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Single–valued solutions for the Böhm–Bawerk horse
market game

Abstract: Single–valued solutions for the case of two–sided market games
without product differentiation, also known as Böhm–Bawerk horse market
games, are analyzed. The nucleolus is proved to coincide with the τ–value,
and is thus the midpoint of the core. Moreover a characterization of this set
of games in terms of the assignment matrix is provided.
Key words: Assignment game, horse market game, core, nucleolus, τ–value,
Shapley value.
JEL: C71, C78

Resum: En aquest treball s’analitzen solucions puntuals per a mercats a dues
bandes amb productes homogenis, també coneguts com mercats de cavalls de
Böhm–Bawerk. Es demostra que el nucleolus coincideix amb el valor de tau i
és el punt mig del core. A més, es dona una caracterització d’aquests jocs en
termes de la matriu d’assignació.



1 Introduction

The Böhm–Bawerk horse market game (Böhm–Bawerk, 1923) is a model for
a two–sided market with homogeneous goods, and is thus a particular case of
an assignment game where there is no product differentiation.

The assignment game was introduced by Shapley and Shubik (1972) as a
model for a two–sided market with transferable utility. Let M be a finite
set of buyers and M ′ a finite set of sellers, and let us denote by m and m′

their cardinalities. We may think of the formal model of assignment games
as arising from a situation where each seller j ∈ M ′ has an object for sale
which he valuates at cj ∈ R+ (reservation price of seller j ), R+ being the
set of non negative real numbers, while each buyer i ∈ M wants exactly
one indivisible object and places a value of hij ∈ R+ on the object offered
by seller j , hi = (hij)j∈M ′ . Then, if h = (hi)i∈M and c = (cj)j∈M ′ , a
matrix A = A(h, c) = (aij)(i,j)∈M×M ′ is defined, where aij = max{hij − cj, 0}
are the potential gains from the trade between i and j. We will denote by
Mm×m′(R+) the set of non negative matrices with m rows and m′ columns.

A matching (or assignment) between M and M ′ (or a matching for A )
is a subset µ of M ×M ′ such that each k ∈ M ∪M ′ belongs to at most one
pair in µ . We will denote by M(A) the set of matchings of A . We say a
matching µ is optimal if for all µ′ ∈ M(A) ,

∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij and
will denote by M∗(A) the set of optimal matchings. When trying to allocate
the profit obtained by an optimal matching among the agents, cooperative
game theory plays an important role.

A transferable utility cooperative game is a pair (N, v), where the set N =
{1, 2, . . . , n} is its finite player set and v : 2N −→ R its characteristic function
satisfying v(∅) = 0 . A payoff vector will be x ∈ Rn and, for every coalition
S ⊆ N , we shall write x(S) :=

∑

i∈S xi the payoff to coalition S (where
x(∅) = 0 ). An imputation is a payoff vector x that is efficient, x(N) = v(N)
and individually rational, which means each player i ∈ N receives at least the
individual worth v(i) . The set of all imputations of a game (N, v) is denoted
by I(v) . The core of the game (N, v) is a set–solution concept which consists
of those payoff vectors which allocate the worth of the grand coalition in such
a way that every other coalition receives at least its worth by the characteristic
function: C(v) = {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N } .
The core is a bounded convex polyhedron and thus the set of extreme points,
Ext(C(v)) , is finite. A single–valued solution concept for TU games selects for
any game (N, v) an efficient payoff α(v) ∈ Rn . Examples of single–valued
solutions are the Shapley value (Shapley, 1953), the nucleolus (Schmeidler,
1969) and the τ–value (Tijs, 1981).

The marginal contribution of player i ∈ N in the game v , bv
i = v(N) −
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v(N \ {i}) is an upper bound for player i’s payoff in the core of the game. In
general this upper bound may not be attained. However, there are balanced
games with the property that all players can attain their marginal contribution
in the core. This is the case of assignment games.

The above two–sided market can be described by means of a coopera-
tive game where the player set consists of the union M ∪ M ′ of the sets
of buyers and sellers, n = m + m′ being the cardinality of the player set.
The profits of mixed–pair coalitions, {i, j} where i ∈ M and j ∈ M ′ ,
are wA(i, j) = aij ≥ 0 and the matrix A also determines the worth of any
other coalition S ∪ T , where S ⊆ M and T ⊆ M ′ , in the following way:
wA(S ∪ T ) = max{

∑

(i,j)∈µ aij | µ ∈ M(S, T )} , M(S, T ) being the set of
matchings between S and T . It will be assumed as usual that a coalition
formed only by sellers or only by buyers has worth zero. Moreover, we say a
buyer i ∈ M is not assigned by µ if (i, j) 6∈ µ for all j ∈ M ′ (and similarly
for sellers).

Shapley and Shubik proved that the core of the assignment game (M ∪
M ′, wA) is nonempty and coincides with the set of stable outcomes. This
means that the core can be represented in terms of any optimal matching µ
of M ∪M ′ by

C(wA) =























ui ≥ 0, for all i ∈ M ; vj ≥ 0, for all j ∈ M ′

ui + vj = aij if (i, j) ∈ µ
(u, v) ∈ RM×M ′

ui + vj ≥ aij if (i, j) 6∈ µ
ui = 0 if i not assigned by µ
vj = 0 if j not assigned by µ .























(1)
Moreover, the core has a lattice structure with two special extreme core alloca-
tions: the buyers–optimal core allocation, (u, v) , where each buyer attains his
maximum core payoff, and the sellers–optimal core allocation, (u, v) , where
each seller does. Notice that when agents on one side of the market obtain
their maximum core payoff, the agents on the opposite side obtain their min-
imum core payoff, as the joint payoff of an optimally matched pair is fixed:
ui + vj = aij for all (u, v) ∈ C(wA) if (i, j) ∈ µ .

From Demange (1982) and Leonard (1983) we know that the maximum
core payoff of any player coincides with her marginal contribution:

ui = wA(N)− wA(N \ {i}) and vj = wA(N)− wA(N \ {j}) . (2)

The two foregoing extreme core allocations of the assignment game are not,
in general, the only ones. In Núñez and Rafels (2003a) the extreme core allo-
cations of the assignment game are proved to coincide with the set of reduced
marginal worth vectors. These vectors are inspired by the marginal worth vec-
tors. For each ordering θ = (i1, i2, . . . , in−1, in) , the reduced marginal worth
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vector rmwA
θ is a vector in Rn where each player receives her marginal contri-

bution to her set of predecessors, and a reduction of the game is performed in
each step (Núñez and Rafels, 1998): (rmwA

θ )in = bwA
in and, for all 1 ≤ k < n ,

(rmwA
θ )ik = bw

inin−1···ik+1
A

ik . To complete the definition of these vectors, as in
each step only one player leaves the game, it only remains to say that the game
win

A is no more than the reduced game à la Davis and Maschler on coalition
N \ {in} and at the payoff bwA

in .
In the present paper we will focus on a two–sided market without prod-

uct differentiation. This particular case is known as the Horse Market of
Böhm–Bawerk (1891) and is also studied from the viewpoint of game theory
in Shapley and Shubik (1972). In this market, each seller has one horse for
sale and each buyer wishes to buy one horse and places the same valuation on
all the horses available, as they are all alike. The data of the market are thus
given: let 0 ≤ c1 ≤ c2 ≤ · · · ≤ cm′ be the reservation prices of the sellers and
h1 ≥ h2 ≥ · · · ≥ hm ≥ 0 the valuations of the buyers. If hi < cj , no trans-
action is possible between these two agents, but whenever hi ≥ cj , agents i
and j can trade and obtain a joint profit of hi − cj . Thus, the assignment
matrix describing this market is aij = max{hi − cj, 0} .

In section 2, given an arbitrary assignment matrix we would like to de-
termine whether it represents a Böhm–Bawerk horse market. Take matrices

A1 =





1 1 1
1 1 1
1 1 1



 and A2 =





1 0 1
1 1 1
1 1 1



 to illustrate the problem. The

assignment games related to both matrices have the same segment as a core,
C(wA1) = C(wA2) = [(1, 1, 1; 0, 0, 0), (0, 0, 0; 1, 1, 1)] . The first matrix repre-
sents a well known horse market (in fact a symmetric glove market), taking
for instance valuations h1 = h2 = h3 = 1 and c1 = c2 = c3 = 0 . The sec-
ond matrix does not represent a Böhm–Bawerk horse market. If A2 were the
matrix of such a market, h1 − c1 = 1 , h2 − c1 = 1 and h3 − c1 = 1 , which
implies h1 = h2 = h3 . But on the other hand, h1 − c2 ≤ 0 and h2 − c2 = 1
which contradicts h1 = h2 .

The following question arises. Given an arbitrary assignment matrix, how
can we recognize, merely by inspecting the matrix entries, if it represents a
very particular market like the Böhm–Bawerk horse market? To answer this
question we will develop an idea already present in the work of Shapley and
Shubik (1972), who point out that a property of the assignment matrix of these
particular markets is that in each 2 × 2 submatrix with nonzero entries, the
sums of the diagonals are equal. This property is not enough to characterize
the matrices defining a Böhm–Bawerk horse market, as it is easy to check that
matrix A2 satisfies the above property.
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Following this analysis, those Böhm–Bawerk horse market games with the
core reduced to only one point are characterized in section 3.

The second objective of the paper, which is addressed in section 4, is to
make a cooperative analysis of the Böhm–Bawerk horse market. If we look
at this market as a cooperative TU game, what do the classical solutions in
this framework recommend for these special market games? We analyze the
three main single valued solutions (the Shapley value, the nucleolus and the
τ–value) and conclude that they have a strong tendency to recommend the
midpoint of the core. In fact, we prove that the nucleolus, which is always
a core allocation, and the τ–value, which also belongs to the core of the
assignment game (Núñez and Rafels, 2003b), do always coincide with the
midpoint of the core segment. This result is not surprising, as there does not
seem to be any reason to discriminate one side of the market from the other.

The case of the Shapley value is different, as it generally lies outside the
core of the assignment game. Nevertheless, we prove that whenever the Shap-
ley value of a Böhm–Bawerk horse market is a core allocation, it is the mid-
point of the core and thus coincides with the two previous solution concepts.
All these results capture the idea that without any external information about
the bargaining capabilities of the players, the theory of cooperative games pre-
dicts mean competitive price equilibrium. As Böhm–Bawerk says, if we only
have one buyer and one seller, and the transaction of the good is possible
between them, the price of the object will move in a segment. Depending on
their bargaining capabilities, the seller may force a price near the highest price
or the buyer will force a price approaching the lowest price, but with simi-
lar bargaining capabilities the price will be fixed somewhere near the middle
price. Therefore, our aim in this paper is to show that, in this model, the
middle competitive price can be viewed as a focal point, supported by all the
classical solutions in the cooperative game theory.

2 The matrix of a Böhm–Bawerk horse mar-
ket

In this section we characterize those non negative matrices defining a Böhm–
Bawerk horse market. The characterization will be given in terms of all 2× 2
submatrices and so first we need to characterize when such a matrix defines a
Böhm–Bawerk horse market. Let us first define what we mean by this.

Definition 1 A matrix A , with set of rows M and set of columns M ′ ,
defines a Böhm–Bawerk horse market if and only if there exist h1, . . . , hm ∈
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R+ and c1, . . . , cm′ ∈ R+ such that aij = max{hi − cj, 0} , for all i ∈ M
and j ∈ M ′ .

Notice that the property of defining such a market is invariant under permu-
tation of rows or columns. Secondly, given an arbitrary assignment matrix,
if one side of the market reduces to only one agent then that matrix always
represents a Böhm–Bawerk horse market. Thus the simplest case we need to
study is that of 2× 2 matrices.

When analyzing Böhm–Bawerk horse markets in the case 2× 2 , a special
type of optimal matching will be introduced, which in fact can be defined in
the general framework of assignment games, regardless of the cardinality of
each side of the market. Let (M∪M ′, wA) be an assignment game; an optimal
matching µ ∈ M∗(A) is said to be singular when there exists a mixed pair
coalition with worth zero and its agents are optimally paired by µ , that is to
say, there exists (i, j) ∈ µ such that aij = 0 .

The following lemma characterizes those 2×2 non negative matrices that
correspond to a Böhm–Bawerk horse market. Notice that a non negative 2×2
matrix has either two optimal matchings or only one.

Lemma 2 A matrix A =
(

a11 a12

a21 a22

)

∈ M2×2(R+) defines a Böhm–

Bawerk horse market if and only if whenever A has only one optimal match-
ing, this is singular.

Proof: If A is a Böhm–Bawerk horse market, either A is positive, and in
that case there exist h ∈ R2

+ and c ∈ R2
+ such that aij = hi − cj for all

i, j ∈ {1, 2} which implies a11 + a22 = a12 + a21 and A has two optimal
matchings, or it has some null elements. If A has a null row or column, then
trivially if A has only one optimal matching, this one is singular. Assume
now that A has only one null element which is ai1,j1 for some (i1, j1) ∈
{1, 2} × {1, 2} . Let us denote by i2 and j2 the remaining buyer and seller.
Then hi1−cj1 ≤ 0 and ai1j1+ai2j2 = hi2−cj2 ≥ hi1−cj1+hi2−cj2 = ai1j2+ai2j1
and µ = {(i1, j1), (i2, j2)} is an optimal matching which is singular.

To prove the converse statement assume without loss of generality, that
a11 ≥ max{a12, a21} and define h1 = a11 , h2 = a21 , c1 = 0 and c2 =
a11−a12 . If A has two optimal matchings, we have a11 +a22 = a12 +a21 and
then h2 − c2 = a21 − (a11 − a12) = a22 . Consequently, aij = max{hi − cj, 0}
for all i, j ∈ {1, 2} .

If A has only one optimal matching and it is singular, this must be
{(1, 1), (2, 2)} and a22 = 0 . Then a11 > a12 + a21 ; taking the same valu-
ations as above a22 = max{h2 − c2, 0} and A defines a Böhm–Bawerk horse
market. 2
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As a consequence, matrices defining a Böhm–Bawerk horse market are, up

to possible permutations of buyers or sellers,
(

a11 a12

a21 a22

)

with a11 + a22 =

a12 + a21 , but also
(

a11 0
a22 0

)

or
(

a11 a12

a21 0

)

with a11 ≥ a12 + a21 .

The following theorem shows that to check if a given non negative matrix
defines a Böhm–Bawerk horse market, we only have to analyze all its 2× 2
submatrices.

Theorem 3 Let A ∈ Mm×m′(R+) . The matrix A defines a Böhm–Bawerk
horse market if and only if every 2 × 2 submatrix defines a Böhm–Bawerk
horse market.

Proof: The “only if” part is straightforward as any submatrix of a Böhm–
Bawerk horse market is also a Böhm–Bawerk horse market. To prove the “if”
part, let us assume, without loss of generality, that rows and columns have
been ordered in such a way that a1j ≥ a1j+1 for all j ∈ {1, . . . , m′ − 1} ,
ai1 ≥ ai+11 for all i ∈ {1, . . . ,m− 1} and, moreover, a11 ≥ aij for all i ∈ M
and j ∈ M ′ . Notice that this can always be achieved.

We first claim that, under the assumption that all 2×2 submatrices define
Böhm–Bawerk markets, the above ordering implies that, for all i ∈ M and
j ∈ M ′ , aij ≥ aij′ for all j′ ≥ j and aij ≥ ai′j for all i′ ≥ i .

We prove the first inequality of the claim (the second one is proved anal-

ogously). Take j′ > j and consider the matrix A′ =
(

a11 a1j

ai1 aij

)

. As this

matrix defines a Böhm–Bawerk market, if a1j = 0 , then aij = 0 follows from
lemma 2. But on the other side, as a1j ≥ a1j′ , we obtain a1j′ = 0 and since

matrix
(

a11 a1j′

ai1 aij′

)

is a Böhm–Bawerk market, we obtain from lemma 2

that aij′ = 0 and thus aij ≥ aij′ .
If a1j > 0 we will first see that a1j ≥ aij . As this is obvious when aij = 0 ,

let us assume aij > 0 . Then, by lemma 2, we obtain a11 + aij = a1j + ai1 ,
which from a11 ≥ ai1 implies a1j ≥ aij .

Now take matrix A′′ =
(

a1j a1j′

aij aij′

)

. If aij′ = 0 , then trivially aij ≥

aij′ . If aij′ > 0 , from lemma 2, a1j + aij′ = aij + a1j′ which, as a1j ≥ a1j′ ,
implies aij ≥ aij′ .

After proving the claim, which implies that whenever aij = 0 then akl = 0
for all k ≥ i and l ≥ j , we define valuations for buyers and sellers which
show that A is a Böhm–Bawerk horse market.
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Define hi = ai1 for all i ∈ M and cj = a11 − a1j for all j ∈ M ′ . If
aij > 0 , then A′ > 0 and from lemma 2

max{hi − cj, 0} = max{ai1 − (a11 − a1j), 0} = max{aij, 0} = aij .

If aij = 0 then, by lemma 2, a11 ≥ a1j + ai1 , which means

max{hi − cj, 0} = max{ai1 − (a11 − a1j), 0} = 0 = aij .

2
Our first remark is that, by using the above characterization, it is easy

to recognize when a matrix defines a Böhm–Bawerk horse market. For in-
stance, by inspection of all its 2 × 2 submatrices, we conclude that matrix








0 0 1 0
8 10 15 13
0 0 5 3
3 5 10 8









defines such a market, while the matrix A2 =





1 0 1
1 1 1
1 1 1





analyzed in the introduction is not a Böhm–Bawerk horse market, as the sub-

matrix
(

1 0
1 1

)

has only one optimal matching, and it is not a singular
one.

More consequences follow from theorem 3. The addition of two matrices
defining Böhm–Bawerk horse markets might not be a Böhm–Bawerk horse
market, as the following example shows:

(

1 1
1 1

)

+
(

1 0
0 0

)

=
(

2 1
1 1

)

.

Nevertheless, if we restrict to positive matrices, the property of being a Böhm–
Bawerk horse market is preserved by the addition.

Moreover, the class BBM∪M ′ of matrices defining Böhm–Bawerk horse
markets is closed by the usual topology in Rm×m′ . From theorem 3, it is
enough to check that the class of 2×2–Böhm–Bawerk horse markets is closed
in R4 . To see this, we only have to decompose the above class as a finite
union of subclasses: those matrices with two optimal matchings, those with a
null first row, those with a null second column, those with only one null entry
which is aij ,... etc. It is easy to prove that each one of these subsets is closed.

3 Some remarks about the core

It is already known from Shapley and Shubik (1972) that the core of the
Böhm–Bawerk horse market game consists of a segment, in which the buyer–
optimal and the seller–optimal core allocations are the extreme points. More-
over, in absence of product differentiation, all transactions take place at the
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same price. This means that there exists an interval of prices [p, p] and
(u, v) ∈ C(w) if and only if there exists p ∈ [p, p] such that

ui = hi − p and vj = p− cj (3)

if buyer i and seller j are involved in some transaction, while the remaining
agents receive a zero payoff. As happens in an arbitrary assignment game, the
core coincides with the set of competitive equilibria. Then, [p, p] is the set
of competitive prices. In order to give an expression of these extreme prices,
some notations are fixed.

In the sequel, and until the end of the paper, given a Böhm-Bawerk horse
market, we assume without loss of generality that h1 ≥ h2 ≥ · · · ≥ hm ≥ 0
and 0,≤ c1 ≤ c2 ≤ · · · ≤ cm′ , and then aij ≥ ai′j′ for all i′ ≥ i and j′ ≥ j .
From this it follows that, whenever aij = 0 then akl = 0 for all k ≥ i and
l ≥ j .

Then, an optimal matching is µ = {(i, i) | i ∈ {1, . . . , r}} where r =
min{m,m′} . If s = max{i ∈ {1, 2, . . . , r} | hi − ci ≥ 0} , then agent k , with
k ≤ s will be said to be an active player. In fact µ = {(i, i) | i ∈ {1, . . . , s}}
is also an optimal matching as aii = 0 for all s < i ≤ r . Notice that active
buyers or sellers can interchange their partners by µ and we still obtain an
optimal matching.

From Moulin (1995), the maximum and minimum competitive prices are

p = max{hs+1, cs} and p = min{hs, cs+1} , (4)

where s denotes the last active agent on each side of the market and we define
hm+1 = −∞ and cm′+1 = ∞ .

In some cases, these two extreme prices will coincide and then the core
reduces to one unique point. This means not only that all transactions take
place at the same price, but also that this price is fixed. This happens when
p = p , but we would like to recognize this situation just by looking at the
corresponding matrix. Notice that, in the more general framework of assign-
ment games, no characterization of those games with core reduced to only one
point is known, although some necessary condition can be given.

Given a Böhm–Bawerk horse market game (M ∪M ′, wA) , with s the last
active player on each side of the market, let us consider the matrix

As =
(

as s as s+1

as+1 s as+1 s+1

)

,

where as s+1 = as+1 s+1 = 0 if s = m′ and as+1 s = as+1 s+1 = 0 if s = m .
That means that if s = m′ we complete the market with seller s + 1 with
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valuation cs+1 large enough such that ais+1 = 0 for all i ∈ M . And if s = m
we complete the market with buyer s + 1 with valuation hs+1 small enough
such that as+1j = 0 for all j ∈ M ′ . Just by inspection of this matrix it is
possible to determine whether the Böhm–Bawerk horse market game has only
one core allocation.

Proposition 4 Let (M ∪ M ′, wA) be a Böhm–Bawerk horse market game.
Then, C(wA) has only one point if and only if As has two optimal matchings.

Proof: Assume C(wA) has only one point, then p = p . If p = max{hs+1, cs} =
hs+1 , then p = min{hs, cs+1} must be attained at hs , otherwise we would
obtain hs+1 = cs+1 , which contradicts the definition of s . Then p = hs+1

and p = hs and by assumption hs = hs+1 which implies as s = as+1 s and
as s+1 = as+1 s+1 , and As has two optimal matchings.

If p = cs then either p = hs which by the assumption means ass = 0 and
As is the null matrix, or p = cs+1 . In this second case, as also by the above
assumption cs = cs+1 , we obtain as s = as s+1 and as+1 s = as+1 s+1 and again
As has two optimal matchings.

Conversely, if As has two optimal matchings, several cases will be consid-
ered. If as s = 0 then hs = cs and, from cs ≤ cs+1 and hs ≥ hs+1 follows
p = cs = hs = p . If as s > 0 and as+1 s = 0 , as as+1 s+1 = 0 by definition of
As , the existence of two optimal matchings implies as s = as s+1 > 0 and then
cs = cs+1 which, from hs+1 < cs+1 = cs ≤ hs , leads to p = cs and p = cs+1 .
A similar argument is used in the case as s+1 = 0 .

It only remains to be seen what would happen if all entries in As except
for as+1 s+1 , were positive. But in this case, from the existence of two optimal
matchings in As follows hs − cs = (hs − cs+1) + (hs+1 − cs) and hs+1 = cs+1

which contradicts the definition of s . 2
It is now easy to see that the Böhm–Bawerk horse market, defined by

matrix









0 0 1 0
8 10 15 13
0 0 5 3
3 5 10 8









in the introduction of the paper, has only one

core point, as after reordering the player set we get









15 13 10 8
10 8 5 3
5 3 0 0
1 0 0 0









.

Following the proof of theorem 3, we may define the valuations of this horse
market as hi = ai1 for all i ∈ M and cj = a11 − a1j for all j ∈ M ′ . Then

s = 3 and matrix As =
(

0 0
0 0

)

has two optimal matchings.
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It is well known that a glove market (i.e. aij = c ≥ 0 for all i ∈ M and
all j ∈ M ′ ) with a different number of agents on each side of the market has
a core which reduces to only one point. This also follows easily when applying
the above proposition to these games.

4 Single–valued cooperative solutions

For games with a non empty core, the nucleolus is always a core allocation,
while the Shapley value, which is the average of the marginal worth vectors,
may lie outside the core. In fact, in the case of the assignment game, and also
in Böhm–Bawerk horse market games, the Shapley value often produces an
allocation that is not in the core.

The τ–value of an assignment game (M∪M ′, wA) is the midpoint between
the buyers–optimal and the sellers–optimal core allocations, τ(wA) = 1

2(u, v)+
1
2(u, v) (Núñez and Rafels, 2003b) and therefore is always a core allocation.

From equation (3), and the worth of p and p in (4), it follows easily that
the buyers–optimal core allocation is related to the minimum competitive
price:

ui = hi − p for i an active buyer
vj = p− cj for j an active seller , (5)

while the sellers–optimal core allocation is related to the maximum competi-
tive price:

ui = hi − p for i an active buyer
vj = p− cj for j an active seller . (6)

Now it is straightforward to obtain an expression for the τ–value of the
Böhm–Bawerk horse market game. Being a core allocation, τi(wA) = 0 for
all i > s . For all i ∈ M , i ≤ s ,

τi(wA) =
1
2
ui +

1
2
ui = hi −

1
2
(max{hs+1, cs}+ min{hs, cs+1})

and for all i ∈ M ′ , i ≤ s ,

τi(wA) =
1
2
vi +

1
2
vi =

1
2
(max{hs+1, cs}+ min{hs, cs+1})− ci ,

taking into account the above convention hm+1 = −∞ and cm′+1 = ∞ .
The price associated to the τ–value is thus the middle competitive price.

We will now compute the nucleolus of a Böhm–Bawerk horse market game.
To this end, let us first recall the definition of the nucleolus η(wA) of a
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cooperative game (N, wA) due to Schmeidler (1969). For all imputation x
of (N,wA) , and given any coalition S ⊆ N , the excess of coalition S with
respect to x is e(S, x) = wA(S)− x(S) . Now, for each imputation x , let us
define the vector θ(x) ∈ R2n−2 of excesses of all non trivial coalitions at x , in
decreasing order. That is to say, for all k ∈ {1, . . . , 2n−2} , θ(x)k = e(Sk, x) ,
where {S1, . . . , Sk, . . . , S2n−2} is the set of all non empty coalitions in N
different from N , and e(Sk, x) ≥ e(Sk+1, x) .

Then the nucleolus of the game (N, wA) is the imputation η(wA) which
minimizes θ(x) with the lexicographic order, over the set of imputations:
θ(η(wA)) ≤Lex θ(x) for all x ∈ I(wA) . It is easy to see that whenever the
game has a non empty core, the nucleolus belongs to the core.

In the assignment game, only individual player coalitions and all mixed–
pair coalitions play a role in the computation of the nucleolus, and Solymosi
and Raghavan (1994) give an algorithm to locate this solution.

Granot and Granot (1992) characterize the nucleolus of a particular assign-
ment game where there are several optimal matchings and the graph (whose
nodes are all mixed–pair coalitions appearing in some optimal matching and
two nodes are connected if they have a player in common) contains a spanning
tree. They prove that in that particular case only one–player coalitions play
a role when computing the nucleolus. Moreover, in the above case, the core
allocations are determined by a single parameter. The same authors note that
in the Böhm–Bawerk horse market game, which also has a line segment as its
core, one–player coalitions are not enough to compute the nucleolus. To jus-
tify this, they take the example of horse market game given in Böhm–Bawerk
(1923) and also analyzed in Shapley and Shubik (1972); they show that the
excesses of some mixed–pair coalitions are to be considered and moreover, for
this numerical example, that the nucleolus is the midpoint of the core.

In this section we determine the nucleolus of any Böhm–Bawerk horse
market game. Lemmas 5 and 6 tell us which are the essential coalitions for
the calculus of this nucleolus, and this set of coalitions does not always coincide
with that of the example analyzed in Granot and Granot (1992), although the
nucleolus is proved to be always the midpoint of the core. In fact, lemma
6 shows that only four coalitions matter when computing the nucleolus: the
individual coalitions formed by the last active buyer or the last active seller,
and those mixed pair coalitions formed by the last active agent on one side of
the market and the first non active one on the opposite side (if there is one).

To obtain the nucleolus of a Böhm–Bawerk horse market game, we must
analyze the excess of each coalition S with respect to any core allocation z ,
e(S, z) = wA(S) − z(S) . Notice first that if S ⊆ M and T ⊆ M ′ , then
the restricted game wA|S∪T is also a Böhm–Bawerk horse market game. If
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|S| = |T | and all agents in these two coalitions are active, then e(S∪T, z) = 0
for all z ∈ C(wA) . This happens because if A is the matrix defining the above
horse market, then in any square submatrix obtained from active players, any
possible matching is optimal. When necessary, we will denote the ith seller as
i′ , to avoid confusion with the ith buyer. Recall also that s (or s′ ) denotes
the last active agent on each side of the market, that is to say, s = max{i ∈
{1, . . . , r} | hi − ci ≥ 0} , where r = min{m, m′} and, by a convention made
above, h1 ≥ h2 ≥ · · · ≥ hm ≥ 0 and 0 ≤ c1 ≤ c2 ≤ · · · ≤ cm′ .

Lemma 5 Let (M ∪ M ′, wA) be a Böhm–Bawerk horse market game and
z ∈ C(wA) . Then

1. For all i ∈ M active, e({i}, z) ≤ e({s}, z) .

2. For all i ∈ M ′ active, e({i′}, z) ≤ e({s′}, z) .

3. If s′ < m′ , for all i ∈ M active, e({i, s′ + 1}, z) ≤ e({s, s′ + 1}, z) .

4. If s < m , for all i ∈ M ′ active, e({s + 1, i′}, z) ≤ e({s + 1, s′}, z) .

Proof: Let z = (x, y) and take pz the competitive price corresponding
to this core element, that is xi = hi − pz for all i ∈ M and active and
yj = pz − cj for all j ∈ M ′ and active. Then,

e({i}, z) = −xi = −(hi − pz) ≤ −(hs − pz) = −xs = e({s}, z)

and

e({i′}, z) = −yi = −(pz − ci) ≤ −(pz − cs) = −ys = e({s′}, z) ,

which proves statements 1 and 2.
Assume now s′ < m′ and take i ∈ M active. Then,

e({i, s′ + 1}, z) = max{hi − cs+1, 0} − xi = max{hi − cs+1 − xi,−xi} .

If hi < cs+1 , then also hs − cs+1 < 0 and we have

e({i, s′ + 1}, z) = −xi ≤ −xs = e({s, s′ + 1}, z) .

If hi − cs+1 ≥ 0 and hs − cs+1 ≥ 0 , then

e({i, s′ + 1}, z) = hi − cs+1 − xi = hi − cs+1 − (hi − pz) = −cs+1 + pz =
= hs − cs+1 − (hs − pz) = hs − cs+1 − xs = e({s, s′ + 1}, z) .

If hi − cs+1 ≥ 0 but hs − cs+1 < 0 ,

e({i, s′ + 1}, z) = hi − cs+1 − xi = hi − cs+1 − (hi − pz) = −cs+1 + pz <
< −hs + pz = −xs = e({s, s′ + 1}, z) .

This proves statement 3, while statement 4 is proved analogously. 2
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Lemma 6 Let (M ∪M ′, wA) be a Böhm–Bawerk horse market game. For all
S ⊆ M , T ⊆ M ′ such that e(S∪T, z) does not vanish identically in C(wA) ,
if z ∈ C(wA) , then

e(S ∪ T, z) ≤ max{e({s}, z), e({s′}, z), e({s, s′ + 1}, z), e({s + 1, s′}, z)} ,

where the excess e({s, s′+1}, z) ( e({s+1, s′}, z) ) is only considered if s′ < m′

( s < m ).

Proof: Notice first that if S and T have the same number of active players
(which includes the case where none of them has active players), then e(S ∪
T, z) = 0 for all z ∈ C(wA) . Assume then that S has more active players
than T . Let S = {i1, i2, . . . , ik, ik+1, . . . , ik+l} , l ≥ 0 , where i1, . . . , ik are ac-
tive in wA and i1 ≤ i2 ≤ · · · ≤ ik+l , and T = {j1, j2, . . . , jk−r, jk−r+1, . . . , jk−r+l′} ,
l′ ≥ 0 , where j1, . . . , jk−r are active in wA , 0 < r ≤ k , and j1 ≤ j2 ≤ · · · ≤
jk−r+l′ . Let k0 = min{k, k − r + l′} . Then µ = {(it, jt) | 1 ≤ t ≤ k0} is an
optimal matching in S ∪ T and

wA(S ∪ T ) =
k0

∑

t=1

aitjt =
k−r
∑

t=1

(hit − cjt) +
k0

∑

t=k−r+1

max{hit − cjt , 0} , (7)

where we assume that the summation over an empty set of indices is zero.
Let z = (x, y) ∈ C(wA) , then

e(S ∪ T, z) =
k0

∑

t=k−r+1

(max{hit − cjt , 0} − xit) +
k

∑

t=k0+1

−xit (8)

because, for all 1 ≤ t ≤ k − r , both it and jt are active in wA and then
xit + yjt = aitjt , as there exists an optimal matching µ′ in wA such that
(it, jt) ∈ µ′ and z is a core allocation. Moreover, yjt = 0 for k − r + 1 ≤
t ≤ k0 , as jt is non active in wA and non active players receive zero payoff
in any core allocation.

Notice that if l′ = 0 , then k0 = k − r and the set of indices of the first
summation in (8) is empty. If l′ > 0 and k0 = k , then the set of indices of
the second summation in (8) is empty.

As all summands in (8) are non positive, if l′ = 0 or l′ > 0 but k0 < k ,
then

e(S ∪ T, z) ≤ −xk ≤ −xs = e({s}, z) ,

where the last inequality follows from lemma 5.
If l′ > 0 and k0 = k but there exists t∗ ∈ {k − r + 1, . . . k0} such that

hit∗ − cjt∗ ≤ 0 , then

e(S ∪ T, z) ≤ −xit∗ ≤ −xs = e({s}, z) ,
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where the last inequality follows from lemma 5.
Otherwise, hit − cjt > 0 for all t ∈ {k − r + 1, . . . k0} , and as jt is

non active, then s < jt ≤ m′ and cs+1 ≤ cjt , which implies that for all
t ∈ {k − r + 1, . . . k0} we obtain

e(S∪T, z) ≤ hit−cjt−xit ≤ hit−cs+1−xit = e({it, s′+1}, z) ≤ e({s, s′+1}, z) ,

where the last inequality follows from part 3 of lemma 5.
The proof of the case where T has more active players than S is analogous

and left to the reader. 2
With the help of the above technical lemmas, we can now compute the

nucleolus of the Böhm-Bawerk horse market game.

Proposition 7 Let (M ∪ M ′, wA) be a Böhm–Bawerk horse market game
and η(wA) the nucleolus of wA , then

η(wA) =
1
2
(u, v) +

1
2
(u, v) .

Proof: As the horse market game has a non empty core, the nucleolus will be
a core allocation, which means that η(wA) = λ(u, v) + (1− λ)(u, v) for some
λ ∈ [0, 1] . We will distinguish four cases to prove λ = 1

2 for all Böhm–Bawerk
horse market game.
Case 1: ( m > s with hs+1 − cs > 0 ) and ( m′ > s′ with hs − cs+1 > 0 ).

As hs > cs+1 , it is straightforward to see that

e({s}, z) = −xs < hs − cs+1 − xs = e({s, s′ + 1}, z)

for all z ∈ C(wA) . Similarly, taking into account hs+1 > cs , we obtain that

e({s′}, z) = −ys < hs+1 − cs − ys = e({s + 1, s′}, z)

for all z ∈ C(wA) .
Then, from the definition of the nucleolus and lemma 6, we deduce e({s, s′+

1}, η(wA)) = e({s + 1, s′}, η(wA)) . From (5), (6) and (4), and taking into ac-
count the assumptions of case 1, we can write

xs = hs − (λp + (1− λ)p) = hs − (λhs+1 + (1− λ)cs+1)
ys = (λhs+1 + (1− λ)cs+1)− cs ,

and the above equality between excesses leads to λ(hs+1 − cs+1) = (1 −
λ)(hs+1 − cs+1) which is equivalent to (1 − 2λ)(hs+1 − cs+1) = 0 . Then,
either λ = 1

2 or hs+1 = cs+1 but this last case contradicts s being the last
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active agent on each side of the market, and the claim of the proposition
follows trivially.
Case 2: ( m = s or m > s with hs+1 − cs ≤ 0 ) and ( m′ = s′ or m′ > s′

with hs − cs+1 ≤ 0 ).
If s′ < m′ , as hs ≤ cs+1 , we obtain e({s, s′ + 1}, z) = e({s}, z) for all

z ∈ C(wA) . Similarly, if s < m , as hs+1 ≤ cs , e({s + 1, s′}, z) = e({s′}, z)
for all z ∈ C(wA) .

Then, from the definition of the nucleolus and lemma 6, we know e({s}, η(wA)) =
e({s′}, η(wA)) . From (5), (6) and (4), and taking into account the assump-
tions of case 2, we can write

xs = hs − (λcs + (1− λ)hs)
ys = (λcs + (1− λ)hs)− cs ,

and the above equality between excesses leads to (1−2λ)(hs−cs) = 0 . Then,
either λ = 1

2 or hs = cs . But in this second case, by proposition 4, the core
reduces to only one point and the claim also follows trivially.
Case 3: ( m > s with hs+1 − cs > 0 ) and ( m′ = s′ or m′ > s′ with
hs − cs+1 ≤ 0 ).

If s′ < m′ , as hs ≤ cs+1 , we obtain e({s, s′+1}, z) = e({s}, z) . Similarly,
by using cs < hs+1 , we obtain e({s′}, z) < e({s+1, s′}, z) for all z ∈ C(wA) .

Then, from the definition of the nucleolus and lemma 6, e({s}, η(wA)) =
e({s + 1, s′}, η(wA)) . From (5), (6) and (4), and taking into account the
assumptions of case 3, we can write

xs = hs − (λhs+1 + (1− λ)hs)
ys = (λhs+1 + (1− λ)hs)− cs ,

and the above equality between excesses is equivalent to (1−2λ)(hs−hs+1) =
0 . Then, either λ = 1

2 or hs+1 = hs , but in this second case, from proposition
4, the core reduces to only one point and the claim also follows trivially.
Case 4: ( m = s or m > s with hs+1 − cs ≤ 0 ) and ( m′ > s with
hs − cs+1 > 0 ).

If s < m , as hs+1 ≤ cs , we obtain e({s + 1, s′}, z) = e({s′}, z) for all
z ∈ C(wA) . Similarly, from cs+1 < hs , e({s}, z) < e({s, s′ + 1}, z) for all
z ∈ C(wA) .

Then, from the definition of the nucleolus and lemma 6, e({s′}, η(wA)) =
e({s, s′ + 1}, η(wA)) . From (5), (6) and (4), and taking into account the
assumptions of case 4, we can write

xs = hs − (λcs + (1− λ)cs+1)
ys = (λcs + (1− λ)cs+1)− cs ,
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and the above equality between excesses is equivalent to (1−2λ)(cs+1− cs) =
0 . Then, either λ = 1

2 or cs+1 = cs . But in the latter case, by proposition 4,
the core reduces to only one point and the claim also follows trivially. 2

To sum up, the following theorem has been proved.

Theorem 8 In a Böhm–Bawerk horse market game (M ∪M ′, wA) , the τ–
value and the nucleolus coincide with the midpoint of the core.

To finish this analysis of single–valued solutions for the Böhm–Bawerk
horse market game, let us consider again the Shapley value. We have already
mentioned that the Shapley value of this game usually lies outside the core,
but in those cases where it is a core allocation, can it select a point other than
the midpoint of the core?

A particular case of the Böhm–Bawerk horse market is the glove market
(Shapley, 1959), where the valuations of all buyers coincide, as do the valu-
ations of all sellers. In that case aij = c for all i ∈ M and j ∈ M ′ . It
is well known that, when m = m′ , the core is the segment with extreme
points (u, v) , where ui = c for all i ∈ M and vj = 0 for all j ∈ M ′ , and
(u, v) , where ui = 0 for all i ∈ M and vj = c for all j ∈ M ′ . In that
case the Shapley value is also the midpoint of the core: Φ(wA)k = c

2 for all
k ∈ M ∪M ′ .

On the other hand, in a glove market with different numbers of buyers and
sellers the core reduces to one point where the payoff to each agent on the
short side of the market is c and the payoff to each agent on the opposite side
is zero. In that case, if c > 0 , the Shapley value is not a core allocation, as
all agents on the large side of the market have positive marginal contribution
to some coalitions.

We will now see that the square glove markets are the only Böhm–Bawerk
horse markets where the Shapley value belongs to the core.

Proposition 9 Let (M ∪ M ′, wA) be a Böhm–Bawerk horse market and
Φ(wA) its Shapley value. Then

Φ(wA) ∈ C(wA) ⇔ wA is a square glove market

and in that case Φ(wA) = 1
2(u, v) + 1

2(u, v) .

Proof: If (M∪M ′, wA) is a Böhm–Bawerk horse market such that Φ(wA) ∈
C(wA) , then non active players must receive a zero payoff. This implies that
rows and columns of A corresponding to non active players must be null.
Otherwise, if j ∈ M ′ is non active and hi − cj > 0 for some i ∈ M , then
wA(i, j)− wA(j) = hi − cj > 0 and Φj(wA) > 0 .
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We can then only consider those Böhm–Bawerk horse markets where all
players are active, m = m′ = s . Let us now decompose A in the following
way: A = A1 + A2 where

A1 =









(h1 − hs)− (c1 − cs) (h1 − hs)− (c2 − cs) · · · h1 − hs

(h2 − hs)− (c1 − cs) (h2 − hs)− (c2 − cs) · · · h2 − hs

· · · · · · · · · · · ·
cs − c1 cs − c2 · · · 0









and

A2 =









hs − cs hs − cs · · · hs − cs

hs − cs hs − cs · · · hs − cs

· · · · · · · · · · · ·
hs − cs hs − cs · · · hs − cs









Notice that, as for every subset of buyers and sellers the corresponding
submatrices of A1 and A2 have at least one optimal matching in common,
wA = wA1+wA2 . Then, by additivity of the Shapley value, Φ(wA) = Φ(wA1)+
Φ(wA2) .

Moreover, the core also behaves additively for this decomposition. The
inclusion C(wA1) + C(wA2) ⊆ C(wA) always holds. To prove the other inclu-
sion, notice first that A1 is a Böhm–Bawerk horse market and, following the
proof of theorem 3, its valuations can be defined as h′i = (hi− hs)− (c1− cs)
for all i ∈ M and c′j = cj − c1 for all j ∈ M ′ . On the other hand, from
proposition 4, C(wA1) reduces to only one point which is proved to be (u′, v′)
where u′i = hi − hs for all i ∈ M and v′j = cs − cj for all j ∈ M ′ . Notice
also that, as the minimum and maximum competitive prices for the original
market A are p = cs and p = hs , from equations (3) we obtain ui = hi−hs

and vj = cs − cj , and thus the vector (u′, v′) coincides with the vector of
minimum core payoffs in C(wA) , which is (u, v) .

Now, for all (u, v) ∈ C(wA) define (u′′, v′′) in the following way:

u′′i = ui − (hi − hs) for all i ∈ M and v′′j = vj − (cs − cj) for all j ∈ M ′ .

Notice that u′′i ≥ 0 as ui ≥ ui , v′′j ≥ 0 as vj ≥ vj , and moreover u′′i + v′′j =
hs − cs for all i ∈ M and all j ∈ M ′ . Then (u, v) = (u′, v′) + (u′′, v′′)
where (u′, v′) ∈ C(wA1) and (u′′, v′′) ∈ C(wA2) which proves that C(wA) ⊆
C(wA1) + C(wA2) .

As (M ∪ M ′, wA2) is a glove market with as many buyers as sellers,
Φ(wA2) ∈ C(wA2) and moreover Φk(wA2) = 1

2(hs − cs) for all k ∈ M ∪M ′ .
By the additivity of the core follows Φ(wA1) ∈ C(wA1) . If we denote by a′ij

the entries of matrix A1 , as a′ss = 0 , it holds Φs(wA1) = Φs′(wA1) = 0 where
s′ denotes the s–th seller, to be distinguished from the s–th buyer. But this
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implies that the s–th row and column of A1 must be null, otherwise, if there
exists i ∈ M , i 6= s , such that hi − hs > 0 , then the marginal contribution
wA1(i, s

′) − wA1(i) would be positive, in contradiction with Φs′(wA1) = 0 .
Something similar happens if there exists j ∈ M ′ , j 6= s′ and cs − cj > 0 .

Thus, hi = hs for all i ∈ M \ {s} and cs = cj for all j ∈ M ′ \ {s′} which
implies A1 = 0 , wA = wA2 and, consequently, wA is a square glove market
and

Φ(wA) = Φ(wA2) = (
hs − cs

2
, . . .

hs − cs

2
;
hs − cs

2
, . . . ,

hs − cs

2
) .

2
From the above proposition, whenever the Shapley value lies in the core

of the Böhm–Bawerk horse market, it coincides with all the single–valued
solutions analyzed in the previous section.

We can define a Shapley like solution α for any cooperative TU game
taking the average of the reduced marginal worth vectors, that is to say,
α(wA) = 1

n!

∑

θ∈Sn
rmwA

θ , where the summation is taken over the set Sn of all
possible permutations over the player set N = M∪M ′ . See the introduction of
the present paper or Núñez and Rafels (1998) for the definition of the reduced
marginal worth vectors. In the case of assignment games, this solution α
will always lie in the core, as the reduced marginal worth vectors are the
extreme core allocations of the assignment game (Núñez and Rafels, 2003a).
Thus, in the case of the Böhm–Bawerk horse market game, each reduced
marginal worth vector must coincide either with the buyers–optimal or with
the sellers–optimal core allocation. It is then easy to prove that the average
of the reduced marginal worth vectors also coincides with the midpoint of the
core, reinforcing once more the role of this point as a focal cooperative solution
for this particular markets (we leave this proof to the reader).
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[1] Böhm–Bawerk, E. von (1923) Positive theory of capital (translated by W.
Smart), G.E. Steckert, New York, (original publication 1891).

[2] Demange, G. (1982) Strategyproofness in the Assignment Market Game,
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