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ABSTRACT

Context. The initial mass function (IMF) plays a crucial role in galaxy evolution and its implications on star formation theory make
it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is
a major subject of debate and analysis both for Galactic and extragalactic science.
Aims. Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic classical Cepheids and Tycho-2 data.
Methods. For the first time, the Besançon Galaxy Model (BGM) has been used to characterize the Galactic population of classical
Cepheids. We modified the age configuration in the youngest populations of the BGM thin disc model to avoid artificial discontinuities
in the age distribution of the simulated Cepheids. Three statistical methods, optimized for different mass ranges, have been developed
and applied to search for the best IMF that fits the observations. This strategy enables us to quantify variations in the star formation
history (SFH), the stellar density at Sun position and the thin disc radial scale length. A rigorous treatment of unresolved multiple
stellar systems has been undertaken, adopting a spatial resolution according to the catalogues used.
Results. For intermediate masses, our study favours a composite field-star IMF slope of α = 3.2 for the local thin disc, excluding
flatter values, e.g. the Salpeter IMF (α = 2.35). Our findings are broadly consistent with previous results derived from Milky Way
models. Moreover, a constant SFH is definitively excluded, the three statistical methods considered here show that it is inconsistent
with the observational data.
Conclusions. Using field stars and Galactic classical Cepheids, we found an IMF steeper than the canonical stellar IMF of associations
and young clusters above 1 M�. This result is consistent with the predictions of the integrated Galactic IMF.

Key words. stars: luminosity function, mass function – stars: variables: Cepheids – Galaxy: disk – solar neighborhood –
Galaxy: evolution

1. Introduction

Classical Cepheids are probably the best-known and most impor-
tant pulsating variable stars. Since Henrietta Swan Leavitt deter-
mined for the first time, in 1912, their period-luminosity relation
(Leavitt & Pickering 1912), classical Cepheids have become the
first ladder of the extragalactic distance scale, since they provide
accurate distances in the Local Universe. Now, in the Gaia era,
the expected thousands of Cepheids that are going to be detected
(Eyer & Cuypers 2000; Windmark et al. 2011; Mor et al. 2015),
again place these classical variable stars in a privileged position
when studying the structure of the Milky Way. In this work we
plan to update the youngest populations in the Besançon Galaxy
Model (BGM) making it capable to simulate a reliable popula-
tion of Cepheids. With this new configuration, and as a first step,
we aim to use the classical Cepheids as tracers of intermediate-
mass population to constrain the initial mass function (IMF) of
the thin disc.

The IMF describes the mass distribution of a star formation
episode. Together with the star formation history (SFH), it is one
of the most important functions to characterize the evolution of
the stellar populations in the Milky Way and external galaxies.

The chemical composition and luminosity of galaxies is directly
influenced by the IMF as it determines the baryonic content and
the light of the Universe. Salpeter (1955) was the first to describe
the IMF as a simple power law dN = ξ(m)dm = km−αdm and he
estimated a power-law index of α = 2.35, taking into considera-
tion an age of 6 Gyr for the Milky Way. Since then, several fun-
damental works on the empirical derivation of the Galactic IMF
have been written, such those of Schmidt (1959), Miller & Scalo
(1979), Scalo (1986), Kroupa et al. (1993), and Kroupa (2002)
among others. Even so, the shape of the IMF is still a matter of
debate, in particular for the high and intermediate stellar mass
range.

Several methods to derive the IMF consist either in analysing
the mass distribution of complex preprocessed samples, or by
fitting models to star counts in complete but limited samples.
Advantages and drawbacks of this last method are discussed in
this paper, keeping in mind that this approach depends on other
parameters such as the SFH, the density distribution, or the in-
terstellar extinction.

An important handicap when studying the IMF at intermedi-
ate and high masses is the low number of stars of these masses
that can be found in clusters or associations. The same occurs
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when using field stars just around few hundred parsecs from the
Sun. Classical Cepheids can solve the problem of poor statistics
at intermediate masses because they are bright and their distance
can be accurately determined. Soon Gaia will provide us with
thousands of them, but for the moment the most complete cata-
logues of Galactic classical Cepheids provide us with hundreds
of Cepheids in the intermediate stellar mass range. These hun-
dreds of Cepheids, together with the ≈800 000 stars from the
Tycho-2 catalogue (Høg et al. 2000) up to V = 11 (that is domi-
nated by low-mass stars), ensures good statistics to constrain the
IMF in the present work.

It have been suggested that the IMF is closely related to
the structure and fragmentation mechanism of molecular clouds
where the stars are formed. Thus, several attempts to derive the
IMF theoretically have been made in this context. For example,
Adams & Fatuzzo (1996) computed a semi-empirical mass for-
mula (SEMF) which provides the transformation between initial
conditions in molecular clouds and the final masses of forming
stars based on the idea that stars determine their own masses
through the action of powerful stellar outflows. For a particu-
lar SEMF, a given distribution of initial conditions theoretically
predicts a corresponding IMF. Key works when discussing the
theory of the IMF are the following: Larson (1992), assuming
a two-dimensional molecular cloud and hierarchical fragmenta-
tion, derived a slope of α = 3 for high masses and α = 3.3 for a
more general IMF. In contrast, Padoan & Nordlund (2002), con-
sidering a turbulent fragmentation of molecular clouds, derived
an IMF with a slope α = 2.33, significantly lower and very close
to the Salpeter one. Elmegreen (1997) obtained a slope value
of α ≈ 2–2.7 considering a turbulent fractal molecular cloud.
We need to bear in mind that several parameters are degener-
ated when deriving the theoretical formation of the stellar cores
from the molecular clouds, i.e. coalescence of protostellar cores,
mass-dependence, accretion process, stellar feedback, or frag-
mentation. In the case of intermediate and high-mass stars the
formation process is even more complex. Thus, in this context,
the empirical and semi-empirical determination of the IMF at in-
termediate and high masses can contribute to the understanding
of the star formation mechanism.

From a population synthesis point of view, several attempts
have made to determine the IMF for different components of
the Milky Way. For example in Reylé & Robin (2001) and
Robin et al. (2014), the IMF of the thick disc component was
studied using deep star counts in different directions. Moreover
in Robin et al. (2000), the halo IMF was investigated. Recently
the IMF of the thin disc was evaluated by our team (Czekaj et al.
2014) using Tycho-2 data and also by Rybizki & Just (2015) us-
ing an observational sample that consists of stars from the ex-
tended Hipparcos catalogue and the Catalogue of Nearby Stars.

In this work, we aim to constrain the thin disc IMF at inter-
mediate masses using the BGM. This tool is being updated each
year by studying the different components of the Milky Way,
e.g. the bulge region (Robin et al. 2012b), where a triaxial boxy
shape for the bar is fitted; the thick disc, Robin et al. (2014),
where two successive star formation episodes are proposed; the
thin disc (Czekaj et al. 2014), where results point to a decreasing
SFH whatever IMF is assumed. Furthermore the BGM has been
used to study the interstellar medium (Marshall et al. 2006),
Galactic kinematics and dynamics (e.g. Bienaymé et al. 2015),
to estimate micro-lensing probabilities (Awiphan et al. 2016;
Kerins et al. 2009) and it has has also been used for the prepara-
tion of the ESA Gaia astrometric mission (Robin et al. 2012a).
In a daily effort to update the BGM piece by piece, contributing
step by step to the knowledge of the different components of the

Milky Way, in this work we aim to update the youngest popu-
lations of the BGM thin disc, improving its fit with the Tycho-2
data and using it to constrain the IMF.

In Sect. 2, we briefly describe the BGM, the model ingredi-
ents, the characteristics of classical Cepheids in the BGM and
our strategy. In Sect. 3, we describe the observational sample.
In Sect. 4, we present our evaluation methods. Results are pre-
sented in Sect. 5, while discussion and conclusions are presented
in Sects. 6 and 7.

2. The Besançon Galaxy Model

The Besançon Galaxy Model has proved to be an efficient tool
to test the Milky Way galaxy structure and evolution scenarios.
Last updates are described in Robin et al. (2003), Robin et al.
(2012b), Robin et al. (2014) and Czekaj et al. (2014), whereas
its dynamical consistency is discussed in Bienaymé et al. (1987)
and Bienaymé et al. (2015). In this study, we are interested in
generating a full sky set of data to be compared with both
Tycho-2 data and the most complete catalogues of Galactic
Cepheids. These catalogues are complete up to a bright limit in
apparent magnitude, thus with a dominant contribution from the
thin disc population and a small contribution from the thick disc
(expected ≈10%) and the halo (expected ≈0.3%).

2.1. The thin disc population

The thin disc component is described in Czekaj et al. (2014). The
stars are generated following an IMF and an SFH, with a con-
tinuous star formation during the disc evolution. The thin disc
population is divided into seven age sub-populations with the
age intervals described in Bienaymé et al. (1987). The density
distribution of each sub-population of the thin disc is assumed
to follow an Einasto density profile as described in Robin et al.
(2012b) Sect. 2.1, except for the youngest sub-population which
follows the expression described in Robin et al. (2003). The
main parameters for the characterization of the Einasto profiles
are the eccentricities of the ellipsoid (ε, that is the axis ratio), the
scale length of the disc (Rd) and the scale length of the disc hole
(Rh). A velocity dispersion as a function of age is adopted and,
each time the IMF and the SFH is changed, new structure pa-
rameters (e.g. the eccentricities of the ellipsoids ε) are computed
to keep the dynamical statistical equilibrium (Bienaymé et al.
1987). Stellar evolutionary tracks and model atmosphere, com-
bined with an age-metallicity relation, enable us to go from
masses, ages, and metallicities to the space of the observables.
In this process a 3D interstellar extinction model is assumed.

BGM thin disc simulations work following the scheme of
Fig. 3 from Czekaj et al. (2014). The SFH, a key ingredient of
the simulation, determines the amount of stars generated in each
one of the seven age sub-populations. Once a star is created, we
assign an age and a metallicity to it. The ages are drawn ran-
domly from the uniform distribution in the interval of the given
age sub-population. The metallicity is drawn for each star from
its own age, according to the age-metallicity relation adopted.
When the age, mass, and metallicity are established, we inter-
polate the stellar evolutionary tracks and find the position of the
star in the Hertzsprung-Russell diagram.

The model includes the generation of unresolved and re-
solved binary systems according to an imposed spatial resolu-
tion. The binarity treatment is well described in Sects. 2.2.2 and
4.3. of Czekaj et al. (2014). Binaries are generated following the
scheme proposed by Arenou (2011), also used to generate the
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Gaia Universe Model (Robin et al. 2012a). To decide if each
newly created star is either a single or primary component of
multiple system, the model uses a probability density function
that depends on the mass of the object and its luminosity class.
The mass-ratio distribution between system components, esti-
mated from observations (Arenou 2011), takes into account the
spectral type and mass of the primary component.

Hereafter, our initial default model (hereafter DM) will be
Model B of Czekaj et al. (2014). Model B is the model proposed
in Czekaj et al. (2014), which gave better results in different
studies (e.g. Robin et al. 2014), moreover it is used nowadays as
the thin disc model for the Gaia Object Generator (Robin et al.
2012b; Luri et al. 2014). Table 5 of Czekaj et al. (2014) shows
the set of thin disc ingredients adopted to fit Tycho-2 data us-
ing the radial scale length parameters detailed in Robin et al.
(2003). The stellar evolutionary models used are those of
Chabrier & Baraffe (1997) for M < 0.7 M�, Bertelli et al. (2008,
2009) for 0.7 M� < M < 20 M�, and Bertelli et al. (1994)
20 M� < 120 M�.

2.2. Generation of classical Cepheids

The instability strip (IS) is the region of the Hertzprung-Russel
diagram occupied by the pulsating variable stars, including clas-
sical Cepheids. The hotter and cooler boundaries of the IS are
called the blue edge and red edge, respectively. For this work, up
to apparent magnitude V = 9, that is for stars around solar neigh-
bourhood, we adopt the blue edge as log(Teff) = −(log(L/L�) −
62.7)/15.8 from Bono et al. (2000b) and red edge as log(Teff) =
−(log(L/L�) − 40.2)/10.0 from Fiorentino et al. (2013), both
derived from Cepheid pulsation models at solar metallicity. For
Cepheids at larger heliocentric distances (magnitudes 9 < V ≤
12), and given the radial metallicity gradient of the Milky Way
(e.g. Genovali et al. 2014), we decided to keep the same red age
and to use as the blue edge the one derived from pulsation mod-
els at lower metallicity (z = 0.008) from Fiorentino et al. (2013),
that is log(Teff) = −(log(L/L�) − 52.5)/13.1.

We impose a luminosity cut in the range 2.7 ≤ log(L/L�) ≤
4.7. This luminosity cut constrains the effective temperature of
the Cepheids to about 4000 ≤ Teff ≤ 7000 K (Bono et al. 1999).

The masses of our simulated Cepheids, selected with the
boundaries of the IS described above, are found to be between
3 and 11 M� with a few reaching up to 15 M� (see Fig. 1).
These values are in good agreement with the mass ranges in the
literature. To start with, the classical review from Cox (1980)
established the Cepheid mass range between 3 and 15 M�.
More recent studies, such as Caputo et al. (2005), found masses
between 5 to 15 M�. Using evolutionary models, Bono et al.
(2000a) estimated a minimum mass of ≈3.25 M� for low metal-
licity Cepheids and ≈4.75 M� for Cepheids with solar metal-
licity. The upper limit given by both Bono et al. (2000a) and
Alibert et al. (1999) could depend on metallicity and it is in the
range 10−12 M�. More recently, Anderson et al. (2014), also us-
ing stellar model but including stellar rotation, predict masses
from 4 to 10 M�. This agreement between literature and our
generated Cepheid mass distribution using the BGM reinforce
both the boundaries of the IS adopted and the BGM Cepheid-
generation strategy.

The age distribution of our simulated Cepheids is presented
in Fig. 2. Most of our simulated Cepheids have ages of be-
tween 20 and 200 Myr, well compatible with the values de-
rived by Bono et al. (2005), who estimated ages from ≈25 Myr
to ≈200 Myr, based on evolutionary and pulsation models. The

Fig. 1. Mass distribution of the simulated Galactic classical Cepheids
for 10 runs. The plot corresponds to the default model. The mass is
expressed in solar masses.

shape of the age distribution obtained here using BGM is dis-
cussed in Sect. 2.3.

With regard to binary fraction, our simulations show that
about 68% of classical Cepheids are contained in a binary sys-
tem. This percentage is consistent with values from the litera-
ture (e.g. Szabados 2003 estimated about 60–80% of Cepheids).
None of our simulated Cepheids are secondary components of
a multiple system. To generate these objects as secondaries, pri-
mary stars should have M > 3.5 M� and we have checked that
only about 2% of stars up to V = 12 fulfil this condition. Further-
more, this probability becomes negligible when imposing the
secondary to be in the instability strip.

Czekaj et al. (2014) adopted a spatial resolution of 0.8 arcsec
according to the resolution of Tycho-2 catalogue. In the cited
work, it was noted that most of the simulated binaries have an-
gular separation smaller than 0.5 arcsec. The Cepheid catalogues
used here could have worse resolutions than Tycho-2, thus the
distribution of the simulated angular separation enables us to
adopt the same 0.8 arcsec resolution for the Cepheids without
compromising the total number of star counts.

2.3. Cepheid ages to constrain the BGM youngest
populations

In Fig. 2, we show the age distribution of the simulated classi-
cal Cepheids with a black dotted line up to apparent magnitude
V = 12 using the DM. Like the other stars, the Cepheids are gen-
erated following an SFH and an IMF, as described in Sect. 2.1.
Since classical Cepheids are young stars they belong to the sub-
population 1 and 2 of the thin disc component of the BGM. Al-
though the range of the ages shown in Fig. 2 is compatible with
the ages of Cepheids (Bono et al. 2005), its distribution presents
a double peak which has not been seen in the empirical data.
This is an artefact that comes from a discontinuity between sub-
populations 1 and 2 of the thin disc in the BGM. In the present
work, we modified the age interval of these two youngest sub-
populations to avoid this discontinuity. In the initial DM, the
first population covered an age interval between 0 and 0.15 Gyr,
while the second sub-population covered the age range 0.15 to
1 Gyr. From now on, the age range of the first sub-population
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Fig. 2. Age distribution of the simulated Galactic classical Cepheids for
10 runs. The black dotted line is for the initial default model. The red
solid line is for the modified default model after the update of the age
intervals of the youngest populations of the BGM.

and second sub-population of our DM will be set from 0.0 to
0.10 Gyr and between 0.10 to 1 Gyr respectively. Thus, once the
age interval for sub-population 1 and 2 is redefined, all the ma-
chinery of the BGM is set up and rerun, e.g. the amount of stars
generated in the so-called new sub-population 1 and 2 is derived
from the SFH, and the integrals over time will be computed ac-
cording to the new age range. A new BGM simulation is used
to update the Cepheid age distribution. In Fig. 2, we show in red
the age distribution of the simulated Galactic classical Cepheids
with the revised DM. Now the age distribution follows a smooth
single peak distribution. As seen in Sect. 5, this modification of
the age ranges improves the fit of the BGM with Tycho-2 data in
the Galactic plane.

2.4. Model variants and strategy

In Fig. 3, we present the scheme of the seven model variants
proposed to constrain the thin disc IMF. To evaluate which is the
best of the tested IMFs (see Sect. 2.5) it is mandatory to analyse
not only the changes that are due to the IMF, but also evaluate
the impact of other key ingredients on the mean properties of the
simulated catalogues. Work performed in Czekaj et al. (2014),
Robin et al. (2012b), and previous experience has allowed us to
identify the SFH, the stellar density at the Sun position, and the
radial scale length as the key parameters most affecting the star
count analysis that we perform in this paper.

By departing from the DM, changing only the IMF, we con-
structed the two other main model variants (see Fig. 3). Those
are the Salpeter Variant (SV) and the Haywood-Robin variant
(HRV). In Sect. 2.5, we further describe the IMFs used. The
impact of thin disc radial scale length variations is tested, as-
suming the scale length of Robin et al. (2003; Rd = 2530 pc
and Rh = 1320 pc) for the DM and changing it to the values of
Robin et al. (2012b; Rd = 2170 pc and Rh = 1330 pc) in the
default model A variant (DAV). These new scale lengths have
been obtained by fitting 2MASS data towards the bulge region
in Robin et al. (2012b). To evaluate the effects of the variation
in the local stellar mass density, we tested the values of Wielen
(1974; 0.039 M�/pc3 ) in the default model B variant (DBV) and
Jahreiß & Wielen (1997; 0.033 M�/pc3) used in the DM. Both

values are selected because they are used in the best-fit mod-
els in Czekaj et al. (2014) and they represent a good range of
the values published in the literature. To analyse the effects pro-
duced by changes in the SFH, we assumed the decreasing SFH
by Aumer & Binney (2009) for the DM and a constant SFH in
the default model C variant (DCV). Additionally, to further study
the Haywood-Robin IMF, we test the variant HRVB, which has
the HRV parameters but using 0.039 M�/pc3 as the local stellar
mass density.

For the sky areas with longitude between –100 and 100
and latitudes between –10 and 10 the model variants presented
in Fig. 3 have been tested with two different extinction mod-
els, Marshall et al. (2006) and Drimmel & Spergel (2001). Us-
ing this strategy, we are able to identify what the impact of the
interstellar extinction is in our Cepheids data, most of them con-
tained in the Galactic plane. All the other thin disc model in-
gredients are maintained as fixed. Its values are those adopted
by Czekaj et al. (2014), Tables 2 and 5. Once a full set of pa-
rameters is adopted, thus for each of the seven variant mod-
els in Fig. 3, we applied dynamical constraints as described in
Bienaymé et al. (1987), solving the Poisson equation, using the
Caldwell & Ostriker (1981) rotation curve for constraining the
dark halo density, and deriving the eccentricities of the Einasto
profiles for each thin disc sub-component from the collision-
less Boltzmann equation, assuming dynamical statistical equi-
librium. The resulting values for the Einasto eccentricities are
given in Tables 1 and 2.

2.5. Initial mass function

In Fig. 4, we present the normalised IMFs that we proposed to
test. They are described using the classical analytical approxi-
mation ξ(m):

dN
dm

= ξ(m) = k · m−α = k · m−(1+x) (1)

where N is the number of stars, m is the mass (in M�), and k is
the normalisation constant. We propose to check the two IMFs
that better fit the Tycho-2 data (Czekaj et al. 2014). The slope of
these IMFs at intermediate masses are on the upper limit values
found in the literature (see Kroupa 2002). Additionally, to cover
most of the range of variation of the slope, we include the clas-
sical IMF of Salpeter (1955) with α = 2.35, as representative of
the lowest values. In Table 3, we present the slopes and limiting
masses for the tested IMFs.

In Fig. 4, we present the three tested IMFs normalized in
the range between 0.09 and 120 M�. The normalization has
been done in terms of mass. To get the mass locked within
each mass interval, one must solve

∫
m · ξ(m)dm for each mass

range. The sum of the obtained result for each mass interval is
then normalized to one using the continuity coefficients Ki as∑

i Ki ·
∫ mi+1

mi
m · ξ(m)dm = 1, i being the index of the mass in-

terval considered (i = 1, 3), see Czekaj et al. (2014) Sect. 2.2.1.
Looking at Fig. 4, we can anticipate the general lines of the sim-
ulations. Salpeter IMF will produce more stars in the range be-
tween 0.09 and 0.5 M� while in the range between 0.5 to about
5 M�, it will produce less stars than the two other tested IMFs.
From about 5 M� to 120 M�, Salpeter IMF will be the IMF that
produces more stars. If we take a look at the tested IMFs in
the Cepheid mass range, it is clear that Salpeter will dedicate
more mass to the Cepheid production than the other two IMFs.
We note, however, that the Salpeter IMF generates less low-
mass Cepheids (in the range ≈3 M� to ≈6 M�) and much more

A17, page 4 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629464&pdf_id=2


R. Mor et al.: Constraining the IMF using Galactic Cepheids

Fig. 3. Scheme of the seven model variants tested in the present paper. For the three main variants, DM, HRV, and SV only the IMF has been
changed. The DCV differs from the DM in the SFH, DBV differs from DM in the stellar density at Sun position, and DAV differs from DM on the
thin disc radial scale length. The HRV has its own variant in stellar density at Sun position, the HRVB.

Table 1. Thin disc local densities M�/pc3.

Sub-population Age (Gyr) DM HRV DBV DCV HRVB SV DAV
1 0–0.10 0.00131 0.00117 0.00147 0.00207 0.00133 0.00113 0.00128
2 0.10 –1 0.00541 0.00504 0.00639 0.00808 0.00589 0.00468 0.00530
3 1–2 0.00427 0.00404 0.00499 0.00557 0.00483 0.00382 0.00417
4 2–3 0.00291 0.00284 0.00351 0.00339 0.00341 0.00275 0.00292
5 3–5 0.00496 0.00502 0.00580 0.00485 0.00596 0.00496 0.00498
6 5–7 0.00510 0.00526 0.00601 0.00393 0.00620 0.00535 0.00506
7 7–10 0.00944 0.00997 0.01122 0.00543 0.01183 0.0103 0.00953

Total thin disc 0.0334 0.0333 0.0394 0.0333 0.0395 0.0330 0.0332

Notes. Contribution to the total dynamical mass of the 7 sub-populations (see Sect. 2.1) for each one of the model variants in Fig. 3.

Table 2. Thin disc eccentricities of the 7 sub-populations (see Sect. 2.1) for each one of the model variants in Fig. 3.

Sub-population Age (Gyr) DM HRV DBV DCV HRVB SV DAV
1 0–0.10 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140
2 0.10–1 0.0205 0.0204 0.0197 0.0210 0.0196 0.0205 0.0231
3 1–2 0.0292 0.0292 0.0281 0.0299 0.0280 0.0292 0.0327
4 2–3 0.0441 0.0440 0.0426 0.0450 0.0424 0.0441 0.0489
5 3–5 0.0565 0.0564 0.0547 0.0576 0.0545 0.0565 0.0624
6 5–7 0.0642 0.0641 0.0622 0.0654 0.0619 0.0642 0.0707
7 7–10 0.0647 0.0645 0.0627 0.0659 0.0624 0.0646 0.0712

high-mass Cepheids (M > 6 M�) than the other tested IMFs.
Kroupa-Haywood IMF will produce a few more Cepheids than
Haywood-Robin IMF.

3. Classical Cepheid observational data
Our strategy requires us to compare well-defined samples which
are complete up to a limit in apparent magnitude. Whereas this
is trivial for simulated BGM samples, observational data have
to be treated rigorously. Currently, the most complete Cepheid
catalogues with good Cepheid variability classification are the
Berdnikov catalogue (Berdnikov 2008) with 577 stars and the
DDO catalogue (Fernie et al. 1995) with 509 stars, with both
catalogues being compilations of photometric data for known
Cepheids. We tested that 95% of Cepheids up to V = 9
are contained in both catalogues, thus in the present work we

have used the photometric data from the Berdnikov catalogue
(for Cepheids up to V = 9) since it is the most up-to-date
one. For fainter magnitudes, we used the ASAS Catalogue of
Variable Stars (hereafter ACVS) from Pojmanski (2002) and
Pojmanski et al. (2006). The telescopes for this survey are in-
stalled in the southern hemisphere from where stars with decli-
nation δ ≤ 29 can be observed. ACVS contains 809 stars classi-
fied exclusively as classical Cepheids. Whereas the quality of the
light curves in the Bernikov catalogue ensures the stars are well
classified as classical Galactic Cepheids, the classification in the
ACVS catalogue, which is built using small telescopes thus hav-
ing less accurate light curves, could contain some contaminants
from other variable types. To minimize the contamination, we
work only with those Cepheids in ACVS that are concentrated
in the Galactic plane.
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Table 3. Slopes and mass limits for the tested IMFs.

IMF M1 α1 M2 α2 M3 α3 M4

Salpeter 0.09 2.35 – 2.35 – 2.35 120
Haywood-Robin 0.09 1.6 1.0 3.0 – 3.0 120

Kroupa-Haywood 0.09 1.3 0.5 1.8 1.53 3.2 120

Notes. The M1, M2, M3, and M4 are the limiting masses (when necessary) and the α1, α2 and α3 are the corresponding slopes. The values of the
M1 and M4 are fixed according to the limiting masses of the evolutionary tracks.
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Fig. 4. Three tested IMFs in the range between 0.09 and 120 M� nor-
malized. The blue solid line is for Salpeter IMF, the red thick dashed line
is for Kroupa-Haywood, and the green thin dashed line is for Haywood-
Robin. We note how for a fix total amount of mass, Salpeter IMF is the
IMF that generates less stars in the interval ≈0.5 to ≈6 M�, but more
stars at M > 6 M� and at M < 0.5 M�

The type II Cepheids, the old, low-mass counterpart to the
classical Cepheids are believed to belong to the thick disc.
They are difficult to disentangle from classical Cepheids. For
the brightest Cepheids, for which large amounts of photomet-
ric data is available and the chemical composition is known (e.g.
Andrievsky et al. 2002; Lemasle et al. 2007), the amount of con-
tamination from type II Cepheids is negligible. For the faintest
Cepheids of our sample, since we concentrate on the Galactic
plane, where the contribution of the thick disc is small, the con-
tamination from type II Cepheids is not significant for our study.

Classical Cepheids are variable stars with large amplitude
variations in visual magnitude. As a result, caution is necessary
when defining the photometric parameters setting the limiting
magnitude. The Berdnikov catalogue provides both the visual
magnitude at maximum (Vmax) and minimum brightness (Vmin).
ACVS provides the visual magnitude at maximum brightness
(Vmax) and the amplitude (δV). To accurately determine the mean
magnitude of a Cepheid, template lightcurves should be used.
But, as we are conservative when selecting the limiting magni-
tude for the completeness of the catalogues, we can approximate
Vmean by (Vmax + Vmin)/2 for Berdnikov data and by Vmax + δV/2
for ACVS. With this definition in mind, several considerations
arise when comparing simulated and observed data.

Since our BGM simulations do not include brightness vari-
ability information (see Sects. 2.1 and 2.2), it is appropriate to
consider the magnitude from the evolutionary tracks as the one
associated to the mean intrinsic brightness of the star. The light
curve of the Cepheids can be assumed as being symmetric at first

approximation; then the probability of finding a Cepheid in any
point of its period between Vmax and Vmin is uniform.

Owing to Cepheid variability, one might wonder whether
a bias in the star counts similar to Malmquist bias could be
introduced when cutting the sample in Vmean apparent magni-
tude. To quantify this effect, we have taken the full Berdnikov
data, and assigned a random phase to each star in the cata-
logue. This process was done by assigning a V magnitude to
each star in the range [Vmin, Vmax] with a uniform probability.
This process was repeated to generate 10 000 realisations of
the catalogue and a cut to V = 9 was applied in each realisa-
tion. These 10 000 realisations gave us a mean number of counts
of 141 ± 2 Cepheids up to V = 9. Then we verified that the
same number of Cepheids (141 stars) was obtained when a cut
at Vmean = 9 was applied. From this test, we prove that the com-
parison of observed and simulated data can be done using Vmean
as the limiting magnitude.

The next step was to set up the faint-end apparent mag-
nitude completeness limit values for each catalogue. For both
Berdnikov and ACVS catalogues, this limit was evaluated as in
Monguió et al. (2013). The limiting magnitude was computed as
the mean of the magnitudes at the maximum peak star counts
in a magnitude histogram, and its two adjacent bins, before and
after the peak, weighted by the number of stars in each bin. In
Monguió et al. (2013), it was estimated that the limiting mag-
nitude computed with this method provides the 90% complete-
ness limit. They confirmed it by using complete catalogues. Fol-
lowing this strategy, we obtain the 90% completeness limit of
Berdnikov catalogue at V = 9.5, for ACVS we obtained the
90% completeness at V = 12.4. From these results it is rea-
sonable to consider the Berdnikov catalogue complete at V = 9
and the ACVS catalogue complete at V = 12. To summarize,
our observed sample has 141 classical Cepheids from full sky
with visual magnitude up to V = 9 (Bernikov catalogue) and
279 Cepheids in the magnitude range 9 ≤ V ≤ 12 with δ ≤ 29
and |b| ≤ 10 (from ACVS). This observational constraint can be
well modelled in our simulated BGM sample.

4. Statistical tools for IMF’s evaluation

Three different statistical methods are used to search for the best
IMF fitting the observations. As will be seen, the information
provided by each of them is fully complementary. Furthermore,
whereas a unique method could converge to the non-optimal so-
lution, a robust conclusion is obtained when consistency among
the three is obtained.

4.1. Absolute Cepheid counts

Our first evaluation method is as simple as comparing the to-
tal number of simulated Cepheids versus the observations. This
method allows us to test which IMF and model variant is able to
reproduce the total number of classical Cepheids up to a given

A17, page 6 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629464&pdf_id=4


R. Mor et al.: Constraining the IMF using Galactic Cepheids

limit in apparent magnitude. This strategy shows us how all the
machinery of the BGM, which incorporates most of the current
knowledge about the Milky Way, is able to generate the observed
amount of a certain type of stars in a specific evolutionary stage.
It is the first time that the BGM is used to test such a specific
population as classical Cepheids.

Each one of the model variants in Fig. 3 was simulated ten
times, and the mean of the resulting star counts was computed.
To quantify the differences between model and data, we use a
basic estimator, χ2 = (Nobs − Nsimu)2/Nobs. This exercise is done
for each one of the two extinction models considered, resulting
in a total of 280 simulations on the MareNostrum supercom-
puter. This evaluation method has the following drawback: it
could be possible to find a combination of parameters that works
properly when fitting the Cepheid observational data, but it could
fail when trying to fit the observational data of other stellar popu-
lations or the whole sky. A given IMF could be able to reproduce
the absolute number of Cepheids up to a given limiting magni-
tude, but this does not prove its goodness in a general sense. To
overcome this drawback, in Sect. 4.2 we introduce the reduced
likelihood test to be applied to a full sky sample (in this case
Tycho-2 data) and, in Sect. 4.3, a probabilistic approach that in-
volves all populations as well as Cepheid data.

4.2. Reduced likelihood applied to Tycho-2 data

This method was designed to search for the IMF and model
variant that gives a better fit with Tycho-2 data in the region
of low latitudes |b| ≤ 10◦. As mentioned, we are searching for
the IMF that best fits the Cepheids but also the full thin disc
population. The Galactic plane was selected because, as known,
the youngest population, and thus classical Cepheids, are well
concentrated in this region. The reduced likelihood for Poisson
statistics has been selected to undertake this work as described
in Bienaymé et al. (1987). The absolute value of this likelihood
needs to be understood as a good distance estimator to evaluate
the differences between the simulations and the observations in
terms of star counts. As pointed out in Bienaymé et al. (1987),
this method avoids the bias introduced by the chi-square fit, at
least for small numbers.

For each model variant (Fig. 3), a distance is computed be-
tween simulated and observed star counts, taking the absolute
value of the following expression:

Lr =

N∑
i=1

qi · (1 − Ri + ln(Ri)), (2)

where Lr is the reduced likelihood for a Poisson statistics
(Kendall & Stuart 1973; Bienaymé et al. 1987) and qi and fi the
number of stars in the data and the model respectively. Ri is de-
fined as the quotient between both (Ri = fi/qi). This reduced
likelihood becomes zero when the simulation and the observa-
tions have the same number of stars in each bin, and Lr = 0 is
its maximum value. |Lr| can be understood as a metric for the
distance between simulations and observations in terms of star
counts in a 2D grid. The smaller the value of |Lr|, the closer it is
to the observational data.

This reduced likelihood is applied to the 1D colour (B− V)T
distribution (1D plots like the ones used in Czekaj et al. 2014)
and to the 2D case of the colour–magnitude diagram distribution
(hereafter CMD) used in Robin et al. (2014).

4.3. The probabilistic Bayesian approach

This third evaluation method has been developed to simultane-
ously use, in a Bayesian probabilistic approach, data from both
Cepheids and all stellar populations found in the disc. It is also
applicable to the full sky star count distribution.

We want to quantify how good a given IMF is able to re-
produce the probability to find a Cepheid each time a star is
observed. As known this probability depends on the apparent
limiting magnitude of the sample. Hereafter, for simplicity, this
probability is called the Cepheid fraction. We aim at quantify-
ing, within the tolerance interval, the probability that our model
variant, which is being evaluated, has the same Cepheid frac-
tion as the observations. This strategy is equivalent to the one re-
cently proposed by Downes et al. (2015). These authors applied
the method to establish the number fraction of stars with cir-
cumstellar discs among low mass stars and brown dwarfs. The
method imposes choosing a tolerance threshold when compar-
ing simulated and observed Cepheid fraction (e.g. 15%). This
threshold defines a tolerance interval in the 2D probability space
established by these two Cepheids fractions.

Our problem is a two-state problem: for a given observed
star, either it is a Cepheid or it is not, i.e. we have a so-called
success if the observed star is a Cepheid and a so-called failure if
it is not. As already known, this can be described by the binomial
distribution.

Let f Obs
Cep and f sim−IMF

Cep be the observed and the simulated
Cepheid fraction. Since these probabilities are independent, we
can write the full posterior probability distribution function in
the 2D space as

P
(

f obs
Cep, f sim−IMF

Cep |data
)

= P
(

f obs
Cep|data

)
∗ P

(
f sim−IMF
Cep |data

)
, (3)

where P
(

f obs
Cep|data

)
and P

(
f sim−IMF
Cep |data

)
are binomial distribu-

tions, thus each of them can be computed following

P
(

fCep|data
)

=
(
( fCep)NCep · (1 − fCep)Ntot−NCep

)
. (4)

Substituting these expressions in Eq. (3) and adopting a uniform
prior, the posterior full 2D probability can be expressed as

P
(

f obs
Cep, f sim−IMF

Cep |data
)

= C ·
(
( f obs

Cep)
NObs

Cep · (1 − f obs
Cep)NObs

tot −NObs
Cep

)
∗

∗

(
( f sim−IMF

Cep )
Nsim−IMF

Cep · (1 − f sim−IMF
Cep )Nsim−IMF

tot −Nsim−IMF
Cep

)
, (5)

where C is the normalisation constant. Following Downes et al.
(2015), Eq. (3), the integral, over the full tolerance area, of
the posterior probability distribution function (Eq. (5)) gives the
probability that the observations and the model variant have the
same Cepheid fraction.

As mentioned, this method can be applied to full sky data.
In our case, owing to Cepheid observational constraints (see
Sect. 3), it will be applied to the full sky data for samples up
to V = 9 and to δ ≤ 29◦ and |b| ≤ 10◦ area for the magnitude
range 9 ≤ V ≤ 11. This upper limit of V = 11 is imposed, in this
case, by the completeness of the Tycho-2 catalogue (Czekaj et al.
2014).

5. Results

The three evaluation methods described in the previous sec-
tion have been applied to Cepheids and Tycho-2 data. We note
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Fig. 5. Testing the IMF. Cepheid counts for the complete region up
to V = 12. Up to V = 9 the observational Cepheid catalogues are
considered as being complete for the whole sky while for the inter-
val 9 < V ≤ 12 they are supposed to be complete for δ ≤ 29. In the
interval 9 < V ≤ 12, an additional cut (|b| ≤ 10) is applied to avoid
contamination of the observational sample. The green line indicates the
observational counts, the grey region is the region within 1σ. Filled red
dots are for the simulations with the Marshall et al. (2006) extinction
model, while blue triangles are simulations with the Drimmel & Spergel
(2001) extinction model. Error bars are due to Poisson noise. We note
how the DM, that is Kroupa-Haywood IMF, is the variant that better fits
the observational data, while HRV, that is Haywood-Robin IMF and SV
(Salpeter IMF), are more than 5σ away from the observational data.

that each of these methods is dominated by a specific range of
masses. Whereas in the absolute Cepheid count method the dom-
inant masses are in the range 3–15 M�, that is in the mass range
of our Cepheids, in the likelihood method the most dominant
objects are the low mass stars in Tycho-2 catalogue. And, in a
complementary way, the resulting probabilities in the Bayesian
method are influenced by both low and intermediate mass.

In Fig. 5, we present the comparison of the absolute Cepheid
counts as part of the first evaluation method. We can see how
the DM, which uses Kroupa-Haywood IMF, nicely fits the ob-
servational data with a χ2 = 0.4, while Haywood-Robin IMF
(HRV) and Salpeter IMF (SV) are more than 5σ away from the
observed data with χ2 = 32 and χ2 = 55, respectively. Thus,
our first evaluation method places the Kroupa-Haywood IMF as
the best to reproduce the absolute Galactic Cepheid counts. We
emphasize that, although Czekaj et al. (2014) showed that the
extinction model can play a significant role in star count com-
parisons, our analysis shown in Fig. 5 does not critically de-
pend on it. However it should be noted that Marshall’s extinction
model covers only about half of the Galactic plane (|l| ≤ 100◦),
so any difference between extinction models should come from
this area. In a similar way, we have checked that, in terms of star
count computation, the already reported Marshall underestima-
tion of extinction (e.g. Czekaj et al. 2014) at short heliocentric
distances compensates the underestimation of Drimmel’s model
with regards to Marshall’s model at distances that are larger than
about 1 kpc. We would need more accurate extinction maps (for
example from future Gaia data) to treat the absolute Cepheid
counts in the solar neighbourhood more robustly.

As mentioned in Sect. 2.5, we want to evaluate and quantify
the impact in previous results when changing critical ingredi-
ents, such as the radial scale length of the thin disc, the stellar
density at Sun position, and the SFH. In Fig. 6, we present a

Fig. 6. Testing variations on radial scale length, stellar density at Sun
position, and SFH. Cepheid counts for the same completeness regions as
Fig. 5. The green line indicates the observational counts, the grey region
is the region within 1σ. Notice how DAV (changed scale length) and
DM (default model) are really close to the observational data. The sim-
ulations have been made taking into consideration the Marshall et al.
(2006) extinction model. Hence reasonable changes in the radial scale
length have small effects in the total Cepheid counts. DBV (local stel-
lar density variant) is still close to observational data. As expected, a
change in SFH (DCV) is critical for the comparison of Cepheid counts
in absolute terms.

comparison between observational data and model variants for
which these parameters have been changed. To quantify the im-
pact of a change in the radial scale length, we need to look at the
differences between the DAV model, with a radial scale length
of 2170 pc and the DM, where a radial scale length of 2530 pc
is used. We note in Fig. 6 that this difference is small and both
DM and DAV fit the observational data properly. Since the stellar
density at the position of the Sun is fixed in BGM, a change in
the radial scale length means, for simulations in the Solar neigh-
bourhood, a change in the stellar density distribution towards the
Galactic centre, compensated for by an opposite change towards
the Galactic anticentre.

As expected, an increase in the stellar density at Sun posi-
tion from 0.033 M� pc−3 in the DM to 0.039 M� pc−3 in the DBV
Model variant produces an increase of the Cepheid counts, how-
ever this deviation is only at 1–2 sigma from the observed values.
Finally, we quantified the effects of considering a constant SFH
instead of the decreasing SFH proposed by Aumer & Binney
(2009) and used in the DM. We verified that the impact of con-
sidering a constant SFH is critical and simulations deviate from
the observed star counts by more than 5σ. Although not shown in
the figure, model variant HRVB with Haywood-Robin IMF and
local stellar density of 0.039 is still generating too few Cepheids
(352) at more than 3σ from observational data with χ2 = 11.6,
indicating that the IMF effect is dominant over the local stel-
lar density. To conclude, the absolute count method applied here
demonstrates that, even with reasonable changes in stellar den-
sity and radial scale length, the Kroupa-Haywood IMF is still the
best option to reproduce observed Cepheid counts.

In Tables 4 and 5, we present the results when applying the
reduced likelihood method (see Sect. 4.2) to the 1D (B − V)T
colour distribution and 2D Colour–Magnitude Diagram respec-
tively. In this analysis, we test the model variants presented
here using Tycho-2 data (all populations) in the Galactic plane.
To compare our results with Czekaj et al. (2014), we have also
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Table 4. Absolute values of the reduced likelihood for the models fitted
to Tycho-2 data in the Galactic plane using colour distributions.

Thin disc model Extinction model |Lr|

Model A (Czekaj et al. 2014) Marshall 6350
Model B (Czekaj et al. 2014) Marshall 15 653

HRVB Marshall 5130
Default Model (DM) Marshall 5302

DAV Drimmel 4300

Notes. |Lr| is a good distance estimator between the simulations and
the observations in terms of star counts in a 2D grid to quantify its
differences. Smaller values correspond to better fits.

Table 5. Absolute values of the reduced likelihood for the models fitted
to Tycho-2 data in the Galactic plane using colour–magnitude diagrams.

Thin disc model Extinction model |Lr|

Model A (Czekaj et al. 2014) Marshall 9037
Model B (Czekaj et al. 2014) Marshall 18 357

HRVB Marshall 7708
Default Model (DM) Marshall 6936

DAV Drimmel 5645

Notes. |Lr| is a good distance estimator between the simulations and
the observations in terms of star counts in a 2D grid to quantify its
differences. Smaller values correspond to better fits.

computed the reduced likelihood for Models A and B of the
mentioned paper. The results (see Tables 4 and 5) confirm that
Model A, using Haywood-Robin IMF, fits the Galactic plane re-
gions better than Model B as reported in Czekaj et al. (2014). We
have obtained smaller values of |Lr| for our DM and DAV model
variant than the values obtained for Model A and Model B,
which means that our best models are improving the results
of Models A and B of Czekaj et al. (2014) when fitting BGM
with Tycho-2 data in the Galactic plane. This improvement is
probably due to both the new age range assigned to the sub-
populations 1 and 2 of the thin disc (Sect. 2.4) and the new strat-
egy adopted to apply photometric transformation1. For simplic-
ity, we do not list the |Lr| values corresponding to all the model
variants presented in Fig. 3 in these tables, only the best of our
models are shown. We note that, although in the 1D case the
HRVB model variant, with the Haywood-Robin IMF, has the
second smallest |Lr|, this is no longer the case when we consider
the 2D CMD, where the best models use Kroupa-Haywood IMF.

This evaluation method leads us to favour Kroupa-Haywood
as the best IMF for the Galactic plane. Furthermore, we can con-
firm that this model variants improve the fit with the observa-
tional data with respect to the ones on Czekaj et al. (2014).

In Fig. 7, we present the colour (B − V)T distribution in the
Galactic plane (|b| ≤ 10◦) for Tycho-2 (solid-black) data and for
simulations using: (1) Model A from Czekaj et al. (2014; dotted-
black); (2) Model B from Czekaj et al. (2014; dotted-blue); and
(3) Our DAV model variant (solid-red), our best fit model vari-
ant. As can be seen, the blue peak around (B − V)T ≈ 0.15
that does not match Tycho-2 data with old Models A and B
(Czekaj et al. 2014) is now perfectly well reproduced when our
new DAV model variant is considered.
1 Johnson V magnitudes have been transformed to Tycho-2 (VT ) fol-
lowing the strategy proposed in ESA (1997; see Vol. 1, Table 1.3.4).
Transformations have been applied before adding the extinction and,
for unresolved binary systems, before merging fluxes.

Fig. 7. Colour (B − V)T distribution for the Galactic plane (|b| ≤ 10).
The black solid thick line is for Tycho-2 catalogue, the dotted blue and
black lines are respectively for models A and B of Czekaj et al. (2014),
the red solid thin line is for our model variation DAV, which gives the
best fit with the observational data.

Fig. 8. Absolute differences in star counts in the colour–magnitude di-
agram between Tycho-2 data and Model B from Czekaj et al. (2014) in
the Galactic plane.

In the red peak of the colour distribution, it can be seen that
all models are shifted by about 0.05 mag from the observed data.
This is a long-standing problem, most probably related to the
stellar atmosphere models used in the simulation or to the pho-
tometric transformation for red giants. As this does not impact
our present study, we will consider it in a future paper.

In Figs. 8 and 9, we present the absolute residuals in star
counts between model and Tycho-2 data in the Galactic plane
in the colour–magnitude distribution. Figure 8 is created using
Model B from Czekaj et al. (2014) whereas, in Fig. 9, our DAV
variant is used. We note how this model variant improves the
results in the overall diagram and even more in the blue region.
However, as commented above, some significant differences still
remain, specifically in the faint red region.

As a final step, and to add statistical robustness to previ-
ous conclusions, we applied the probabilistic Bayesian approach
(Sect. 4.3), to study the Cepheid fraction, which simultaneously
combined Cepheids and Tycho-2 data. In Fig. 10 we show, for
those model variants differing by less than 1–2σ from obser-
vational data in Figs. 5 and 6, the full 2D posterior probability
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Fig. 9. Absolute differences in star counts in the colour–magnitude dia-
gram between Tycho-2 data and DAV variant simulation in the Galactic
plane.

distribution function of the Bayesian problem. All models plot-
ted here are generated using Kroupa-Haywood IMF. The white
region is the tolerance region, the full posterior 2D distribu-
tion function is integrated over the tolerance region searching
for the IMF giving higher probability to reproduce the observed
Cepheid fraction up to V = 11. Whereas the DM has a ≈85%
probability of having the same observed Cepheid fraction as the
Milky Way, up to V = 11, the DAV has a ≈78% while DBV is
just in the ≈50%. The HRVB, with Haywood-Robin IMF gives
us only a probability of ≈60% (not plotted here). We checked
that all the other model variants using Salpeter or Haywood-
Robin IMF always give probabilities smaller than ≈30%. The
Kroupa-Haywood IMF is the tested IMF with the highest prob-
ability to reproduce the observed Cepheid fraction. To sum up,
the Kroupa-Haywood IMF gives the best results out of all the
evaluation methods used.

For completeness, in Fig. 11 we compare the (B−V)T colour
distribution for the whole sky Tycho-2 data with our best fit
Model variant (DAV) implemented here. We note how the fit of
our model with the whole sky young population in the blue peak
of the (B − V) histogram has significantly improved.

6. The IMF in the solar neighbourhood

All methods and data evaluated in the previous section point
towards the Kroupa-Haywood IMF as the one that best fits
Cepheids and Tycho-2 data. This IMF is described with a sim-
plified analytical form with three truncated power laws. Using
field stars and Cepheids, our fits point towards a slope of about
α = 3.2 at intermediate masses, and excludes the flatter values
of α = 2.35 of Salpeter IMF. We now want to discuss the scope
of these results both in terms of star formation environment and
time evolution in the Galactic disc. Our results were obtained
using Galactic Cepheids at all Galactic longitudes located up to
≈2 kpc from the Sun. Thus, the derived IMF reflects the mass
distribution of the formation episodes that took place in the last
200 Myr (upper limit of the Cepheid age) over this region. Our
IMF should be understood as a composite IMF, as described in
Kroupa et al. (2013), one of the best references and review in
this field recently published. Instead of being an IMF derived
from an individual cluster or association, our IMF is the sum of
all stellar IMFs from the star formation episodes in the local thin
disc environment.

The comparison of our results (α = 3.2) with those in the
literature is complex. To begin with, studies using clusters and
OB associations (e.g. Massey 1998) show that, for stars more
massive than the Sun, the IMF can be well approximated by a
single power-law function with the Salpeter index α = 2.35.
As mentioned in Kroupa & Weidner (2003), there is a discrep-
ancy between the slope of the IMF obtained using field stars
(αfield) and the slope of the IMF obtained from stars belong-
ing to a cluster (αcluster). This discrepancy (αfield > αcluster) can
be explained by the fact that low mass clusters are more abun-
dant than the most massive clusters, then the contribution of the
low mass clusters to the field stars is higher. The abundant low
mass clusters do not have massive stars, while the rare massive
clusters do, and this leads to a steepening of the composite IMF
(αfield > αcluster), which is a sum of all the IMFs in all the clus-
ters that spawn the Galactic field population (Kroupa & Weidner
2003).

Several other studies have derived the IMF using field stars.
We should mention the classical work of Scalo (1986) who de-
rived a slope of α = 2.7 for M > 1 M�. To compare studies with
our results one has to keep in mind that the complexity grows
owing to the different ingredients assumed in each case. Critical
parameters such as the SFH, the mass-luminosity relation, the
age of the disc, the accuracy in stellar distances, the stellar evo-
lutionary models, or the corrections owing to multiple systems,
among others, play a significant role. Kroupa et al. (1993), one
of the most referenced works, derived a slope of α = 2.7±0.4 ex-
plicitly applying a correction for the unresolved multiple stellar
systems mostly for late-type stars. The effects of the unresolved
multiple systems on the derivation of the IMF are also discussed
in Sagar & Richtler (1991), Kroupa & Weidner 2003 and, for the
high masses, in Weidner et al. (2009). We want to emphasize that
the binary treatment performed here (see Sects. 2.1 and 2.2) en-
ables us to specifically take into account the angular resolution of
the catalogues used, thus the treatment of the unresolved systems
is rigorous and its effects are implicitly accounted for. More in
favour of our IMF at intermediate masses is its consistency with
the observed stellar density at Sun position and with the Galac-
tic rotation curve of Caldwell & Ostriker (1981), all fitted inside
the BGM in a consistent scenario that incorporates dynamical
constraints (see Sect. 2.4).

To finalize, we cite the recent work of Rybizki & Just (2015).
These authors, also using a population synthesis model as a tool
for the derivation of the IMF, obtained a slope of α = 3.02
for supersolar masses, which is only slightly flatter than our
value. The strength of their method is their combined use of N-
body simulations, Galaxia code (based on BGM as default, see
Sharma et al. 2011), and Markov chain Monte Carlo techniques
to explore the full parameter space. To conclude, Haywood et al.
(1997), Rybizki & Just (2015) and the present work point to-
wards a slope of the field stars IMF of about α ≈ 3 at inter-
mediate masses.

7. Conclusions

Three different statistical methods have been used to search for
the best IMF that simultaneously fits both the Galactic classi-
cal Cepheids and the whole sky Tycho-2 data. All methods are
in agreement with the Kroupa-Haywood IMF (Table 3) with a
slope of α = 3.2 for intermediate masses. Using both field stars
and Galactic classical Cepheids, we have found an IMF that
is steeper than the canonical stellar IMF for the intermediate
masses, both in associations and young clusters. This result is
consistent with the predictions of the Integrated Galactic IMF
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Fig. 10. Full 2D posterior probability distribution function. The white stripe shows the tolerance interval region. The plot is for the three cases in
Fig. 6 that needs a disambiguation: top left panel: DM; top right panel: DBV (different local density); bottom panel: DAV (best fit model with
new scale length). Note here how DM and DAV are almost completely inside the tolerance region, while DBV is half out. DM has an ≈85% of
probability to have the same observed Cepheid fraction as the Milky Way up to magnitude V = 11, while DBV is just in the ≈50%.

(IGIMF). The three statistical methods considered here show
that a constant SFH is not in agreement with the observational
data, thus supporting the star formation history as decreasing in
time in the Galactic thin disc.

For the first time, we use the BGM to characterize the
young population of classical Cepheids and use the most up-
dated boundaries of the Instability Strip. The BGM enables
us to properly place the stellar evolutionary models in the
context of the Milky Way evolution modelling. The BGM is
now capable of providing mass and age distributions of classi-
cal Cepheids. We have used the most complete catalogues of

Galactic classical Cepheids to confirm these objects as good trac-
ers of the intermediate-mass population when constraining the
IMF.

The updated BGM population synthesis model inferred by
the Cepheid analysis and undertaken in the present work rep-
resents an improvement on the fit with Tycho-2 data, compared
with Czekaj et al. (2014). With Gaia, thousands of Galactic clas-
sical Cepheids will be detected, and the BGM is now ready for
the scientific exploitation of these upcoming extremely accurate
data. In a future study, we aim to consider a non-parametric IMF
unlinked from any imposed analytical form and use approximate
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Fig. 11. Colour (B− V)T distribution for the whole sky. The black solid
thick line is for Tycho-2 catalogue, the dotted blue and black lines are,
respectively, for Models A and B of Czekaj et al. (2014), the red solid
thin line is for our model variation DAV.

Bayesian computation methods to explore a larger space of pa-
rameters using Gaia data.
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