys.
Lett. 71, 325 (2005).

[11] S. Sreenivasan, R. Cohen, E. Lopez, Z. Toroczkai, and H. E.
Stanley, Phys. Rev. E 75, 036105 (2007).

[12] S.-J. Yang, Phys. Rev. E 71, 016107 (2005).
[13] L. F. Costa and G. Travieso, Phys. Rev. E 75, 016102 (2007).
[14] J. I. Perotti and O. V. Billoni, Phys. Rev. E 86, 011120 (2012).
[15] R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett. 91,

247901 (2003).
[16] M. A. de Menezes and A. L. Barabási, Phys. Rev. Lett. 92,

028701 (2004).
[17] M. A. de Menezes and A. L. Barabási, Phys. Rev. Lett. 93,

068701 (2004).
[18] J. Duch and A. Arenas, Phys. Rev. Lett. 96, 218702 (2006).
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