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Abstract

In the context of cooperative TU-games, and given an order of players, we consider the

problem of distributing the worth of the grand coalition as a sequential decision problem.

In each step of the process, upper and lower bounds for the payoff of the players are

required related to successive reduced games. Sequentially compatible payoffs are defined

as those allocation vectors that meet these recursive bounds. The core of the game is

reinterpreted as a set of sequentially compatible payoffs when the Davis-Maschler reduced

game is considered (Th.1). Independently of the reduction, the core turns out to be the

intersection of the family of the sets of sequentially compatible payoffs corresponding to

the different possible orderings (Th.2), so it is in some sense order-independent. Finally,

we analyze advantageous properties for the first player.

Resum

Dins el context de jocs cooperatius i problemes de repartiment de guanys, l’article proposa

realitzar aquest repartiment de forma seqüencial, on el pagament a cada jugador s’assigna

un darrera l’altre i seguint un ordre. El procés consisteix a fixar successivament, a cada

pas del procés, una fita inferior i superior que delimiten el possible pagament al jugador

analitzat, i a ”reduir” el joc un cop assignat el pagament al jugador. Els pagaments

seqüencialment compatibles són aquells que compleixen aquestes fites definides de forma

recurrent. El nucli del joc es reinterpreta aleshores com el conjunt de pagament seqüencials

compatibles amb la reducció del joc à la Davis-Maschler. Independentment del tipus de

reducció utilitzat, el nucli és exactament la intersecció de tota la famı́lia de conjunts

de pagaments seqüencialment compatibles relatius als diferents ordres possibles (Th.2).

D’aquesta manera diem que el nucli és independent de l’ordre. Finalment, a l’article

s’analitza les avantatges del jugador que figura en primer lloc en l’ordre fixat.
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1 Introduction

One of the main goals of cooperative game theory is to describe fair methods for allocating

the joint profit arising from cooperation between agents. A preliminary normative task

of the theory is to describe the possible allocation vectors according to criteria related to

equity or justice: that is the core, the bargaining sets or the stable sets. All these solu-

tions propose distributions that may be accepted simultaneously by all players. However,

sometimes decisions regarding payoff allocations are not taken as a one-shot decision but

as a sequence of decisions. In this study we introduce the idea of sequential payoffs in

set-solutions defined for transferable utility cooperative games (TU-games).

The concept of a sequential payoff scheme has already been used in the analysis of

point-solutions for TU-games. A first analysis was given implicitly by Shapley (1972),

who introduced the value for cooperative games, which is the average of all the marginal

worth vectors. These vectors are usually interpreted as sequential payoffs in which each

player receives his marginal contribution to the set of predecessors with respect to a fixed

order given on the player set. Therefore, as in the Shapley value, the sequential analysis

can help to propose and analyze solutions for the cases where there is no apparent reason

to discriminate players. At this point it is interesting to mention the reduced marginal

worth vectors introduced by Núñez and Rafels (1998), where the marginal contributions

of the players are evaluated with respect to successive reduced games.

In some models, cooperation must take into account a certain order of

players. One direction of the analysis comes when the cooperative phenomenon is per-

formed sequentially in time. This approach can be viewed as a source of sequentiality and

has been considered as an argument in the discussion of the concepts of recursive core

(Becker and Chakrabarti, 1995), sequential core (Gale, 1978, 1982) and strong sequential
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core (Predtetchinski et al., 2002).

In our approach the allocation decision problem will be performed step by step, with

players taking part in a natural sequential way. This point of view is closely related to the

recent works of Moulin (2000) and Potters and Sudhölter (1999). Moulin (2000) studies

in depth priority rules and other asymmetric methods for rationing problems. His work

is mainly devoted to the study and axiomatization of point-solutions for special problems

which have their translation into the class of cooperative TU-games. From his work it

is clear that the term sequentiality gives far from a unique outcome, so sequential set-

solutions should then be introduced. Potters and Sudhölter focus on the airport cost

games and the axiomatization of point-solutions. In their analysis, sequentiality appears

implicitly as the criterion for determining the payoff to the first player and the iterative

application of consistency determines the whole payoff vector.

The central idea of sequentiality we present in this paper relies on three main aspects.

The first one is that the assignment process is made following an order and so, whenever

we analyze the payoff of some player, we know the payoff of his predecessors and, more

importantly, we do not need to know at that moment the payoff of the players who follow

him.

Second, at each step of the process the payoff to the current player is chosen between

some upper and lower bounds. The upper bound will be a marginal contribution of the

player and the lower bound will be his individual worth of a suitable reduced game.

Third, each time a payoff to a player is accepted (i.e. if it passes the reasonability

test), and before the next player in the list is analyzed, the worth of coalitions “still in

the game” are reevaluated according to the already fixed payoffs; technically we say that

we reduce the game. At this point we note that for the reduction operator we will adopt
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the α-max generic reduction inspired in the works of Thomson (1990, 1996) who analyzes

(weak) consistency properties of solutions. These three aspects will comprise the concept

of the set of sequentially compatible payoffs with respect to an order.

This paper is organized as follows. In Section 2, we review the core from a sequential

point of view and reinterpret it as a set of sequentially compatible payoffs when the Davis

and Maschler reduction method is adopted. In Section 3, we define the main concept

of the paper, the set of sequentially compatible payoffs with respect to an order on the

set of players, which turns out to be a compact polyhedron in between the core and the

imputation set. Hence, for some selection of the reduced game, the set of sequentially

compatible payoffs may be an alternative whenever the core of the game is empty. In

section 4 we present our main results. The first result (Theorem 1) states that under

the Davis and Maschler reduction, all the sets of sequentially compatible payoffs coincide

with the core regardless of the prescribed order on the player set we fix. This result

by itself can be viewed as a new description for the classical core concept. The second

result (Theorem 2) states that for any arbitrary α-max reduction the intersection of all

the sequentially compatible payoff sets depending on the orders on the players is always

the core of the original game. This result has an interesting consequence since it states

that only the core is order-independent (Corollary 2). The third result (Theorem 3) aims

to solve a natural but dual question: which allocations can be supported by a sequential

argument? Curiously, we will see that any imputation can be supported in this way

if the game is totally balanced. In Section 5 we will analyze advantage properties for

players depending on their positions in the order, and finally, in Section 6 we present

some concluding remarks.

Before starting the analysis, let us establish our notation. By the set of natural
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numbers N we will denote the universe of potential players. By N ⊆ N we will denote a

finite set of players, in general N = {1, 2, . . . , n}. For any coalition S ⊆ N , |S| represents

its cardinality and 2N the power set of N . The symbol S ⊂ T is used for the strict

inclusion, i.e. S ⊆ T and S 6= T .

A cooperative game with transferable utility is a pair (N, v) where v : 2N −→ R,

with v(∅) = 0, is the characteristic function of the game. If no confusion arises we will

denote a cooperative TU-game by its characteristic function v and GN will be the set of

all cooperative TU-games on N . Given ∅ 6= S ⊆ N and v ∈ GN , vS will represent the

subgame which results of the characteristic function to the subsets of S.

Let RS, ∅ 6= S ⊆ N stand for the real-valued linear space of vectors, x = (xi)i∈S.

Given x ∈ RN and ∅ 6= S ⊆ N , x(S) :=
∑

i∈S xi and x|S := (xi)i∈S. We assume x(∅) = 0.

Let I∗(N, v) := {x ∈ RN | x(N) = v(N)} be the set of efficient vectors, also called

preimputations, and I(N, v) := {x ∈ I∗(N, v) | xi ≥ v({i}) for i = 1, . . . , n} be the set of

imputations of the game. We will denote by C(N, v) the core of the game v ∈ GN defined

by C(N, v) := {x ∈ I(N, v) | x(S) ≥ v(S), for all S ⊆ N}.

A game with a non-empty core is called balanced and, if the game and all its subgames

have non-empty core, the game is called totally balanced.

2 Reviewing the core

The idea behind the core of a game is to distribute the total profit by trying at least to

satisfy the justified demands of any potential subcoalitions of players. Another point of

view - in fact historically the first one - was given by Gillies (1959) who defined the core as

the set of undominated preimputations (for more details see also Rafels and Tijs, 1997).

In this section we will give another interpretation based on sequential payments.
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To fix ideas, let us suppose that v ∈ GN and we fix an ordering of players in N ,

denoted by σ = (i1, i2, . . . , in), to implement the sequentiality process. Hence i1 is the

first player, i2 is the second player and so on. Let us now take a distribution in the core

of the game, say x ∈ C(N, v). By definition of the core, it holds that the payoff of any

player, and in particular the payoff of player i1, is between his individual worth and his

marginal contribution to the grand coalition. Formally,

v({i1}) ≤ xi1 ≤ v(N)− v(N \ {i1}). (1)

Notice that these bounds also hold for the rest of players but could be

sharpened if the payoff for player i1 had been announced in advance. If this happens,

the reference game to establish these bounds is not the original game but what is known

as the reduced game.

Since the payoff for some players is fixed (we say that these players are in fact out

of the game), reducing the game means that players who are still in the game reevaluate

their worth by taking into account not only potential subcoalitions with each other, but

also coalitions that might include players out of the game, and bearing in mind that these

players will claim what they have been promised.

The first system of reduction was introduced by Davis and Maschler (1965). Suppose

players in T ⊂ N are still in the game and players in N \ T are out of the game, as they

have been assigned the payoff given by the components of the vector x ∈ RN . Then, the

reduced game on T at x is defined as

rT
x (v)(S) := max

Q∈2N\T
{v(S ∪Q)− x(Q)} (2)

for all ∅ 6= S ⊂ T , with rT
x (v)(∅) := 0 and rT

x (v)(T ) := v(N) − x(N \ T ). This last

equality means that the amount to be distributed is exactly what is left by the players
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who are out of the game.

Peleg (1986) characterized the core axiomatically using, among other properties, a

consistency axiom. The standard consistency property says that for any ∅ 6= T ⊆ N , if

x ∈ C(N, v), it should hold x|T ∈ C(T, rT
x (v)). If T = N \ {i1} we have

x|N\{i1} ∈ C(N \ {i1}, rN\{i1}
x (v)). (3)

Once again, by the definition of the core, it holds that

rN\{i1}
x (v)({i2}) ≤ xi2 ≤ rN\{i1}

x (v)(N \ {i1})− rN\{i1}
x (v)(N \ {i1, i2}). (4)

Repeating the reduction process, it is easy to check that, for any fixed order σ =

(i1, i2, . . . , in), any core element x ∈ C(N, v) meets the following inequalities:

v({i1}) ≤ xi1 ≤ v(N)− v(N \ {i1}),

r
N\{i1}
x (v)({i2}) ≤ xi2 ≤ r

N\{i1}
x (v)(N \ {i1})− r

N\{i1}
x (v)(N \ {i1, i2}),

r
N\{i1, i2}
x (v)({i3}) ≤ xi3 ≤ r

N\{i1, i2}
x (v)(N \ {i1, i2})

− r
N\{i1, i2}
x (v)(N \ {i1, i2, i3}),

...

r
{in}
x (v)({in}) ≤ xin ≤ r

{in}
x (v)({in})− r

{in}
x (v)(∅).

(5)

Notice that the payoff to the players and their bounds are obtained sequentially start-

ing from the original game and following the reduction process as soon as players are

given their payoff. As we will see in Theorem 1, all inequalities in (5) are necessary and

sufficient to recover the core.
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3 The set of sequentially compatible payoffs

From the above interpretation of the core, a sequential payoff scheme will consist of an

iterative process where the cooperative game is reduced each time the payoff to a player is

assigned. The Davis and Maschler reduced game makes sense when it is plausible to take

into account all coalitions of players. However, in some situations it would be interesting

to incorporate other possibilities or restrictions in the model. For example, imagine that

the set of predecessors to a given player acts as a block. In this case, when we reduce the

game a dichotomous situation will appear: a coalition can go alone or join with all the

predecessors, but not with a subgroup, paying them their corresponding payoffs. Another

possibility is to think on an unfavoured set of agents N∗ ⊆ N such that we only want

to cooperate with those predecessors belonging to this group. This and other interesting

possibilities can be found in Elster (1992).

Our model will incorporate this kind of exogenous information by just allowing for a

more general family of reduced games than the original one given by Davis and Maschler.

This will be done by using the concept of admissible subgroup correspondence inspired in

the works of Thomson (1990, 1996).

Definition 1 Let α : 2N −→ 2N be a correspondence associating to every subset Q ⊆ N a

list of subgroups of Q. Then, we say that α is an admissible subgroup correspondence

on N if and only if, for any Q ⊆ N , we have α(Q) ⊆ 2Q where ∅ ∈ α(Q).

The interpretation of α(Q) ⊆ 2Q, for Q ⊆ N , is that it lists the admissible coalitions

of Q. This is the main reason for justifying that the empty set is always an admissible

coalition. We shall denote byA the set of all admissible subgroup correspondences. Notice

that we can define a partial order in A by means of the natural order inclusion. Formally,
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given α and α′ in A, we say that α ≤ α′ if and only if, for all Q ⊆ N , α(Q) ⊆ α′(Q).

The admissible subgroup correspondence will be used (see Definition 2) when a subset

N \T of players, T ⊂ N , has been paid, and then α(N \T ) will describe which coalitions

of N \ T are admissible to join players of T .

Associated to any admissible subgroup correspondence we can introduce the corre-

sponding α-max reduction, which is no more than the reduced game à la Davis and

Maschler but taking into account the information given by the correspondence α.

Definition 2 Let v ∈ GN , α ∈ A, x ∈ RN and ∅ 6= T ⊂ N . The α-max reduced

game relative to T at x is defined as the cooperative game (T, rT,α
x (v)) where

rT,α
x (v)(S) :=


0 if S = ∅,

max
Q∈α(N\T )

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ T,

v(N)− x(N\T ) if S = T.

The interpretation is that, given a payoff vector x ∈ RN , the worth of a coalition S in

the α-max reduced game relative to T at x, ∅ 6= T ⊂ N , is evaluated under the assumption

that S can ensure the cooperation of any admissible subgroup Q not overlapping with

T , Q ∈ α(N\T ), provided that each member of Q receives his original payoff given by

the vector x. The worth of a proper coalition S, S 6= ∅, will be the largest net worth

v(S ∪Q)− x(Q) for some admissible coalition Q.

Notice that the classical Davis and Maschler reduced game is a particular case when

we take α(Q) = 2Q, for all Q ⊆ N , as an admissible subgroup correspondence. We

denote this admissible subgroup correspondence by αDM and, if no confusion arises, we

will maintain the standard notation rT
x (v) instead of rT,αDM

x (v).

The minimal admissible subgroup correspondence is α(Q) = ∅, for all Q ⊆ N . Hence,

the associated α-max reduced game is the subgame except, eventually, for the efficiency;
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following Thomson (1996) we will name it projected reduced game. We denote this admis-

sible subgroup correspondence by αP . Notice that, αP ≤ α ≤ αDM , for all α ∈ A.

Example 1 Dichotomous reduction. This reduction is defined by

αd(Q) = {∅, Q}, for all Q ⊆ N.

It explains the idea that any coalition may stand alone or join with the whole group

of players Q. The corresponding αd-max reduced game was already used in Núñez and

Rafels (1998) to analyze consistency properties for the extreme core points.

Example 2 N∗-reduction. The argument of this reduction relies on the possibility that,

prior to the game, it should be plausible to select some of the agents as a fixed reference

admissible group. Formally, let N∗ ⊆ N be an arbitrary subset of N = {1, . . . , n}. The

admissible subgroup correspondence associated to N∗ is defined by

αN∗(Q) := 2Q∩N∗
, for all Q ⊆ N.

Notice that when N∗ = N we obtain αN = αDM and for N∗ = ∅ we have α∅ = αP .

Other examples of admissible subgroup correspondences can be given by taking into

account several important aspects of the coordination of players: communication, hierar-

chies, geographical areas, or the size of the subgroups.

Now we can define formally what we understand by a sequential cooperative problem.

Definition 3 A sequential cooperative problem is a four-tuple (N, v, α, σ), where (N, v)

is a cooperative game, α is an admissible subgroup correspondence on N and σ is an

arbitrary order on the player set N .
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An order σ = (i1, . . . , in) on the player set N where, |N | = n, is a bijection from

{1, . . . , n} to N . From now on, we will interpret σ as follows: σ(1) = i1 means that player

i1 is the first player, σ(2) = i2 means that player i2 is the second player, and so on. We

will denote by SN the set of all orderings on N . Given σ = (i1, . . . , in) we define the set of

predecessors of player ik ∈ N with respect to σ by P σ
k := {i1, . . . , ik−1} where k = 2, . . . , n,

and P σ
1 := ∅. By F σ

k := {ik, ik+1, . . . , in}, for k ∈ {1, . . . , n}, we will denote the set of

followers of player ik in N , including ik, with respect to σ. Notice that F σ
k = N\P σ

k for

any k = 1, . . . , n.

Finally, we can define the set of sequentially compatible payoffs. Notice that the

definition is no more than a recursive method that imposes at each step the marginal

bounds to the payoffs of players.

Definition 4 Let (N, v, α, σ) be an arbitrary sequential cooperative problem. The set of

sequentially compatible payoffs with respect to σ, denoted by SCσ
α(N, v), is the set of

vectors x ∈ RN such that

r
F σ

k ,α
x (v)({ik}) ≤ xik ≤ r

F σ
k ,α

x (v)(F σ
k )− r

F σ
k ,α

x (v)(F σ
k \{ik}),

for all k ∈ {1, . . . , n}.

Notice that for the first player i1 we just require that

v({i1}) ≤ xi1 ≤ v(N)− v(N \ {i1}),

which can be justified by a stand-alone principle and a non-subsidy principle (Moulin,

1988) since the final allocation will be efficient (see the proof of Proposition 1). After

this, the game is reduced and the same two criteria are applied for the rest of the players.
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We will now look for a new expression of the set of sequentially compatible payoffs in

terms of linear inequalities, similar to the classical expression of the core. To do this we

will need to associate a hypergraph (Berge, 1973) to any sequential cooperative problem.

Definition 5 Let α be an admissible subgroup correspondence on N and σ ∈ SN . We

define the sequential hypergraph Hσ
α ⊆ 2N as

Hσ
α := {{ik} ∪Q, F σ

k+1 ∪Q for all Q ∈ α(P σ
k ), k = 1, . . . , n− 1}.

The sequential hypergraph is formed by the union of any admissible coalition Q of the

set of predecessors of an arbitrary player ik, Q ∈ α(P σ
k ), and the corresponding player

{ik} or all his strict followers, F σ
k+1.

As an illustration, the reader may check that if we take the projected reduction α = αP ,

then for any σ = (i1, . . . , in) its sequential hypergraph is formed by all the individual coali-

tions and the chains formed by deleting players following the order given by σ. Formally,

Hσ
αP

= {{ik}, {ik+1, . . . , in} | k = 1, . . . , n− 1}. (6)

In general Hσ
α will select some special coalitions of N . Let us point out that all the

individual coalitions will belong to Hσ
α for any α ∈ A and any σ ∈ SN , since we have

imposed ∅ ∈ α(Q) for any Q ⊆ N and α ∈ A. The relevance of the above hypergraph is

given in the next proposition.

Proposition 1 For any sequential cooperative problem (N, v, α, σ), the set of sequentially

compatible payoffs is

SCσ
α(N, v) = {x ∈ I∗(N, v) | x(S) ≥ v(S) for all S ∈ Hσ

α}.
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Moreover, the set of sequentially compatible payoffs is a compact and convex polyhedral

set satisfying

C(N, v) ⊆ SCσ
α(N, v) ⊆ I(N, v).

Proof: An allocation x belongs to SCσ
α(N, v) if and only if

r
F σ

k ,α
x (v)({ik}) ≤ xik ≤ r

F σ
k ,α

x (v)(F σ
k )− r

F σ
k ,α

x (v)(F σ
k \{ik}) for all k = 1, . . . , n.

By using the expression of the α-max reduction, the above inequalities can be split

into

max
Q∈α(P σ

k )
{v({ik} ∪Q)− x(Q)} ≤ xik and

xik ≤ v(N)− x(P σ
k )− max

Q∈α(P σ
k )
{v(F σ

k+1 ∪Q)− x(Q)},
(7)

for k = 1, . . . , n− 1, and

rF σ
n ,α

x (v)({in}) ≤ xin ≤ rF σ
n ,α

x (v)(F σ
n )− rF σ

n ,α
x (v)(F σ

n \{in}). (8)

Since F σ
n = {in}, we obtain F σ

n \{in} = ∅ and then xin = r
F σ

n ,α
x (v)({in}). Moreover, by

definition of the reduced game, r
F σ

n ,α
x (v)({in}) = v(N) − x(N\{in}), and so inequalities

in (8) reduce to

xin = v(N)− x(N\{in}).

Therefore, any x ∈ SCσ
α(N, v) is efficient and then v(N)−x(P σ

k ) = x(F σ
k ) for 1 ≤ k <

n. Using this fact, (7) is equivalent to

max
Q∈α(P σ

k )
{v({ik} ∪Q)− x(Q)} ≤ xik ≤ x(F σ

k )− max
Q∈α(P σ

k )
{v(F σ

k+1 ∪Q)− x(Q)},
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for 1 ≤ k < n. The left hand inequalities for xik are equivalent to

x({ik} ∪Q) ≥ v({ik} ∪Q), for all Q ∈ α(P σ
k )

and the right hand ones to

x(F σ
k+1 ∪Q) ≥ v(F σ

k+1 ∪Q), for all Q ∈ α(P σ
k ).

Therefore, x ∈ SCσ
α(N, v) is equivalent to

SCσ
α(N, v) = {x ∈ I∗(N, v) | x(S) ≥ v(S) for all S ∈ Hσ

α}.

A direct consequence of the above equality is that the sequential core is a convex

polyhedral set which includes the classical core, C(N, v) ⊆ SCσ
α(N, v). To prove com-

pactness and that the imputation set includes the set of sequentially compatible payoffs,

we only have to take into account that the individual coalitions belong to the sequential

hypergraph, i.e. {ik} ∈ Hσ
α for any k = 1, . . . , n, α ∈ A and σ ∈ SN . 2

By this characterization, it is easy to find examples where the set of sequentially

compatible payoffs is empty. Nevertheless, notice that if the original game is balanced,

i.e. C(N, v) 6= ∅, then all sequentially compatible payoff sets are non-empty, whatever

α ∈ A and σ ∈ SN we fix.

Moreover, given two admissible subgroup correspondences α, α′ ∈ A, if they are com-

parable, i.e. α ≤ α′, then for any order σ ∈ SN we have Hσ
α ⊆ Hσ

α′ , which implies

the corresponding reverse inclusion between the set of sequentially compatible payoffs,

SCσ
α′(N, v) ⊆ SCσ

α(N, v).

The above proposition also connects the set of sequentially compatible payoffs with

the work of Faigle (1989), which analyzed the case of games with restricted cooperation.
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From this connection it is easy to develop the Shapley-Bondareva algebraic conditions

that characterize the non-emptiness of a specific set of sequentially compatible payoffs. In

fact, we only need to work with balanced collections formed by coalitions on the sequential

hypergraph associated.

Remark 1 Notice that the definition of a sequentially compatible payoff set implies that,

at each step of the sequential analysis, we reduce the same n-player game v and the payoff

vector we start from is always x. Another intuitive approach to the sequential analysis

could be, at each step of the process, to reduce the reduced game obtained in the previous

step. This process involves a smaller and smaller set of players, and with respect to a

payoff vector with fewer and fewer coordinates. However, this approach turns out to be

just a particular case of the one we have adopted, which is the main reason for following

this approach.

4 The main results

Once we have introduced the concept of a set of sequentially compatible payoffs we will

look for its properties. First we will show that under the Davis and Maschler reduction

the set of sequentially compatible payoffs coincide with the core, regardless of the order

we fix on the player set.

Theorem 1 For any game v ∈ GN and any order σ on N , we have

C(N, v) = SCσ
αDM

(N, v).

The proof is straightforward taking into account proposition 1 and the fact that, for

any σ = (i1, . . . , in), Hσ
αDM

= 2N\{∅, N}.
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The above result states an interesting order-independence of the set of sequentially

compatible payoffs if we use the Davis and Maschler reduced game. Nevertheless, this

property is lost when other reduced games are used (see corollary 2).

A consequence of the above theorem is a sort of recursive characterization of the core

that emphasizes an interesting feature of it, already stated by Driessen (1985).

Corollary 1 Let v ∈ GN , x ∈ RN , i ∈ N and T := N \ {i}. Then,

x ∈ C(N, v) ⇔

 v({i}) ≤ xi ≤ v(N)− v(N \ {i}) and

x|T ∈ C(T, rT
x (v)),

where rT
x (v) is the DM-reduced game relative to T at x.

Notice that from the above recursive result we obtain a way to analyze core-selection

solutions. Roughly speaking, first-player marginality plus first-player consistency implies

core selection. This fact was used by Potters and Sudhölter (1999) to analyze point-

solutions for the class of airport cost games.

Another consequence of Theorem 1 is that, in general, the bounds imposed in the

definition of the set SCσ
α(N, v), for any α ∈ A, are not always attainable. By Theorem

1, SCσ
αDM

(N, v) = C(N, v) and it is well known that a balanced game may not attain the

individual worths of some players or/and their marginal contributions. Therefore, bounds

imposed in the definition of the sequentially compatible payoff set may not be attainable.

In particular, the initial bounds for the first player, v({i1}) ≤ xi1 ≤ v(N) − v(N \ {i1})

can be modified during the complete sequential analysis.

In addition, if we describe the inequalities of the set of sequentially compatible payoffs,

SCσ
αDM

(N, v), we will obtain a complete description of the core by giving explicit inequali-

ties for the individual payoffs, xi, i ∈ N , only depending on the payoffs to the predecessors.
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First notice that, by Theorem 1, the core can be described, for any σ = (i1, . . . , in), as

those vectors x ∈ RN such that

r
F σ

k
x (v)({ik}) ≤ xik ≤ r

F σ
k

x (v)(F σ
k )− r

F σ
k

x (v)(F σ
k \ {ik}),

for k = 1, . . . , n, where rT
x (v) is the DM-reduced game on T at x. Hence, for any 1 ≤ k < n,

r
F σ

k
x (v)({ik}) = max

Q∈2
Pσ

k

{v({ik} ∪Q)− x(Q)} and

r
F σ

k
x (v)(F σ

k )− r
F σ

k
x (v)(F σ

k \ {ik}) = v(N)− x(P σ
k )− max

Q∈2
Pσ

k

{v(F σ
k+1 ∪Q)− x(Q)}

= min
Q∈2

Pσ
k

{v(N)− v(F σ
k+1 ∪Q)− x(P σ

k \Q)},

and so we obtain a core description in terms of the efficient allocations that satisfy

max
Q∈2

Pσ
k

{v({ik} ∪Q)− x(Q)} ≤ xik ≤ min
Q∈2

Pσ
k

{v(N)− v(F σ
k+1 ∪Q)− x(P σ

k \Q)},

for k = 1, . . . , n− 1.

Let us point out that to limit the payoff to player ik, only the payoffs to his predecessors

are taken into account. As an illustrative example notice that for N = {1, 2, 3} and for

any σ = (i1, i2, i3) we are describing the core as those x ∈ RN such that

v({i1}) ≤ xi1 ≤ v(N)− v(N \ {i1}),

max

 v({i2}),

v({i1, i2})− xi1

 ≤ xi2 ≤ min

 v(N)− v(N \ {i2}),

v(N)− v(N \ {i1, i2})− xi1


and xi3 = v(N)− xi1 − xi2 .

From this recursive description of the core it should be possible to introduce new point-

solution concepts: for example, the sequential point-solution assigning to the players a

half of their range in the core, or a fixed proportion of these ranges. We leave these

matters for future studies.
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As a second main result we will analyze the intersection of the different sequentially

compatible payoff sets corresponding to all possible orders on N . Therefore, we look

for those imputations which satisfy all possible sequentiality criteria, with the reduction

α ∈ A fixed. Obviously, by Theorem 1 the intersection mentioned above will coincide with

the core for the Davis and Maschler reduction since each of the sequentially compatible

payoff sets coincides with the core itself. The next theorem will show that this will always

be the case, whatever reduction α ∈ A we fix.

Theorem 2 For any cooperative game (N, v) and any α ∈ A, we have

⋂
σ∈SN

SCσ
α(N, v) = C(N, v).

Proof: By Proposition 1 we know that C(N, v) ⊆
⋂

σ∈SN
SCσ

α(N, v). Let x ∈
⋂

σ∈SN

SCσ
α(N, v)

be an arbitrary element of the intersection. Once again by Proposition 1, we know that

x ∈ I(N, v). In order to prove that x ∈ C(N, v), let S ⊆ N be an arbitrary sub-

coalition, |S| ≥ 2, S 6= ∅, N . Now take σ∗ ∈ SN where players in S enter the last

positions, i.e. σ∗ = (i1, . . . , in−s, in−s+1, . . . , in) and S = {in−s+1, . . . , in}. By hypothesis,

x ∈ SCσ∗
α (N, v), which implies xin−s ≤ x(F σ∗

n−s)−maxQ∈α(P σ∗
n−s)

{v(F σ∗
n−s+1 ∪Q)− x(Q)}.

Since α ∈ A, we know that ∅ ∈ α(P σ∗
n−s) and then xin−s ≤ x(F σ∗

n−s) − v(F σ∗
n−s+1), or,

equivalently, v(F σ∗
n−s+1) ≤ x(F σ∗

n−s+1), which implies that x ∈ C(N, v). 2

The above theorem also states that if we replace the Davis and Maschler reduction

by an arbitrary one, α ∈ A, the core C(N, v) splits into the family {SCσ
α(N, v)}σ∈SN

.

Moreover, if we combine Theorem 1 and 2 we can obtain an interesting new feature of the

core: the core could be viewed as an order-independent sequentially compatible solution.
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Definition 6 Let α be an admissible subgroup correspondence on N . The set of sequen-

tially compatible payoffs is order-independent if

SCσ
α(N, v) = SCσ′

α (N, v), for all v ∈ GN , and all σ, σ′ ∈ SN .

Corollary 2 The core is the only order-independent set of sequentially compatible payoffs.

Proof: By Theorem 1 we know that SCσ
αDM

(N, v) = C(N, v) for any σ ∈ SN . Then let

us suppose that there exists α 6= αDM such that for any σ, σ′ ∈ SN , σ 6= σ′ it holds that

SCσ
α(N, v) = SCσ′

α (N, v), and so
⋂

σ′∈SN
SCσ′

α (N, v) = SCσ
α(N, v), for any σ ∈ SN . But

by Theorem 2, this intersection is the core of the game. 2

For the last result in this section we will study the behavior of the union of the

above family of sets. By Proposition 1, any set of sequentially compatible payoffs is a

subset of the imputation set of the original game. Therefore, fixing α ∈ A, we have⋃
σ∈SN

SCσ
α(N, v) ⊆ I(N, v). Moreover, since the projected reduction process satisfies

αP ≤ α, for any α ∈ A, we also know that
⋃

σ∈SN
SCσ

α(N, v) ⊆
⋃

σ∈SN
SCσ

αP
(N, v) ⊆

I(N, v), for any α ∈ A.

The last inclusion could be strict, as we will show later in an example, but in some

cases we will have an equality. The next theorem states that, for a relatively large class of

cooperative games, any imputation can be supported by a sequential approach by using

the projected reduction.

Theorem 3 Let (N, v) be a totally balanced game. Then, we have

⋃
σ∈SN

SCσ
αP

(N, v) = I(N, v).
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Proof: By Proposition 1, ∪σ∈SN
SCσ

αP
(N, v) ⊆ I(N, v). For the reverse inclusion, first

notice that the totally-balancedness hypothesis implies

v(S) ≥ 1

|S| − 1

∑
i∈S

v(S \ {i}), for all S ⊆ N with |S| ≥ 2. (9)

Then, let x ∈ I(N, v) and suppose that, for all i ∈ N , xi > v(N)−v(N\{i}). By efficiency,

v(N) > n v(N)−
∑

i∈N v(N\{i}) or, equivalently,
∑

i∈N v(N\{i}) > (n− 1)v(N), which

contradicts (9). Therefore, there is a player i1 ∈ N such that v({i1}) ≤ xi1 ≤ v(N) −

v(N\{i1}). Now consider the αP -max reduced game relative to N\{i1} at x,

rN\{i1},αP
x (v)(S) =


0 ifS = ∅,

v(S) if ∅ 6= S ⊂ N\{i1},

v(N)− xi1 ifS = N\{i1}.

From the expression of this reduced game and (9), it is straightforward to check that

rN\{i1},αP
x (v)(S) ≥ 1

|S| − 1

∑
i∈S

rN\{i1},αP
x (v)(S \ {i}), (10)

for all S ⊆ N \{i1} with |S| ≥ 2, as for S ⊂ N \{i1} the reduced game is just the subgame

and for S = N \ {i1}, since xi1 ≤ v(N)− v(N\{i1}), we get

v(N)− xi1 ≥ v(N\{i1}) ≥
1

n− 2

∑
i∈N\{i1}

v(N \ {i1, i})),

where the last inequality follows from (9). On the other hand, if x ∈ I(N, v), then

x|N\{i} ∈ I(N\{i}, rN\{i},αP
x (v)). Hence, by repeating the above reasoning we know that

there is a player, say i2 ∈ N\{i1}, such that

rN\{i1},αP
x (v)({i2}) ≤ xi2 ≤ rN\{i1},αP

x (v)(N\{i1})− rN\{i1},αP
x (v)(N\{i1, i2}).

Finally, following the same argument, and taking into account that the projected reduction

has the transitive property, i.e. for any game (N, v), all x ∈ RN and all ∅ 6= S ⊂ T ⊆ N ,
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| T |≥ 2,

rS,αP
x|T

(rT,αP
x (v)) = rS,αP

x (v),

we can find an order σ ∈ SN , with σ(1) = i1, σ(2) = i2, . . . , such that x ∈ SCσ
αP

(N, v),

and the desired result is obtained. 2

The next example shows that the totally-balancedness condition of the game is not

necessary for obtaining the same result.

Example 3 Let (N, v) be the five-person balanced game defined by:

v({1, 2}) = v({3, 4}) = 5, v({1, 2, 5}) = v({3, 4, 5}) = 2.5

v({1, 2, 3}) = v({1, 2, 4}) = v({1, 3, 4}) = v({2, 3, 4}) = 6.5

v({1, 2, 3, 5}) = v({1, 2, 4, 5}) = v({1, 3, 4, 5}) = v({2, 3, 4, 5}) = 3,

v({1, 2, 3, 4}) = 9, v(N) = 15 and v(S) = 0 for the other coalitions.

The game is not totally balanced because the subgame associated to S = {1, 2, 3, 4}

is not balanced (v({1, 2}) + v({3, 4}) = 10 > v({1, 2, 3, 4}) = 9). However, it satisfies

condition (9) in the proof of the Theorem, which is sufficient to obtain equality between

the imputation set and the union of the sequentially compatible payoff sets.

To end this section, let us see an example where the union of the sequentially com-

patible payoff sets corresponding to the projected reduction does not coincide with the

imputation set.

Example 4 Let (N, v) be the symmetric four-person game where v({i}) = 0 for all

i ∈ {1, 2, 3, 4}, v({i, j}) = 100, v({i, j, k}) = 125 and v(N) = 180, for all i, j, k ∈ N =

{1, 2, 3, 4} such that i < j < k. The imputation (45, 45, 45, 45) 6∈ SCσ
αP

(N, v) for any
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σ ∈ SN since for any pair of players we have xi + xj = 90 < v({i, j}) = 100 (see

Proposition 1).

5 First-player advantage property

From the above results we can see that if we use a notion of reduced game other than

the Davis and Maschler notion, i.e. α 6= αDM , α ∈ A, then the set SCσ
α(N, v) is order-

dependent. This leads us to look for advantage properties for players depending on their

positions in the order. To do this, let us first introduce some notation.

For a given order σ = (i1, . . . , in) and k = 2, . . . , n− 1 we will denote

σk = (i2, . . . , ik, i1, ik+1, . . . , in) and σn = (i2, i3, . . . , in, i1). The interpretation is clear:

σk, k = 2, . . . , n, represents switches in the position of the original first player in σ without

changing the sequence of the remaining players. We will identify σ with σ1 whenever it

is needed.

To analyze advantage properties for players depending on their positions we introduce,

as a criterion for comparing potential payoffs, the idea that players prefer more rather

than less. With this assumption in mind, let us associate to any sequential cooperative

problem (N, v, α, σ), with a non-empty sequential compatible payoff set what we call the

maximal sequential rule denoted by x̄σ,α(v) ∈ RN .

The maximal sequential rule x̄σ,α(v) ∈ RN can be described as follows: for all

k = 1, . . . , n,

23



x̄σ,α
ik

(v) = max

x ∈ SCσ
α(N, v)

xi1 = x̄σ,α
i1

(v)

...

xik−1
= x̄σ,α

ik−1
(v)

{xik}. (11)

Notice that the first player in the given order σ = (i1, i2, . . . in) maximizes his potential

gains over the set of sequentially compatible payoffs. Then,

x̄σ,α
i1

(v) = max
x∈SCσ

α(N,v)
{xi1}.

In his turn, the second player will maximize his payoff by taking into account that

xi1 = x̄σ,α
i1

(v) for the first player. Then,

x̄σ,α
i2

(v) = max

x ∈ SCσ
α(N, v)

xi1 = x̄σ,α
i1

(v)

{xi2}.

We then repeat the process until we reach the last player. Notice that this last player

is in fact a payoff-taker agent: his payoff is just what is left by the rest of the players,

x̄σ,α
in

(v) = v(N)− (x̄σ,α
i1

(v) + . . . + x̄σ,α
in−1

(v)).

The maximal allocation rule is well-defined and it is easy to see that it is always an

extreme point of the compact polyhedron SCσ
α(N, v).

Moreover, the maximal sequential rule can be interpreted as a kind of

priority rule for the initial sequential cooperative problem (in some cases it will coin-

cide with a marginal worth vector, as we will see in the proof of Proposition 2).
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Definition 7 The α-max reduction, α ∈ A, has the first-player advantage property

for a given game v ∈ GN if for all σ = (i1, i2 . . . , in) and all k = 1, . . . , n we have :

1) SCσk

α (N, v) 6= ∅ and

2) x̄σ,α
i1

(v) ≥ x̄σk,α
i1

(v).

If the reduction has this property, the first player does not have an incentive to move to

another position. Notice that x̄σk,α
i1

(v) is the maximum that player i1 could obtain by going

in position k ∈ {1, . . . , n} (after paying their corresponding maxima to his predecessors).

Remember at this point that if a game is balanced then all its sequentially compati-

ble payoff sets are non-empty, which implies that the above property can be checked, at

least, in a general class of games. Moreover, conditions weaker than balancedness can

also guarantee the non-emptiness of the sequentially compatible payoff set. The reader

may check that the condition v(S) +
∑

i∈N\S v({i}) ≤ v(N), for all S ⊆ N , is a neces-

sary and sufficient condition to guarantee the non-emptiness of all projected sequentially

compatible payoff sets.

As an example of reduction which has the first-player advantage property we have the

case of the Davis and Maschler reduction on the class of balanced games. This is a direct

consequence of theorem 1 and the justification is left to the reader.

On the other hand, the projected reduction does not in general have this advantage

property. To check this, let us take the following balanced and superadditive 3-player

game: v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = v({1, 3}) = 3, v({2, 3}) = 5 and

v({1, 2, 3}) = 7. By Proposition 1 it is easy to check that, if σ = (1, 2, 3) then σ2 = (2, 1, 3)

and

SCσ
αP

(N, v) = {x ∈ I(N, v) | x2 + x3 ≥ v({2, 3}) = 5}

and
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SCσ2

αP
(N, v) = {x ∈ I(N, v) | x1 + x3 ≥ v({1, 3}) = 3}.

Therefore, x̄σ
αP

(v) = (2, 5, 0) and x̄σ2

αP
(v) = (3, 4, 0), which shows that the first player

i1 = 1 obtains an extra unit if he is so kind as to allow player 2 to be the first. Moreover,

this extra unit is taken from the payoff of the second player.

The negative result shown by this example could also be explained by the next propo-

sition. Recall that a game (N, v) is 0-monotonic if v(S) +
∑

i∈T\S v({i}) ≤ v(T ) for all

S ⊆ T ⊆ N .

Proposition 2 On the class of 0-monotonic cooperative games the following statements

are equivalent:

1) The projected reduction αP has the first-player advantage property.

2) For any player i ∈ N , v(N)− v(N \ {i}) ≥ max
S⊆N, i∈S

{v(S)− v(S \ {i})}.

Proof: By Proposition 1, it is easy to see that for α = αP and σ = (i1, i2, . . . , in),

SCσ
αP

(N, v) =



x ∈ I(N, v) such that

xi2+ xi3+ . . .+ xin−1+ xin
≥ v({i2, . . . , in})

xi3+ . . .+ xin−1+ xin ≥ v({i3, . . . , in})
. . .

xin−1+ xin
≥ v({in−1, in})


. (12)

Moreover, if v ∈ GN is 0-monotonic, then SCσ
αP

(N, v) 6= ∅ for any σ ∈ SN . This can be

explained as follows: for 0-monotonic games and for any order σ = (i1, i2, . . . , in), the vec-

tor zσ(v) ∈ RN defined as zσ
i1
(v) = v(N)−v(N \{i1}), zσ

i2
(v) = v(N \{i1})−v(N \{i1, i2}),

. . . , zσ
in(v) = v({in}) is an imputation of the game. Furthermore, looking at the descrip-

tion of the set of sequentially compatible payoffs (see (12)), it follows straightforwardly

that zσ(v) ∈ SCσ
αP

(N, v) for any 0-monotonic game.
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We now that for a given σ ∈ SN , the vector zσ(v) is the maximal sequential rule,

i.e. x̄σ,αP (v) = zσ(v). Let us prove this. Since zσ(v) ∈ SCσ
αP

(N, v), the maximum that

the first player can obtain in SCσ
αP

(N, v) is x̄σ,αP
i1

(v) = v(N) − v(N \ {i1}). Now, for

any x ∈ SCσ
αP

(N, v) with xi1 = v(N) − v(N \ {i1}), we have xi2 + . . . + xin = v(N) −

(v(N)− v(N \ {i1})) = v({i2, . . . , in}). Since xi3 + . . . + xin ≥ v({i3, . . . , in}), we obtain

xi2 ≤ v({i2, . . . , in})− v({i3, . . . , in}). Finally, from the fact that zσ(v) ∈ SCσ
αP

(N, v), we

have x̄σ,αP
i2

(v) = v({i2, . . . , in})−v({i3, . . . , in}) = zσ
i2
(v). With a similar argument for the

rest of players (we omit details) we finally see that x̄σ,αP (v) = zσ(v).

From the above facts, the equivalence stated in the proposition can be straightfor-

wardly deduced and it is left to the reader. 2

As a first consequence of this result we can state an interesting property for convex

games (Shapley, 1972).

Corollary 3 On the domain of convex games, any α-max reduction, α ∈ A, has the

first-player advantage property.

Proof: By Proposition 2, as convex games are 0-monotonic and satisfy condition 2) of

that proposition, the projected reduction αP has the first player advantage property for

this class of games. Moreover, as we have seen in the proof of Proposition 2 and given

an ordering σ = (i1, i2, . . . , in), the maximal sequential rule coincides with the vector

zσ(v) ∈ RN defined as zσ
i1
(v) = v(N)− v(N \ {i1}), zσ

i2
(v) = v(N \ {i1})− v(N \ {i1, i2}),

. . . , zσ
in(v) = v({in}). Moreover, this vector is just a vector of marginal contributions

of the game v so, as the game is convex, it belongs to its core (see Shapley, 1972), i.e.

zσ(v) ∈ C(N, v). Therefore, x̄σ,αP (v) = x̄σ,αDM (v) = zσ(v).
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Now, from the inclusion relation C(N, v) ⊆ SCσ
α(N, v) ⊆ SCσ

αP
(N, v), we have x̄σ,α(v) =

zσ(v), for all α ∈ A and all σ ∈ SN . Finally, from the convexity of the game, it follows

that x̄σ,α
i1

(v) ≥ x̄σk,α
i1

(v), and the proof is done. 2

For other classes of games, such as assignment games (Shapley and Shubik, 1972),

the first-player advantage property still holds if we impose an additional requirement to

the α-max reduction. In this sense, we say that α ∈ A is upper dichotomous if, for any

Q ⊆ N , Q ∈ α(Q), where the name comes from the fact that αd ≤ α. For instance, the

Davis-Maschler reduction is upper-dichotomous, but this is not the case of the projected

reduction.

Theorem 4 On the class of assignment games any upper-dichotomous reduction has the

first-player advantage property.

Proof: It is well known that, given an assignment game (N, v), for any player i ∈ N

there exists a payoff vector x in the core of the game such that xi = v(N) − v(N \ {i})

(the marginal contribution of player i is attained in the core, (see, for instance, Roth

and Sotomayor, 1990). As the core is in any set of sequentially compatible payoffs, i.e.

C(N, v) ⊆ SCσ
α(N, v) for any α ∈ A and σ ∈ SN , the marginal contribution of any player

i will also be attainable in any set of sequentially compatible payoffs corresponding to an

assignment game. This implies that, given an assignment game (N, v) and a fixed ordering

of players σ = (i1, i2, . . . , in), the maximal sequential rule will assign to player i1 at least

his marginal contribution. In fact, it will assign exactly the marginal contribution as it is

an upper bound in the definition of the set SCσ
α(N, v). Hence, x̄σ,α

i1
(v) = v(N)−v(N\{i1}).

At this point, since α is upper-dichotomous and by the description of the set of sequen-

tially compatible payoffs given in Proposition 1, notice we have x(N \ {i}) ≥ v(N \ {i})
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for all x ∈ SCσ
α(N, v), σ ∈ SN and i ∈ N . Therefore, by efficiency, xi ≤ v(N)−v(N \{i})

for all i ∈ N . Hence, any movement of player i1 to other positions will not benefit him,

as x̄σk,α
i1

(v) ≤ v(N)− v(N \ {i1}) for all k = 2, . . . , n. 2

Notice that assignment games do not meet condition 2) of Proposition 2, so the pro-

jected reduction will not preserve the first-player advantage property in this class of games.

The next example shows this point.

Example 5 Let (N, v) be the assignment game associated to the assignment matrix

3 4

1

2

 4 5

1 3


where {1, 2} is the set of buyers and {3, 4} is the set of sellers. In this case v(N)− v(N \

{1}) = 7 − 3 = 4 and v({1, 4}) − v({4}) = 5. This implies that if we take the orderings

σ = (1, 2, 3, 4) and σ3 = (2, 3, 1, 4), we have x̄
σ,αp

1 (v) = 4 < x̄
σ3,αp

1 (v) = 5, where player

1 will take advantage to move to the third position.

6 Concluding remarks

This paper has studied the problem of sequential allocation decisions. The set of sequen-

tially compatible payoffs describes which allocation vectors are accepted according to an

interative application, at each step of the process, of the stand-alone principle and the

non-subsidy principle.

This perspective opens up several lines of research. First of all, point-solution concepts

could be analyzed within this sequential analysis. In this sense, a sequential solution would
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be defined by a rule or a criterion that assigns payoffs to players following a fixed order.

In this paper, the sequential maximal rule is just one assymetric example of this kind of

solutions. Furthermore, from any assymetric rule, an associated rule can be derived by

taking the average of the assymetric solutions corresponding to the different orders. From

this perspective, not only could new solutions be defined but old well-known solutions

could be reviewed.

Secondly, the iterative process performed suggests a strategic analysis of a sequential

non-cooperative game in which players take decisions in the given order (to leave or not

to leave the game, to accept or not to accept a payoff). Are the equilibria of such a

game consistent with the set of sequentially compatible payoffs? Regarding this question

it is interesting to read the paper by Moldovanu and Winter (1995), which analyzes core

allocations by a dynamic process of payoff vector proposals.

Finally, a natural extension is to apply sequential analysis to the case of non-transferable

utility games. Several interesting questions then arise. For example, how does one de-

fine the iterative process and would the same general results still hold (in particular the

order-independence of the core)?
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