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ABSTRACT. We propose an iterative procedure to minimize the sum of squares

function which avoids the nonlinear nature of estimating the �rst order moving

average parameter and provides a closed form of the estimator. The asymptotic

properties of the method are discussed and the consistency of the linear least

squares estimator is proved for the invertible case. We perform various Monte

Carlo experiments in order to compare the sample properties of the linear

least squares estimator with its nonlinear counterpart for the conditional and

unconditional cases. Some examples are also discussed.

Keywords: Moving average processes, Invertible models, Consistent estimator,

Nonlinear optimization, Monte Carlo simulation in time series.

JEL Classi�cation Code: C22.

RESUM. En aquest document de treball es proposa un procediment iteratiu per

minimitzar la suma de quadrats dels errors que evita la naturalesa no lineal de

l’estimació del paràmetre del model mitjana mòbil de primer ordre i proporciona

una expressió de l’estimador en forma tancada. A continuació es discuteixen les

propietats asimptòtiques del mètode i es demostra la consistència de l’estimador

per mínims quadrats lineals per a valors del paràmetre dins l’interval obert

(¡1; 1) : També es duen a terme diversos experiments de Monte Carlo per tal

de comparar les propietats mostrals de l’estimador per mínims quadrats lineals

amb el seu homòleg no lineal pel cas condicional i pel no condicional. Finalment,

es discuteixen alguns exemples.

Paraules clau: Processos mitjana mòbil, Models invertibles, Estimador

consistent, Optimització no lineal, Simulació de Monte Carlo en sèries temporals.

Codi de Classi�cació JEL: C22.
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�. Introduction

The main discussion of this article will center around the �rst order moving

average model;MA(1) for short, de�ned as

xt = "t + µ"t¡1; t = 1; : : : ; n (1)

where jµj · 1 and f"tg is a sequence of independent and identically distributed

random variables with zero mean and the same variance ¾2":

The model (1) is said to be invertible if jµj < 1. When jµj = 1; the model (1)

is noninvertible. The autocorrelation function of the process (1) is given by

½k =

( µ

1 + µ2
; if k = 1

0; if k > 1;
(2)

and j½1j · 1 /2 :

Replacement of µ by 1 /µ yields a process with identical autocorrelation

function. Therefore, for every noninvertible model with jµj > 1, there is an

equivalent invertible model. This lack of global identi�cation is conventionally

removed by imposing the condition jµj · 1 to the process (1):

A brief summary of the nonlinear least squares estimation of MA(1) processes

is given in Section 2. In Section 3 we derive a linear method to minimize the sum

of squares function. In Section 4 we prove for invertible models the asymptotic

equivalence of the linear procedure to the nonlinear least squares and in Section 5

we demonstrate its consistency for the invertible case jµj < 1:We perform various

Monte Carlo experiments in order to compare the sample properties of the linear

and nonlinear least squares estimators for the conditional and unconditional cases

in Section 6 and in Section 7 we discuss some examples by applying the least

squares and the maximum likelihood methods to two sets of real data. Finally,

in the last section we summarize the main conclusions that are drawn from the

empirical evidence.
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2. Nonlinear least squares estimation

The least squares estimator of the �rst order moving average parameter µ is

a well-known nonlinear estimation problem. Box and Jenkins (1976, Ch. 7)

concentrate on two least squares procedures to estimate moving average models

given a sample of n observations x1; x2; : : : ; xn of the process (1) that differ in

their treatment of the pre-sample residual "0:

The conditional least squares estimator of the moving average parameter µ

is determined by setting the unknown pre-sample error value, "0; to zero and

minimizing the conditional sum of squares function of the model (1) given by

S¤(µ) =
nX
t=1

["t]
2 ; (3)

where n is the sample size and ["t] denotes the expectation of "t conditional on µ

and the sample values x1; x2; : : : ; xn:

The unconditional least squares estimator of the coef�cient parameter µ is found

using the ’backforecasting’ technique developed by Box and Jenkins (1976, App.

A7.4) to compute the pre-sample expectation error ["0], and then minimizing the

unconditional sum of squares given by

S(µ) =
nX
t=0

["t]
2 : (4)

Kang (1975) examined the features of the unconditional likelihood and sum

of squares functions. She showed that the unconditional sum of squares function

has the undesirable property that is decreasing as the boundary of the invertibility

region is crossed, so that the minimum may be at µ = §1: This implies that the

unconditional maximum likelihood and least squares estimators of the parameter

µ have a positive probability of being equal to §1 when the true value is jµj < 1:

This phenomenon is known in the econometric literature as ’pile-up effect’ and has

been extensively analyzed by Ansley and Newbold (1980) ; Cryer and Ledolter
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(1981) ; Davidson (1981a; 1981b), Sargan and Bhargava (1983), Anderson and

Takemura (1986) and and Anderson and Mentz (1993).

For practical purposes, minimization either of S¤(µ) or S(µ) may be carried

out by the Gauss-Newton algorithm or other suitable procedures using an initial

estimator of µ as a starting point of the nonlinear iterative optimization. The

estimator of µ which is likely to be employed at a preliminary stage of nonlinear

iterative methods is the moment estimate based on the relationship between µ and

½1 given by (2):Another initial estimator is the one obtained using the innovations

algorithm proposed by Brockwell and Davis (1991; Sec. 8:3) ; which is more

ef�cient than the moment estimator, [see also Brockwell and Davis (1988)].

Finally, the estimator based on the autoregressive representation of the process

proposed by Galbraith and Zinde-Walsh (1994) can also be used as a preliminary

estimator. This last estimator has the advantages respect to the Brockwell-Davis

one that is noniterative and extremely simple to compute and that has the same

asymptotic variance equal to 1=n:

Fuller (1976, Sec. 8.3) considered an estimation procedure based on the Gauss-

Newton method. Note that we can write the model (1) as

"t (x; µ; "0) = xt ¡ µ"t¡1 (x; µ; "0) ; t = 1; 2; : : : ; n; (5)

where the notation "t (x; µ; "0) is used to emphasize the fact that the "t depend on

the observations, xt, on the pre-sample error value, "0; and on the parameter µ:

The random variable "0 is unknown and is independent of f"t; t ¸ 1g : Only in

obtaining the estimator of µ we treat "0 as a �xed unknown parameter.

Let Wt

³
x; µ̂

i
; "̂i0

´
and Ut

³
x; µ̂

i
; "̂i0

´
denote the negatives of the partial

derivatives of "t (x; µ; "0) with respect to µ and "0 evaluated at µ = µ̂
i
and

"0 = "̂
i
0; where µ̂

i
and "̂i0 are the estimators of µ and "0 obtained in the ith iteration

of the method, being µ̂
0

and "̂00 some initial estimates of µ and "0. The ith step

Gauss-Newton correction ¢µ̂
i
for µ is the coef�cient of Wt

³
x; µ̂

i¡1
; "̂i¡10

¢
in
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the regression of "t

³
x; µ̂

i¡1
; "̂i¡10

´
onWt

³
x; µ̂

i¡1
; "̂i¡10

´
and Ut

³
x; µ̂

i¡1
; "̂i¡10

´
,

where

Wt

³
x; µ̂

i
; "̂i0

´
=

8><>:
"̂i0; t = 1;
t¡1X
j=1

j
³
¡µ̂

i
´j¡1

xt¡j + t
³
¡µ̂

i
´t¡1

"̂i0; t = 2; : : : ; n;

(6)

and

Ut

³
x; µ̂

i
; "̂i0

´
= ¡

³
¡µ̂

i
´t
; t = 1; : : : ; n: (7)

The improved estimator of µ in the ith iteration is then

µ̂
i
= µ̂

i¡1
+¢µ̂

i
; (8)

and the iterations are halted when the desired convergence is achieved.

For the conditional case we have that "0 = 0 and thereby, the computation of

the ith step Gauss-Newton correction is found simply regressing "t
³
x; µ̂

i¡1
; 0
´

onWt

³
x; µ̂

i¡1
; 0
´
: Hence, the estimator of¢µ̂

i
is given by

¢µ̂
i
=

Pn
t=1 "t

³
x; µ̂

i¡1
; 0
´
Wt

³
x; µ̂

i¡1
; 0
´

Pn
t=1

h
Wt

³
x; µ̂

i¡1
; 0
´i2 ¢ (9)

MacPherson and Fuller (1983) proved the consistency of the least squares

estimator (8) for the parameter µ in the closed interval [¡1; 1] :

3. Linear least squares estimation

In this section we derive an alternative procedure to minimize the sum of

squares function which avoids the nonlinear nature of estimating the parameter

µ and allows us to express the estimator in explicit form. The method is based on

a linear approximation to the minimization of the residual sum of squares. The

estimator can be obtained iteratively by computing in each stage the expectations

of the errors and its �rst derivatives.
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This linear approximation to the least squares estimators, that we shall call

linear least squares for short, is the only estimation procedure of the parameter µ

that provides a closed form of the estimator.

We derive the method only for the unconditional case, being the same for the

conditional case putting ["0] = 0:

Consider the derivative of the unconditional sum of squares (4) given by

@S(µ)

@µ
= 2

nX
t=0

µ
["t]

@ ["t]

@µ

¶
;

and then, we can write that

2
n¡1X
t=0

µ
["t]

@ ["t]

@µ

¶
=
@S(µ)

@µ
¡ 2 ["n]

@ ["n]

@µ
¢ (10)

>From the MA(1) process given by (1); we can obtain the expectations of the

errors by recursive calculation through the formula

["t] = xt ¡ µ ["t¡1] ; t = 0; 1; : : : ; n; (11)

where ["¡1] = 0 and ["0] = x0 is generated by backforecasting of the series.

Hence, we can rewrite the unconditional sum of squares (4) as

S(µ) = x20 + (x1 ¡ µ ["0])
2 + (x2 ¡ µ ["1])

2 + ¢ ¢ ¢+ (xn ¡ µ ["n¡1])
2 : (12)

Differentiating (12) with respect to µ we obtain

@S(µ)

@µ
= ¡2 (x1 ¡ µ ["0])

µ
["0] + µ

@ ["0]

@µ

¶
¡ 2 (x2 ¡ µ ["1])

µ
["1] + µ

@ ["1]

@µ

¶
¡ ¢ ¢ ¢ ¡ 2 (xn ¡ µ ["n¡1])

µ
["n¡1] + µ

@ ["n¡1]

@µ

¶
= ¡2

n¡1X
t=0

xt+1 ["t]¡ 2µ
n¡1X
t=0

µ
xt+1

@ ["t]

@µ

¶
+ 2µ

n¡1X
t=0

["t]
2

+2µ2
n¡1X
t=0

µ
["t]

@ ["t]

@µ

¶
: (13)
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If we substitute the expression (10) in the last term of (13) we can write that

@S(µ)

@µ
= ¡2

n¡1X
t=0

xt+1 ["t]¡ 2µ
n¡1X
t=0

µ
xt+1

@ ["t]

@µ

¶
+ 2µ

n¡1X
t=0

["t]
2

+µ2
µ
@S(µ)

@µ
¡ 2 ["n]

@ ["n]

@µ

¶
; (14)

and operating we have that

@S(µ)

@µ
=

2

1¡ µ2

"
¡
n¡1X
t=0

xt+1 ["t]¡ µ
n¡1X
t=0

µ
xt+1

@ ["t]

@µ

¶

+µ
n¡1X
t=0

["t]
2 ¡ µ2 ["n]

@ ["n]

@µ

#
¢ (15)

The unconditional least squares estimator of the parameter µ is the one which

minimizes the unconditional sum of squares function S(µ). Then, equating the

above expression to zero we arrive to the following second degree equation of the

parameter µ;

["n]
@ ["n]

@µ
µ2 +

"
n¡1X
t=0

µ
xt+1

@ ["t]

@µ

¶
¡

n¡1X
t=0

["t]
2

#
µ +

n¡1X
t=0

xt+1 ["t] = 0; (16)

and �nally, we obtain that

µ =

Pn¡1
t=0 xt+1 ["t]Pn¡1

t=0 ["t]
2 ¡

Pn¡1
t=0

µ
xt+1

@ ["t]

@µ

¶ +Q µ2; (17)

where the term Q associated to µ2 in (17) is given by

Q =
["n]

@ ["n]

@µPn¡1
t=0 ["t]

2 ¡
Pn¡1

t=0

µ
xt+1

@ ["t]

@µ

¶¢ (18)

The linear approximation to the least squares estimator consist in neglecting

the term Q in (17): By this way, the minimization of the sum squares function

yields as a result an explicit expression of the parameter estimator. Thus, the
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unconditional linear least squares estimator is given by

µ̂ =

Pn¡1
t=0 xt+1 ["t]Pn¡1

t=0 ["t]
2 ¡

Pn¡1
t=0

µ
xt+1

@ ["t]

@µ

¶ ¢ (19)

In the following section we shall prove a lemma which establish that Q! 0 as

n!1 and therefore, assures the asymptotic equivalence of the linear estimator

(19) to the one obtained by the nonlinear minimization of the sum of squares

function (4):

To obtain the linear least squares estimator of µ we have to apply the

formula (19) in successive iterations, recalculating in each iteration the values

of the expectations of the errors ["t] and its �rst derivatives @ ["t] /@µ for t =

0; 1; : : : ; n¡ 1; and using in the �rst iteration as initial values those obtained with

a preliminary estimator of µ.

4. Asymptotic equivalence to the nonlinear least squares
estimator

We now prove the following lemma.

Lemma Let the MA(1) model given by (1) with jµj < 1, then, the term

Q associated to µ2 in (17) given by the expression (18) is at most of order in

probability n¡1; that is,

Q = Op
¡
n¡1

¢
:

Proof. If we make the change of notation

R1 =
n¡1P
t=0

µ
xt+1

@ ["t]

@µ

¶
R2 =

n¡1X
t=0

["t]
2

Qn = ["n]
@ ["n]

@µ

9>>>>>>>=>>>>>>>;
; (20)
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we can rewrite the termQ given by (18) as

Q =
Qn

R2 ¡R1
¢ (21)

First of all we shall prove that the numerator Qn in (21) is Op (1) : If we

compute the derivatives of the expectations of the errors given by (11) we obtain

the recurrence expressions

@ ["t]

@µ
=

(
0; t = 0;

¡µ
@ ["t¡1]

@µ
¡ ["t¡1] ; t = 1; : : : ; n:

(22)

By successive substitution of @ ["1] /@µ into @ ["2] /@µ and so on until

substituting @ ["n¡1] /@µ into @ ["n] /@µ we �nally �nd that

@ ["n]

@µ
= ¡

h
["n¡1]¡ µ ["n¡2] + µ

2 ["n¡3] + ¢ ¢ ¢+ (¡µ)
n¡2 ["1] + (¡µ)

n¡1 ["0]
i

= ¡
n¡1X
j=0

(¡µ)n¡j¡1 ["j] :

Clearly, @ ["n] /@µ is a linear combination of independent and identically

distributed expectation errors in different time periods with weights decreasing

geometrically with alternate sign. Then, the numerator Qn in (21) is given by

Qn = ["n]
@ ["n]

@µ
(23)

= ¡ ["n]
n¡1X
j=0

(¡µ)n¡j¡1 ["j] ; (24)

so, for every ® > 0 exist a positive real numberM® such that

Pr [jQnj ¸M® ] · ®; (25)

for all n and then Qn is Op (1) :

Next, we shall prove that the denominator in (21) is Op (n) : The denominator

of the term Q is given by the difference R2 ¡ R1:We can rewrite the component

R1 given by (20) as

R1 =
n¡1X
t=0

·
(µ ["t] + ["t+1])

@ ["t]

@µ

¸
10



= µ
n¡1X
t=0

µ
["t]

@ ["t]

@µ

¶
+
n¡1X
t=0

µ
["t+1]

@ ["t]

@µ

¶
: (26)

Making the following change of notation

Qt = ["t]
@ ["t]

@µ
(27)

Q¤t = ["t+1]
@ ["t]

@µ
; (28)

we can express the R1 term given by (26) as

R1 = µ
n¡1X
t=0

Qt +
n¡1X
t=0

Q¤t : (29)

We can note that the structure of the expressions (27) and (28) is very similar

to that of the numerator Qn given by (23): Therefore, using (24) we can rewrite

the �rst summation on the right hand side of (29) as

n¡1X
t=0

Qt = ¡
n¡1X
t=0

Ã
["t]

t¡1X
j=0

(¡µ)t¡j¡1 ["j]

!
: (30)

Bearing in mind that ["t] = 0 for t < 0; we can develope the right hand side of

(30) for every time period t = 0; 1; : : : ; n¡ 1; in the following way,

Q0 = 0
Q1 = ¡ ["0] ["1]
Q2 = ¡ ["1] ["2] + µ ["0] ["2]
Q3 = ¡ ["2] ["3] + µ ["1] ["3]¡ µ

2 ["0] ["3]
...

...

Qn¡1 = ¡ ["n¡2] ["n¡1] + µ ["n¡3] ["n¡1] + ¢ ¢ ¢+ (¡1)
n¡1 µn¡2 ["0] ["n¡1]

9>>>>>>=>>>>>>;
¢

(31)

Hence, (30) becomes

n¡1X
t=0

Qt = ¡
n¡2X
t=0

["t] ["t+1] + µ
n¡3X
t=0

["t] ["t+2]¡ µ
2

n¡4X
t=0

["t] ["t+3]

+ ¢ ¢ ¢+ (¡1)n¡1 µn¡2 ["0] ["n¡1] ; (32)
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and multiplying both sides of (32) by 1=n and taking limits as n ! 1; each

summation term on the right hand side of (32) converges in probability to its

respective autocovariance °" (k) = cov ("t; "t+k) ; and then, we have

lim
n!1

1

n

n¡1X
t=0

Qt =
n¡1X
k=1

(¡1)k µk¡1°" (k) : (33)

Since °" (k) = 0; for k ¸ 1, we have from (33) that n¡1
Pn¡1
t=0 Qt ! 0 as

n!1; and consequently
Pn¡1
t=0 Qt is Op (n) :

The argument for the second term in (29) given by
Pn¡1
t=0 Q

¤
t is completely

analogous to that for
Pn¡1
t=0 Qt and is therefore omitted. So, we have that

Pn¡1
t=0 Q

¤
t

is also Op (n) and in consequence, the component R1 of the denominator in (21)

is Op (n) :

The term R2 of the denominator in (21) is given by

R2 =
n¡1X
t=0

["t]
2 : (34)

Multiplying both sides of (34) by 1=n and taking limits as n ! 1; we can see

that the right hand side of (34) converges in probability to the variance of the

process f"tg, and hence, the component R2 of the denominator in (21) is Op (n) :

Therefore, we have proved thatQn = Op (1) ; R1 = Op (n) and R2 = Op (n) ;

and using (21) we have that the term Q associated to µ2 in (17) given by the

expression (18) is Op
¡
n¡1

¢
. ¤

Using the result in the previous lemma, we have that Q ! 0 as n ! 1

for jµj < 1: This guarantees the asymptotic equivalence of the linear least

squares estimator given by (19) to that obtained by minimizing the sum of

squares function using the Gauss-Newton algorithm or other nonlinear techniques.

When the MA(1) process is noninvertible however, the linear estimator is not

asymptotically equivalent to the nonlinear one because the numerator Qn in (21)

given by (24) is not bounded in probability.
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5. Consistency of the linear least squares estimator

We are now in position to prove the consistency of the linear least squares

estimator given by (19):

Theorem Let xt satisfy the MA(1) model

xt = "t + µ"t¡1; t = 1; : : : ; n

where f"tg is a sequence of independent and identically distributed random

variables with zero mean and the same variance ¾2": Then, the linear least squares

estimator µ̂ given by (19) is a consistent estimator of µ for jµj < 1:

Proof. The denominator in (19) is the difference between the terms R2 and R1

given by expression (20): Using the results of the previous lemma, we have that

n¡1R2 ! ¾2" and n
¡1R1 ! 0 as n!1 .

On the other hand, we have that the numerator in (19) can be rewritten as

n¡1X
t=0

xt+1 ["t] =
n¡1X
t=0

(["t+1] + µ ["t]) ["t]

=
n¡1X
t=0

["t+1] ["t] + µ
n¡1X
t=0

["t]
2 ; (35)

and multiplying both sides of (35) by 1=n and taking limits as n ! 1; the two

summations on the right hand side converge in probability to the autocovariance

at lag one and the variance of the process f"tg respectively. Hence,

lim
n!1

1

n

n¡1X
t=0

xt+1 ["t] = µ¾
2
": (36)

Therefore, taking the limit as n ! 1 of the linear least squares estimator µ̂

given by (19) we come to the conclusion that µ̂ is a consistent estimator of µ for

jµj < 1. ¤
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6. Simulation results

This section reports the Monte Carlo simulation results obtained for the MA(1)

model given by (1) for the invertible case jµj < 1: Since the parameter space

is a closed interval for this model, we can attempt to determine the complete

properties of the estimators by simulation, and 19 equally spaced experiments

were conducted for µ varying from ¡0:9 to 0:9 by steps of 0:1. With respect to

sample size we have chosen n = 30 and n = 100 as in Nelson (1974) :

To generate the time series, the pseudo-random number generator from

the G05DDF NAG routine has been employed producing standard normally

distributed variables f"tg :When a run was generated, the �rst 100 numbers were

discarded to avoid possible start-up problems. For each choice of parameter and

sample size, 5; 000 replications were done. All computations were performed on a

Sun/Ultra2 computer at the University of Barcelona. Double precision arithmetic

within FORTRAN 77 programs was used throughout the study.

The linear least squares (LLS) and the Fuller-Gauss-Newton (FGN) estimators

were computed using formulas (19) and (8) respectively. The ith step Gauss-

Newton correction ¢µ̂
i
was calculated using formula (9) for the conditional

case while the regression of "t
³
x; µ̂

i¡1
; "̂i¡10

´
on Wt (x; µ̂

i¡1
; "̂i¡10

¢
and

Ut

³
x; µ̂

i¡1
; "̂i¡10

´
used to determine ¢µ̂

i
for the unconditional case was

performed using the G02DAF NAG routine.

For both methods, the Galbraith/Zinde-Walsh preliminary estimator computed

using an autoregressive approximation of order 15 was used as a starting value of

the iteration procedure.

For the FGN method the estimates were constrained to lie in the unit interval

only after the last iteration, so if at the end of the procedure there was no

local minimum inside the region [¡1; 1] we de�ned the estimate to be on the

boundary.For the LLS method we imposed that the estimator had to be less than
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one in absolute value at the end of each iteration since the consistency of this

procedure requires that the invertibility of the process be met at each stage as it

is shown in the Theorem of Section 5. To overcome this problem we checked up

the estimator value at the end of each iteration and reset any estimation which has

moved outside the invertibility region to a value inside it. Thus, at any iteration

when an estimator of µ is obtained outside the invertible boundary we simply set

µ̂ = §0:9999:

In the implementation the number of iterations for both methods was limited

to a maximum of 1; 000 and the procedure was regarded as having converged if

the absolute value of the difference between two consecutive values fell below

10¡4: When the desired convergence was not achieved after 1; 000 iterations the

procedure was stopped and the estimation declared nonfeasible. This occurred in

a few cases in experiments with values of jµj ¸ 0:8:

Not only have we computed for all the estimators the usual simulation statistics

as bias, standard error and mean squared error but also the percentage times the

parameter estimator falls in the interval 0:99 · jµ̂j · 1 as an indicator of the

magnitude of the ’pileup effect’ described in Section 2.

In Table I, the simple average over values of µ of the simulation mean squared

errors provides a uniformly weighted expected risk measure of overall estimator

performance. Entries in Table I are de�ned as (1=19)
P

19

i=1MSE(µi) ; where

MSE(µi) is the simulation mean squared error obtained in an experiment with

µ = µi and µi = 0:1(i ¡ 1) ¡ 0:9; i = 1; : : : ; 19: It will be observed that the

conditional LLS estimator is, by a very little margin, the best estimator on this

criterion in the smaller sample size, and the unconditional estimators performs

relatively poorly which supports the �ndings of Nelson (1974), Dent and Min

(1978) and Ansley and Newbold (1980) : For n = 100, the linear estimators

behave very similarly than the nonlinear ones in terms of the mean squared error,

which agrees with the asymptotic equivalence between them proved in Section 4.
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TABLE I

Average of the simulation MSE

Conditional Unconditional

Sample size LLS FGN LLS FGN

n = 30 0:03598 0:03612 0:04564 0:04503
n = 100 0:00824 0:00820 0:00894 0:00878

Table II gives the results for the conditional case and n = 30: Except for values

near the invertibility boundary, the conditional LLS estimators seem to be better

than the nonlinear ones due to their smallest variance. This is specially signi�cant

for µ in the interval [¡0:6; 0:6] where the conditional LLS estimator has less bias

and standard error than the FGN estimator.

TABLE II

Simulation statistics for the conditional case and n = 30
Mean squared % times

Bias Standard error error 0:99 · jµ̂j · 1
µ LLS FGN LLS FGN LLS FGN LLS FGN

¡0:9 0:0717 0:0721 0:1362 0:1315 0:0237 0:0225 17:7 11:7
¡0:8 0:0295 0:0282 0:1483 0:1460 0:0229 0:0221 11:0 8:0
¡0:7 0:0072 0:0050 0:1643 0:1632 0:0270 0:0267 6:3 4:4
¡0:6 ¡0:0047 ¡0:0063 0:1797 0:1796 0:0323 0:0323 3:7 2:6
¡0:5 ¡0:0094 ¡0:0112 0:1913 0:1927 0:0367 0:0373 1:7 1:6
¡0:4 ¡0:0102 ¡0:0125 0:2024 0:2050 0:0411 0:0422 0:8 0:7
¡0:3 ¡0:0088 ¡0:0107 0:2090 0:2114 0:0438 0:0448 0:4 0:4
¡0:2 ¡0:0061 ¡0:0068 0:2126 0:2138 0:0452 0:0457 0:2 0:1
¡0:1 ¡0:0028 ¡0:0030 0:2146 0:2159 0:0461 0:0466 0:1 0:0
0:0 0:0007 0:0005 0:2146 0:2168 0:0461 0:0470 0:1 0:0
0:1 0:0035 0:0037 0:2142 0:2161 0:0459 0:0467 0:1 0:1
0:2 0:0072 0:0072 0:2137 0:2141 0:0457 0:0459 0:2 0:1
0:3 0:0095 0:0098 0:2080 0:2093 0:0434 0:0439 0:4 0:3
0:4 0:0106 0:0111 0:2012 0:2032 0:0406 0:0414 0:8 0:6
0:5 0:0089 0:0096 0:1912 0:1918 0:0366 0:0369 1:4 1:2
0:6 0:0029 0:0059 0:1780 0:1792 0:0317 0:0321 2:9 2:1
0:7 ¡0:0079 ¡0:0040 0:1652 0:1637 0:0274 0:0268 5:7 4:4
0:8 ¡0:0304 ¡0:0268 0:1493 0:1470 0:0232 0:0223 10:2 8:0
0:9 ¡0:0728 ¡0:0708 0:1381 0:1338 0:0244 0:0229 16:5 11:7
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In Table III we present the results for the unconditional case and n = 30: A

signi�cant ’pile-up effect’ was found in all the models with jµj ¸ 0:6. Comparing

the results of Tables II and III we can see that the conditional estimators have

always less mean squared error than the unconditional ones except for the case

µ = §0:9 due to the presence of a strong ’pile-up effect’ of about 70 percent of

the estimates.

TABLE III

Simulation statistics for the unconditional case and n = 30
Mean squared % times

Bias Standard error error 0:99 · jµ̂j · 1
µ LLS FGN LLS FGN LLS FGN LLS FGN

¡0:9 ¡0:0438 ¡0:0489 0:1160 0:1055 0:0154 0:0135 72:8 69:4
¡0:8 ¡0:0724 ¡0:0761 0:1572 0:1521 0:0300 0:0289 49:7 47:0
¡0:7 ¡0:0756 ¡0:0763 0:1915 0:1896 0:0424 0:0418 30:8 28:1
¡0:6 ¡0:0669 ¡0:0659 0:2145 0:2108 0:0505 0:0488 17:5 15:5
¡0:5 ¡0:0550 ¡0:0550 0:2242 0:2238 0:0533 0:0531 9:3 8:6
¡0:4 ¡0:0427 ¡0:0418 0:2307 0:2297 0:0550 0:0545 4:7 4:1
¡0:3 ¡0:0297 ¡0:0301 0:2328 0:2329 0:0551 0:0551 2:2 2:3
¡0:2 ¡0:0190 ¡0:0197 0:2342 0:2347 0:0552 0:0555 1:2 1:3
¡0:1 ¡0:0093 ¡0:0093 0:2338 0:2343 0:0547 0:0550 0:6 0:7
0:0 ¡0:0004 ¡0:0004 0:2333 0:2320 0:0544 0:0538 0:6 0:4
0:1 0:0088 0:0079 0:2303 0:2303 0:0531 0:0531 0:5 0:4
0:2 0:0189 0:0173 0:2342 0:2324 0:0552 0:0543 1:1 0:8
0:3 0:0290 0:0286 0:2314 0:2314 0:0544 0:0544 2:1 1:7
0:4 0:0403 0:0393 0:2276 0:2270 0:0534 0:0531 4:1 3:5
0:5 0:0507 0:0505 0:2200 0:2200 0:0510 0:0510 7:9 7:0
0:6 0:0606 0:0611 0:2106 0:2067 0:0480 0:0465 14:8 13:4
0:7 0:0717 0:0752 0:1859 0:1869 0:0397 0:0406 27:6 26:6
0:8 0:0662 0:0760 0:1639 0:1518 0:0312 0:0288 46:7 46:2
0:9 0:0390 0:0511 0:1181 0:1056 0:0155 0:0138 69:3 70:0
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Corresponding results for the conditional and unconditional cases and n = 100

appear in Tables IV and V respectively. For this sample size, the LLS and FGN

estimators have a very similar behavior as we can expect from the asymptotic

theory developed in Section 4. For this sample size, the ’pile-up’ effect for the

unconditional case is only signi�cant for models with jµj ¸ 0:8 and for µ = §0:9

about one third of the estimates lies in the interval 0:99 · jµ̂j · 1:

TABLE IV

Simulation statistics for the conditional case and n = 100
Mean squared % times

Bias Standard error error 0:99 · jµ̂j · 1
µ LLS FGN LLS FGN LLS FGN LLS FGN

¡0:9 0:0213 0:0213 0:0637 0:0609 0:0045 0:0042 6:9 3:5
¡0:8 0:0035 0:0037 0:0711 0:0696 0:0051 0:0049 1:3 0:7
¡0:7 ¡0:0026 ¡0:0023 0:0794 0:0783 0:0063 0:0061 0:2 0:1
¡0:6 ¡0:0047 ¡0:0047 0:0865 0:0863 0:0075 0:0075 0:0 0:0
¡0:5 ¡0:0054 ¡0:0055 0:0925 0:0926 0:0086 0:0086 0:0 0:0
¡0:4 ¡0:0054 ¡0:0054 0:0972 0:0972 0:0095 0:0095 0:0 0:0
¡0:3 ¡0:0049 ¡0:0049 0:1008 0:1008 0:0102 0:0102 0:0 0:0
¡0:2 ¡0:0041 ¡0:0041 0:1033 0:1033 0:0107 0:0107 0:0 0:0
¡0:1 ¡0:0030 ¡0:0030 0:1047 0:1047 0:0110 0:0110 0:0 0:0
0:0 ¡0:0018 ¡0:0018 0:1052 0:1052 0:0111 0:0111 0:0 0:0
0:1 ¡0:0006 ¡0:0006 0:1048 0:1048 0:0110 0:0110 0:0 0:0
0:2 0:0006 0:0006 0:1033 0:1033 0:0107 0:0107 0:0 0:0
0:3 0:0016 0:0016 0:1007 0:1007 0:0101 0:0101 0:0 0:0
0:4 0:0025 0:0024 0:0971 0:0970 0:0094 0:0094 0:0 0:0
0:5 0:0028 0:0027 0:0921 0:0919 0:0085 0:0085 0:0 0:0
0:6 0:0023 0:0022 0:0853 0:0853 0:0073 0:0073 0:0 0:0
0:7 0:0005 0:0002 0:0780 0:0773 0:0061 0:0060 0:2 0:1
0:8 ¡0:0056 ¡0:0055 0:0696 0:0686 0:0049 0:0047 1:1 0:6
0:9 ¡0:0225 ¡0:0225 0:0626 0:0602 0:0044 0:0041 6:1 3:4
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TABLE V

Simulation statistics for the unconditional case and n = 100
Mean squared % times

Bias Standard error error 0:99 · jµ̂j · 1
µ LLS FGN LLS FGN LLS FGN LLS FGN

¡0:9 ¡0:0307 ¡0:0313 0:0615 0:0592 0:0047 0:0045 34:3 31:3
¡0:8 ¡0:0253 ¡0:0251 0:0818 0:0770 0:0073 0:0066 7:8 5:6
¡0:7 ¡0:0194 ¡0:0187 0:0845 0:0827 0:0075 0:0072 1:2 0:7
¡0:6 ¡0:0156 ¡0:0157 0:0894 0:0894 0:0082 0:0082 0:1 0:1
¡0:5 ¡0:0133 ¡0:0133 0:0953 0:0951 0:0093 0:0092 0:1 0:0
¡0:4 ¡0:0110 ¡0:0110 0:0993 0:0991 0:0100 0:0099 0:0 0:0
¡0:3 ¡0:0087 ¡0:0087 0:1024 0:1023 0:0106 0:0105 0:0 0:0
¡0:2 ¡0:0065 ¡0:0065 0:1047 0:1047 0:0110 0:0110 0:0 0:0
¡0:1 ¡0:0042 ¡0:0042 0:1060 0:1060 0:0113 0:0113 0:0 0:0
0:0 ¡0:0018 ¡0:0018 0:1065 0:1065 0:0113 0:0113 0:0 0:0
0:1 0:0005 0:0005 0:1061 0:1061 0:0113 0:0113 0:0 0:0
0:2 0:0029 0:0029 0:1048 0:1048 0:0110 0:0110 0:0 0:0
0:3 0:0053 0:0052 0:1024 0:1024 0:0105 0:0105 0:0 0:0
0:4 0:0077 0:0077 0:0989 0:0988 0:0098 0:0098 0:0 0:0
0:5 0:0103 0:0101 0:0943 0:0939 0:0090 0:0089 0:0 0:0
0:6 0:0130 0:0128 0:0887 0:0880 0:0080 0:0079 0:2 0:1
0:7 0:0165 0:0159 0:0825 0:0811 0:0071 0:0068 0:9 0:4
0:8 0:0229 0:0215 0:0779 0:0752 0:0066 0:0061 6:5 4:6
0:9 0:0288 0:0292 0:0608 0:0591 0:0045 0:0043 31:7 29:4

7. Empirical examples

In this section we compare the performance of the LLS method with the FGN

procedure and the maximum likelihood estimator by applying it to the daily IBM

common stock closing prices data of Box and Jenkins (1976, p. 526) and to the

yearly U.S. tobacco production data of Wei (1990, p. 449). We computed the

conditional LLS and FGN estimators using FORTRAN 77 programs as in the

previous section. The Galbraith/Zinde-Walsh preliminary estimator calculated

using an autoregressive approximation of order 15 was used as a starting value
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of the iteration procedure. The exact maximum likelihood (EML) estimator was

computed usingMélard’s algorithm [see Mélard (1984)] with the help of the SPSS

statistical package.

The asymptotic variance of the least squares estimator µ̂ is given by [see Box

and Jenkins (1976, p. 227)],

var(µ̂) ' 2¾2"

·
E

µ
@2S¤(µ)

@µ2

¶¸¡1
; (37)

where S¤(µ) is the conditional sum of squares function. Furthermore, for large

samples, we can approximate the expected value of the second partial derivative in

(37) by the sample values actually observed, and hence, the estimated asymptotic

variance of the estimator is

var(µ̂) ' ¾̂2"

"
nX
t=1

µ
@ ["t]

@µ

¶2
+

nX
t=1

µ
["t]

@2 ["t]

@µ2

¶#¡1
; (38)

where ¾̂2" = S
¤(µ) /n :

For each example, we have computed the parameter estimator µ̂, its asymptotic

standard error, using the expression (38) for the LLS and FGN methods, the

estimated residual variance ¾̂2" and the Akaike information criterion (AIC) as a

standard tool of model selection.

Example 7.1. Let fYt; t = 1; : : : ; 369g denote the daily IBM common stock

closing prices data from 17thMay 1961 to 2nd November 1962. As in the analysis

of Box and Jenkins (1976, Table 6.4, series B), the data was transformed by taking

�rst differences to produce a new stationary series with a sample autocorrelation

function which suggests a moving average model of order one. Then, we can write

the model as

rYt = "t + µ"t¡1; t = 1; : : : ; 368; (39)
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where the operator r is the �rst difference operator and f"tg is a sequence of

independent and identically distributed random variables with zero mean and the

same variance ¾2":

The preliminary Galbraith/Zinde-Walsh estimator took the value µ̂ = 0:0888:

The results of the estimation of the model (39) are shown in Table VI.

TABLE VI

Estimation results for the daily IBM

common stock closing prices data

Method µ̂ s.e(µ̂) ¾̂2
"

AIC

LLS 0:08658 0:05130 52:21903 1457:605
FGN 0:08657 0:05130 52:21903 1457:605
EML 0:08636 0:05203 52:36119 1458:605

Example 7.2. Let fZt; t = 1; : : : ; 114g denote the yearly U.S. tobacco production

data from 1871 to 1984 in millions of pounds. Following the analysis of Wei

(1990, Table 7.3, series W6), the data was �rst transformed by taking natural

logarithms and then applying the difference operator to generate a new stationary

series with a sample autocorrelation function which indicates a moving average

model of order one. Therefore, we can write the model as

r lnZt = "t + µ"t¡1; t = 1; : : : ; 113; (40)

where the operator r is the �rst difference operator and f"tg is a sequence of

independent and identically distributed random variables with zero mean and the

same variance ¾2":

The preliminary Galbraith/Zinde-Walsh estimator took the value µ̂ = ¡0:7038:

The results of the estimation of the model (40) are displayed in Table VII.
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TABLE VII

Estimation results for the yearly

U.S. tobacco production data

Method µ̂ s.e(µ̂) ¾̂2
"

AIC

LLS ¡0:60027 0:06750 0:02785 ¡402:653
FGN ¡0:60009 0:06754 0:02785 ¡402:653
EML ¡0:60558 0:07620 0:02798 ¡402:137

For each model, the two sets of least squares estimates are virtually the

same and have identical AIC. This is not surprising, as series containing more

than a hundred observations may be expected to follow large sample theory.

Nevertheless, in the U.S. tobacco production model the conditional LLS estimator

has, by a very small margin, less standard error than the others. It’s also important

to note that the EML estimator has, in both models, greater standard error and AIC

than the least squares estimates, which supports the �ndings of Nelson (1974)

and Dent and Min (1978) that the conditional least squares estimator may be

marginally superior to the exact maximum likelihood one.

8. Concluding remarks

Four lessons seem to emerge from the simulation results; �rst of all, the linear

and the nonlinear least squares estimators have the same asymptotic properties

as we can see in the experiment performed for n = 100 and in the examples

examined in Section 7:

Second, at the least there seems to be no justi�cation for the computation of the

pre-sample error "0 because the conditional estimators performs better than the

unconditional ones for both sample sizes. This supports the �ndings of Dent and

Min (1978) and Davidson (1981a, 1981b).

Third, the results of the experiment for n = 30 suggest that in small samples the

conditional LLS estimator performs globally as well as the Fuller-Gauss-Newton
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one in terms of the mean squared error and is clearly superior when the true

parameter value lies in the range [¡0:6; 0:6].

Finally, a ’pile-up’ effect of a substantial magnitude has been detected for

the unconditional LLS and FGN estimators, being higher as the sample size

decreases and the invertibility boundary is approached. For both sample sizes and

µ = §0:9 a high proportion of replications produce a boundary minimum for the

unconditional estimators generating a simulation mean squared error close to zero,

while they are points of maximal bias for the conditional estimators. This supports

the �ndings of Ansley and Newbold (1980) and Davidson (1981a, 1981b).
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