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Abstract

When applied to binary data, most classification

algorithms behave well provided the dataset is balanced.

However, when one single class includes the majority of cases,

a good predictive performance for the minority class is not

easy to achieve. We examine the strengths and weaknesses

of three tree-based models when dealing with imbalanced

data. We also explore sampling and cost sensitive methods

as strategies for improving machine learning algorithms. An

application to a large dataset of breath alcohol content tests

performed in Catalonia (Spain) to detect drunk drivers is

shown. The Random Forest method proved to be the model of

choice if a high performance is required, while down-sampling
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strategies resulted in a significant reduction in computing

time. When predicting alcohol impairment, the area of

control (built-up or not), hour of day and driver’s age were

the most relevant variables for classification.

Keywords: Imbalanced data, positive, drunk driving, police,

checkpoint, machine learning.

1. Introduction

Tree-based models have attracted the increasing attention of

researchers in recent years; however, analyses of the use of such

models when there is a highly unequal distribution between classes

are scarce. This is particularly true of binary data where one class

includes the majority of cases and the other represents just a small

portion. Imbalanced datasets of this kind are very common in such

disciplines as medical diagnosis, on-line advertising, fraud detection,

network intrusion, road safety, etc.

Many classification algorithms behave well for balanced datasets;

yet, when applied to imbalanced data, model fitting may be biased

towards the majority class. As a result, the model may provide a

poor predictive performance for the minority class, which is usually

the most interesting one. Kumar and Sheshadri [20], He and

Garcia [16] and Chawla [9] review problems of class imbalance and

alternative solutions. Here, the performance of two strategies for

dealing with imbalanced data –that is, sampling and cost sensitive

methods– are compared, and the interpretability of their respective

results is discussed.

Specifically, we illustrate the performance and features of

tree-based models by applying them to the classification of

alcohol-impaired drivers in Catalonia (Spain). When testing

for breath alcohol content (BrAC) over the legal limits, highly

imbalanced results are obtained –clearly, most drivers are not
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alcohol-impaired and so BrAC tests are largely negative.

The identification and deterrence of potential alcohol-impaired

drivers is a priority for traffic authorities the world over ([24])

and while a downward trend in drunk driving has been observed

in many countries, there is still room for improvement ([32], [24],

[34]). For example, in 2014, 24.8% of deaths among drivers

in Catalonia were related to alcohol. In order to tackle drunk

driving effectively, appropriate policies need to be adopted. In this

paper three tree-based models are studied and their application to

the classification of drivers with a BrAC over the legal limit on

Catalan roads is explored. Specifically, we examine the use of the

Classification and Regression Tree, Tree Bagging and the Random

Forest models to classify positive BrAC tests.

Several studies have been conducted in Catalonia with regard

to drinking habits and driving. Alcañiz et al. [1] estimated the

prevalence of alcohol-impaired driving in Catalonia in 2012. They

found that it was the 1.29% for the general population of drivers,

1.90% on Saturdays and 4.29% on Sundays. Chulia, Guillen, and

Llatje [10] studied seasonal and time-trend variation by gender of

alcohol-impaired drivers at preventive sobriety checkpoints. Alcañiz,

Santolino, and Ramon ([2], [3]) studied age-drinking patterns and

drinking behavior in Catalonia and analyzed different strategies in

sobriety checkpoints. They suggested that non-random breath tests

were primarily effective to detect binge drinking and random breath

tests in detection of other drinking and driving profiles of population.

To our knowledge, classification models to identify drunk drivers

have not been previously applied to Catalan road data.

The rest of this paper is structured as follows. Following on

from this introduction, in Section 2, three tree-based models are

introduced along with their properties and variants, and various

approaches to tackling the class imbalance problem are described.
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Section 3 is devoted to explaining the dataset obtained from police

preventive checkpoints. The results obtained after fitting the

tree-based models to the data and several variants are reported in

Section 4. Concluding remarks and discussion are outlined in Section

5.

2. Methods

In this section three tree-based models are introduced and their

properties discussed. Specifically, we analyze the Classification and

Regression Tree, the Tree Bagging and the Random Forest models1.

A number of extensions employing other types of response data and

alternative implementations are also detailed. Finally, we investigate

how to deal with the class imbalance problem.

2.1. Classification and Regression Trees

Classification and Regression Trees (CART) were first introduced

by Breiman et al. [8]. The CART model partitions the predictor

space in a recursive way so as to create groups in the response

variable that are as homogeneous as possible. The CART algorithm

begins by splitting the dataset into two disjoint subsets (known as

nodes or leaves). For each predictor, splits are computed for all

possible cut-off values and the one that maximizes the homogeneity

(and minimizes the impurity) of the resulting disjoint subsets is

chosen. This process is recursively repeated for each node.

An impurity measure, quite commonly the Gini index, is used

to choose the best split, with the split impurity being calculated by

aggregating the impurity of the subnodes. For a two-class problem,

the Gini index for a given node is defined as p1(1− p1) + p2(1− p2),

where p1 and p2 are the class 1 and class 2 probabilities, respectively

1The CART and Random Forest trademarks are licensed exclusively to
Salford Systems.
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[19]. Alternative measures to the Gini index exist. For instance,

the information gain measure can be used, although differences

are frequently not significant [27]. To avoid the overfitting of the

CART model, the subtree is selected based on a cost complexity

tuning, where a complexity parameter cp penalizes the size of

the tree. In fact, the subtree that minimizes Impuritysubtree +

cp × (Number Terminal Nodes) is selected. The cp value, the

hyperparameter, is normally selected using cross-validation (CV).

CART models have the advantage of being easy to interpret

and rapid to compute, of allowing missing values to be dealt with

and of facilitating feature selection. An important characteristic of

these models is that variable importance can be assessed. This is

achieved by retaining the reduction in the Gini index at each split

and aggregating these values for every predictor. Predictors that

either appear at the beginning of the tree or which are used in several

splits are more important. Note that variable importance can be

biased when there are many missing values or there are categorical

variables with many levels ([30], [21]). The main disadvantages of

CART models concern the instability of their results.

In practice, a large number of alternative implementations of

tree models exist. Different approaches have been proposed for their

use with survival data [5], multivariate regression [11], clustering

[29] and unbiased models ([17], [21]). Hyafil and Rivest [18] show

that constructing optimal binary decision trees is an infeasible

task. Grubinger, Zeileis, and Pfeiffer [14] propose evolutionary

algorithms to improve accuracy, while Loh [22] compares a set of

alternative implementations in terms of their capabilities, strengths,

and weaknesses.

2.2. Tree Bagging

Bagging, or Bootstrap aggregating, also introduced by Breiman

[6], involves generating several predictions and combining them to
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obtain an aggregated predictor. Here, predictions are generated

by applying a model to different bootstrap replicas of the dataset.

These replicas are made by replacement and are as large as the

dataset itself. The aggregate is the majority vote of all models.

Each tree used in the tree bagging is computed as described in 2.1

above. The only difference is that there is no pruning step. The

aggregating step neutralizes the overfitting error of the trees.

The number of trees to be used is defined by the user and, in

practice, a small number of replicas usually proves sufficient [19].

Although the error decreases with the number of trees, the trees are

highly correlated, so the margin of improvement associated with each

additional tree decreases with the number of replicas. Compared

with CART models, the advantage of tree-bagging models is their

stability, which reduces the risk of overfitting. On the other hand,

these models are computationally more intensive than CART models

and their interpretation more complex.

2.3. Random Forest

In common with the two models outlined above, the Random

Forest (RF) model was proposed by Breiman [7]. RF involves

generating bootstrap replicas of the original dataset and creating

trees for each replica as in Bagging. However, RF seeks to create

uncorrelated trees to improve predictions. To create trees that are

as different as possible, at each split the trees can only use a limited

number of random variables. Hence, the trees tend to be very

different and provide different information when aggregated.

As in Tree Bagging, the number of trees to compute has first to

be specified. The number of variables that might be split at each

node (referred to asmtry) must also be defined. A common selection

is the square root of the number of variables [19]. In common with

the previous models, the minimum number of nodes can also be

determined. The higher this number is, the smaller and faster the
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trees will be. As with the Tree Bagging models, the advantages

of RF models is that performance is enhanced and the overfitting

risk reduced. Furthermore, RF models are robust to outliers.

Their disadvantages include the complexity of interpretation and

the lengthy computation time.

Indeed, the computation time of the original RF can be

prohibitive in the case of a large mtry and/or a high number of trees.

Therefore, less timing-consuming, more intensive alternatives are

useful. Here, we use an efficient RF implementation as ranger2. An

additional feature of ranger is that it uses a variant for probability

estimation. Each tree provides the proportion of positives as opposed

to its classification. The probability is obtained by averaging this

proportion for all the trees. In doing so, the model performance is

generally improved [23].

Sometimes categorical variables can be interpreted as ordered

categorical variables (for instance, colors ordered according to their

intensity or type of roads based on their traffic capacity). This

strategy can significantly reduce the computation time of RF. To

split a categorical variable of n categories, the algorithm checks all

2(n−1)
− 1 possible combinations. However, since the categories are

sorted in the case of ordered categorical variables, the impurity is

calculated between each category, and the threshold that gives the

best split is chosen. This is much quicker to compute as only one

variable has to be checked.

RF models can assess variable importance in three ways. The

simplest way is to count the number of times that a variable is

selected in all the trees. The second way involves computing the

aggregate reduction in impurity obtained at each split in all the trees.

Finally, a third way is to measure the permutation importance. For

2This reduced computing time by a factor of 12 compared to that of the
original RF.
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each tree, the prediction performance of out-of-bag (OOB) samples3

is recorded. This performance is again computed but here using the

values of one randomly permuted variable. The drop in performance

resulting from this permutation is averaged over all the trees. This

is carried out for each variable and provides a measure of variable

importance in the RF [[15]. When variables are highly correlated

or if categorical and continuous variables are combined, the variable

importance indicator needs to be considered with caution[31].

RF models have been extensively applied. For instance,

generalizations of RF models have been proposed to provide

conditional quantiles and confidence intervals ([25], [33]). Segal [28]

demonstrates that RF can overfit datasets with large numbers of

noisy inputs. To deal with this, alternative extended RFs have been

proposed ([35], [4]).

2.4. Class Imbalance

It is relatively common to find imbalanced datasets, where

the majority of cases present negative outcomes. For example,

only a small percentage of observations show positive outcomes

in datasets of BrAC tests. Many classification algorithms have

been designed specifically for balanced datasets and so a poor

predictive performance may be obtained when applied to imbalanced

data. Two strategies for dealing with unbalanced data are sampling

methods and cost sensitive methods.

Sampling methods involve modifying the original dataset to

obtain a balanced dataset and they can be divided into the following

categories: down-sampling, i.e., excluding some instances of the

majority class by random sampling; up-sampling, i.e., incorporating

more instances of the minority class by random sampling with

3Out-of-bag samples consist of observations not included in a bootstrap
sample.
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replacement; and, hybrid methods, i.e., combining both up- and

down-sampling methods. Note that sampling methods apply only to

training data and not to testing data. Cost-sensitive methods involve

applying different costs of misclassification to each class in the model

fitting process. By specifying a higher cost to the misclassification

of a minority instance than that to a majority instance, the machine

learning algorithm makes fewer errors with the minority class, as

it is more expensive. This would counteract the bias towards the

majority class.

An additional problem presented by class imbalance is how best

to assess classifiers. The usual classification metric is the level of

accuracy, for instance, by means of confusion matrix. However, in

the case of imbalanced data, this measure may be inadequate. Other

techniques to compare tree-based models such as leave-one-out

cross-validation can be in addition computationally very expensive

for large datasets. To overcome these limitations, receiver operating

characteristic (ROC) curves are used. The ROC curve presents a

binary classifier performance when its threshold varies. It is formed

by plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings. Any point on the diagonal

of the ROC curve is a random guess classifier, while any points below

the diagonal are worse than a random guess. A complete description

of ROC analysis can be found in Fawcett [12].

To compare the performance of different classifiers directly, we

use the area under the ROC Curve (AUC). This indicator aggregates

all the information provided by the ROC curve in a single scalar

expression. A classifier with a high AUC indicates that it has a

better than average performance. Note, however, that the first

classifier may present a worse performance than the second classifier

in a specific region of the ROC curve. An interesting property is

that the AUC of a classifier is equivalent to the probability that the
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classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative instance [12].

3. Data

3.1. Drunk driving legislation

Statutory blood-alcohol limits for driving differ across the

countries of Europe. Spanish legislation differentiates between

administrative and criminal positives, according to the level of

alcohol concentration in the breath (or blood). Drivers with BrAC

levels between 0.25 and 0.60 mg/l (0.15 and 0.60 mg/l for novice

and professional drivers) face administrative penalties if detected.

When the BrAC level is over 0.60 mg/l, drivers are deemed to have

committed a criminal offence and, therefore, face more stringent

legal sanctions, including temporary suspension of the driving license

and imprisonment.

The police are allowed to perform a BrAC test on any driver, even

if the driver does not show any symptoms of alcohol impairment.

The standard procedure is to conduct a BrAC test using a portable

breathalyzer while the driver is seated in their car. If negative, the

driver is allowed to continue on their journey; if positive, given that

the breathalyzer has no legal validity, an evidential breath test is

performed in the officer’s vehicle.

3.2. Variables

The database comprises 439,699 preventive BrAC tests carried

out at checkpoints by traffic authorities in 2014 in Catalonia. These

tests represent almost 95% of the total number of BrAC tests,

while the remaining 5% includes tests conducted on drivers showing

visible signs of alcohol intoxication or after committing a traffic

violation or on drivers involved in a traffic accident. Preventive

BrAC tests performed on cyclists or pedestrians were removed from
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the database. Observations with missing information were also

removed. The final database comprises 408,936 BrAC tests.

Information recorded by traffic officers, including the location of

the checkpoint, specific hour of day, driver characteristics and vehicle

type, is available. Information about location differentiates between

interurban and urban areas and records the region and subregion

in which the checkpoint was set up. The territory of Catalonia is

divided into four administrative units and is recorded here as the

variable region. However, there is a more detailed administrative

division composed of 41 subregions. The traffic police in Catalonia

include both the regional police (Mossos d’Esquadra) and the local

police. There is a traffic police administrative division, known as

ART, which comprises eight levels and corresponds to the scale

between that of the regions and subregions.

The variable roadType records the type of road on which the

BrAC test was performed4. Information about the hour, day, week

and month when the test was performed is also available. As

drinking habits are closely associated with leisure, factors identifying

bank holidays (holiday), the eve of such holidays (holidayEve) and

long weekends (longWeekend) were created. Finally, driver and

vehicle characteristics were also recorded.

The description of variables is as follows.

❼ positive (Dependent variable): BrAC level above legal limit

(yes/no).

❼ builtUp: Interurban area or Urban area.

❼ region: Barcelona, Girona, Lleida and Tarragona.

❼ subregion: Name of subregion, 41 categories.

4Highway1 corresponds to toll-highways and Highway2 corresponds to
toll-free highways.
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❼ policeType: Regional police or Local police.

❼ ART : Police territorial division, eight categories.

❼ roadType: Highway1, Highway2, Conventional road, Rural

road and Urban road.

❼ hour : specific hour of day (number 1-24) when the BrAC was

performed.

❼ day : day when the BrAC was performed.

❼ month: month when the BrAC was performed.

❼ week : week when the BrAC was performed, as a number

(1-52).

❼ weekday : day of the week when the BrAC was performed, as

a number (1-7, Sunday being 7).

❼ dayType: Mon-Thu, Fri, Sat and Sun.

❼ workingDay : 1 if it was a working day, 0 otherwise.

❼ timePeriod : morning (6:00 to 13:59), afternoon (14:00 to

21:59) or night (22:00 to 5:59h).

❼ holiday : bank holiday (yes/no).

❼ holidayEve: Eve of bank holiday (yes/no)

❼ longWeekend : Long weekend (yes/no)

❼ sex : driver’s sex.

❼ age: driver’s age.

❼ licenseYear : year that the driver obtained the license.



Tree-based models classifying imbalanced breath alcohol data 201

❼ spanish: driver Spanish or foreigner.

❼ vehType: type of vehicle (Car, Van, Motorcycle, Moped, Light

truck, Heavy truck, Bus, and Other).

Algorithms of tree-based models implement an implicit variable

selection, so the strategy involved including all the variables in the

models. Table 1 presents the number of tests, number of positives

and the percentage of positives for the main variables and their

levels. Additional tables for variables comprising many levels are

included in the appendix: ART (Table A.1), month (Table A.2) and

hour of day (Table A.3), are included.

3.3. BrAC outcomes above legal limit

The positive response variable is highly skewed. Of the 408, 936

BrAC tests carried out, only 16, 494 –approximately 4% –were

positive. Figure 1 shows the percentage of BrAC tests above the legal

limit by subregion. The map shows a non-homogeneous percentage

of positives throughout the territory, with values being particularly

high in the north-east and along the coast.

Figure 2 shows the percentage of BrAC tests above the legal limit

according to a specific set of variables. In winter there are fewer

positives, while from June to September there is a greater number.

Urban areas are associated with a higher prevalence of positives than

are interurban areas. During the week there is a 2% positive rate,

while on weekends it is between 5 and 7%. Positive rates on Fridays

(3.5%) are halfway between weekday and weekend prevalences. A

similar percentage of positives is observed for both men and women;

however, non-Spanish men record a slightly higher positive rate,

while non-Spanish women present the lowest rate. Driver age is also

informative. The prevalence of alcohol peaks at age 20 with more

than 7% of positives and falls after that age. The final plot analyzes

the relationship between the prevalence of alcohol with the hour of
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Variable Levels # tests # positives (%)
builtUp Interurban area 267,117 10,149 3.8

Urban area 141,819 6,345 4.5
region Barcelona 225,019 9,944 4.4

Girona 50,145 2,610 5.2
Lleida 61,868 1,020 1.6
Tarragona 71,904 2,920 4.1

policeType Regional police 266,029 10,155 3.8
Local police 142,907 6,339 4.4

roadType Highway1 30,149 1,213 4.0
Highway2 45,735 2,247 4.9
Conventional road 190,744 6,674 3.5
Rural road 489 15 3.1
Urban road 141,819 6,345 4.5

dayType Mon-Thu 180,635 4,007 2.2
Fri 58,093 2,089 3.6
Sat 85,250 4,637 5.4
Sun 84,958 5,761 6.8

workingDay Working day 206,126 5,277 2.6
Non-working day 202,810 11,217 5.5

timePeriod Morning 101,590 3,576 3.5
Afternoon 86,982 985 1.1
Night 220,364 11,933 5.4

sex Man 332,411 13,430 4.0
Woman 76,525 3,064 4.0

age3l [15,30] 133,713 7,732 5.8
(30,45] 171,145 6,023 3.5
(45,100] 104,078 2,739 2.6

licenseYear [1932,1994) 138,129 3,964 2.9
[1994,2004) 115,267 4,154 3.6
[2004,2012) 131,088 7,043 5.4
[2012,2015) 24,452 1,333 5.5

spanish Spanish 350,444 14,035 4.0
Non-Spanish 58,492 2,459 4.2

vehType Car 316,530 14,332 4.5
Van 25,229 436 1.7
Motorcycle 29,717 1,264 4.3
Moped 8,876 334 3.8
Light Truck 6,117 25 0.4
Heavy Truck 19,361 78 0.4
Bus 2,490 12 0.5
Other 616 13 2.1

Table 1: Number of tests, positives and percentage of positives for
main variables.



Tree-based models classifying imbalanced breath alcohol data 203

Figure 1: Percentage of positives by subregion.

the day and the driver’s age. This highlights a black spot in the

early morning for drivers in the young age group when 15% of BrAC

positives are recorded. All age groups present a high positive rate

between 9pm and 3am. In the afternoon, this percentage increases

with age. Finally, a black spot occurs at 13h in the 55 to 65 age

group.

4. Results

To assess the performance of the tree-based models, the data

were randomly split into training and test sets. The division was

made preserving the distribution of positives-negatives and of the
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Figure 2: Percentage of positives by hour of day and age group.
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other variables. The training set contained 70% of the data and was

used to fit the models; the test set contained the remaining 30%

of the data and was used to validate the models. All categorical

variables were included in the models as binary variables; that

is, each category was converted into a dichotomous variable. The

performance of all the models was based on the AUC from the test

set. All models were performed with R version 3.2.3 [26]. Packages

used were caret, randomForest, ranger, pROC, e1071, rpart, ipred,

plyr and dplyr.

When a hyperparameter had to be adjusted, a ten-fold

cross-validation (10-CV) was used; that is, the training dataset was

randomly split into ten partitions. The model/hyperparameter was

trained with nine of the ten original partitions. The remaining

partition was used to obtain the validation performance of the model.

This step was repeated ten times and a different partition was used

each time for validation. The model/hyperparameter performance

was thus obtained as an average of all the validations. The metric

for hyperparameter tuning was the AUC value. The hyperparameter

with the highest AUC was selected5. Once the hyperparameter was

adjusted, the model was fitted to the whole dataset.

4.1. Classification and Regression Tree model

Tree models contain an hyperparameter which is the complexity

parameter (cp). A grid of 50 (cp) values was used. The best

cross-validated cp value was 6.9897 · 10−6, with an AUC of 0.7472.

First panel of Figure 3 shows that the AUC value increases when

the cp decreases.

Note that the adjusted cross-validated cp value was very small.

5Alternatives exist for selecting the tuning parameters, such as the one
standard error rule or tolerance. These alternatives choose the simplest model
within a standard error or a defined tolerance from the best model, respectively
[16].
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Figure 3: CART models. Model with the best AUC is shown in red. Left
panel: CV AUC as a function of cp. Right panel: Tree depth as a function of
cp.
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The fitted trees need to be very deep in order to appreciate

differences between the two classes. Right panel of Figure 3 shows

the tree depth as a function of cp. Note that the highest AUC was

obtained in the trees with 30 levels. The interpretation of deep trees

is more complex. Using the adjusted cp value, a final model was

adjusted with all the training data. A membership probability was

obtained from the test set. The test AUC value was 0.7498.

These previous models do not take into account the fact that the

data are imbalanced. Therefore, two approaches for dealing with

imbalanced data were applied. First, down-sampling was performed

and so the training data were reduced to a down-sampled training

dataset. This contained the same number of observations from each

class. Our results improved in comparison to our previous outcomes.

The best cross-validated cp value was 4.9310 · 10−4, with an AUC of

0.7499. Note that this cp value is 50 times higher than the previous

cp. The fitted tree has a depth of 17 levels and the AUC associated

with the test set was 0.7577. Thus, using a subset of the dataset

resulted in a better performance.

Second, up-sampling was performed. To achieve a balanced

dataset, items from the minority class were added until the dataset

contained the same number of positives as negatives. A large overfit

was made in cross validation. To obtain a balanced dataset, many

instances from the minority class had to be copied. For this reason,

the fitted tree contained the same observations in the leaves as in

the validation set. This resulted in nearly perfect performance, but

when tested with new data, a very poor performance was obtained.

Although the cross-validated AUC value was almost 1, when the

model was validated with the test data, its AUC was less than 0.5,

i.e., a random guess.

Finally, a cost sensitive method was applied. The selection of the

cost value had first to be defined. We used cost values that balanced
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the difference between classes. The dataset contains one positive for

every 20 negatives; thus, the tree model performance was analyzed

by applying a cost of 10, 20 and 30 for misclassification. Table 2

shows the cp value, the cross-validated AUC, the test AUC and the

depth for each cost value.

Cost Best cp CV AUC test AUC tree depth
10 0.000277 0.7483 0.7570 21
20 0.000311 0.7560 0.7663 17
30 0.000242 0.7545 0.7630 28

Table 2: Model results by the cost used.

The best model performance was obtained when a

misclassification cost of 20 was applied. Compared to the

base tree, the cp values were much higher and the trees were less

complex. Yet, they were still too deep to be visually interpretable.

If an interpretative tree is desired for our context, a bigger cp

value needs to be chosen as a trade-off between interpretability and

predictive performance.

4.2. Tree Bagging model

Bagging consists of generating several bootstrap replicas from

the original dataset and modeling the deepest possible tree for each

replica. Whereas bagging has no hyperparameters to tune, the

number of bootstrap replicas does have to be defined. In our case,

the number of bagging trees was 50 and the test AUC was 0.7267.

Figure 4 (a) shows that increasing the number of replicas did not

improve the test AUC. Note that after 40 replicas, the performance

of the model increases very slowly. When a sufficiently high number

of trees had been used, adding another tree did not provide any

additional information, since it was highly correlated with some

other previous tree.
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Class imbalance strongly affected bagging performance. To

predict a new observation, class predictions were obtained for each

tree and the predicted probability was obtained from the frequency

of all individual tree predictions. This can be explained by the

fact that each tree in the bagging provides a classification, not

a probability. For example, a leaf with five negatives and four

positives would be classified as negative, just as would a leaf with all

negatives. As in the case of the tree model, a sampling approach was

adopted. Here, only the down-sampling method was used. Bagging

was applied with 50 trees and a test AUC of 0.7675 was obtained.

Finally, a cost sensitive approach was performed. A cost of 20 was

applied to the bagging building step and a test AUC value of 0.7737

was obtained. Note that using different costs affects how the splits

are chosen in the tree building step. As bagging builds trees that are

as deep as possible, the final leaves tend to be more homogeneous so

as to avoid misclassification costs. This limitation does not occur in

the base bagging model. Figure 4 (b) shows the ROC curve of the

base Tree Bagging model and the down-sampling and cost sensitive

Tree Bagging models.

To conclude, we should stress that the Bagging Models were

computationally much more intensive than the Classification and

Regression Tree models. Indeed, in some cases the model fitting

took more than twelve hours.

4.3. Random Forest

The efficient Random Forest implementation ranger was used

and categorical variables were considered as ordered categorical

variables. Compared to the RF model that does not modify

categorical variables, the AUC values were not statistically

significantly different6; however, the computation time was halved.

6The CV AUC of the RF with original categorical variables was 0.7886
(s.d.=0.0065), and the CV AUC of the RF with converted categorical variables
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Figure 4: ROC curves and number of bootstrap replicas. Left panel: Test
AUC by the number of bootstrap replicas. Right panel: ROC curves by the
bagging models used.
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Intuitively it seems that performance is markedly affected when

considering ordered categorical variables. This might be because

some categorical variables are directly considered as ordered

(dayType, timePeriod) or, at least, are categorized with a certain

order. For instance, the variable roadType has a certain order,

beginning with road types that have higher speed limits and

terminating with those with a slower speed limit.

With a ten-fold CV, a large number of different mtry was

considered for selection. Figure 5 shows that CV AUC increased as

the number of mtry decreased. The highest CV AUC was obtained

with an mtry equal to two. It had a CV AUC of 0.7849 and a test

AUC of 0.7932. A low mtry means that trees are very different from

each other, so each provides information for the aggregation step.

A low mtry could be problematic in the case of a high number of

non-informative variables, which does seem to be the case here.

Once the mtry was selected, the number of trees to be used

was analyzed. Figure 6 shows model performance as a function of

the number of trees. When the forest was small, adding new trees

substantially improved the model performance. However, the test

AUC value did not increase after approximately 400 trees.

Finally, the down-sampling strategy was adopted to deal with

class imbalance problems. The down-sampled performance of the

model was slightly worse than when using all the dataset. The

optimal mtry was three with an associated CV AUC value of 0.7753

and a test AUC value of 0.7871. Compared with the previous models,

the standard deviation was much higher. As each fold used fewer

data, the AUC results were more dispersed. In terms of speed, the

down-sampled performance was fifteen times faster than when using

all the data. The cost sensitive approach was not performed.

was 0.7820 (s.d.=0.0064).
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Figure 5: CV AUC as a function of mtry.

Variable importance

A major advantage of the RF model is that variable importance

can be assessed. Here, we evaluate variable importance by means

of the RF built-in permutation variable importance measure, which

compares the increase in the prediction error after permuting all

elements of a variable. Here, categorical variables were not converted

to ordered categorical variable but to dummy variables in order to

facilitate interpretation.

Table 3 shows the 20 variables with the highest values on the

permutation variable importance measure. The variable with the

highest value was Local police. The correlated categories of Urban

area (builtUp) and Urban road (roadType) were in third and fourth
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Figure 6: Test AUC as a function of the number of trees. Left panel: Using
fewer than 150 trees. Right panel: Using fewer than 1500 trees.
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positions. This means that the behavior of the Local police and the

Regional police was considered to be different by the RF algorithm.

As expected, the hour and the time period-night were relevant for the

classification of observations. The most important characteristics of

the driver profile were age and experience (number of years holding

a driver’s license) which are both ranked in the top ten variables by

importance. The remaining variables in the top 20 were road type,

some regions/subregions and police divisions, and variables related

to the weekday and week of the year. Notice that sex and vehicle

type do not figure in the top 20.

Variable Category Importance
policeType Local police 100.00
hour 62.84
builtUp Urban area 61.69
roadType Urban road 57.54
timePeriod Night 44.63
age 38.04
licenseYear 38.02
roadType Conventional road 26.90
weekday 19.25
subregion Barcelones 19.12
week 17.30
ART ART Metropolitana N 16.85
timePeriod Afternoon 16.12
month 15.69
workingDay Non-working days 12.56
region Lleida 12.20
day 8.49
dayType Sun 7.99
ART ART Tarragona 7.65
roadType Highway2 7.40

Table 3: Top 20 variables by importance.
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4.4. Comparison of tree-based models

To conclude, summarizing results are shown in Table 4. All the

tree-based models discussed in the article are compared in terms of

classification performance and computation intensity.

Tree-based Test AUC Time computation

model intensity

CART 0.7498 Low

Down-sampling CART 0.7577 Low

Up-sampling CART <0.5 Low/middle

Cost sensitive CART 0.7663 Low

Bagging 0.7267 Very High

Down-sampling Bagging 0.7675 High

Cost sensitive Bagging 0.7737 Very high

Efficient Random Forest 0.7932 Middle/high

Down-sampling efficient 0.7871 Middle

Random Forest

Table 4: Performance and time consuming comparison of tree-based
models.

5. Discussion

This paper compares the use of three tree-based models used

in classification problems –in this specific case, as applied to BrAC

test results in excess of the legal limit in Catalonia (Spain). Drunk

driving data are deeply imbalanced since most drivers are not

alcohol impaired. Additionally, the performances of two alternative

strategies for dealing with imbalanced data –sampling methods

and cost sensitive methods– are compared. Unlike up-sampling,

down-sampling methods were preferred to the original methods.

The results following the application of down-sampling methods

were often slightly worse, but the reduction in computing time was
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significant. As such, down-sampling techniques may be used to

obtain a rapid overview of model performance. In our case more

data did not improve model performance substantially. In the case of

imbalanced datasets, quality may be more important than quantity.

A comparison of the tree-based methods, showed that the Random

Forest model performed best, which means it can be considered the

model of choice if a high performance model is wanted. If rapid

computation is required, however, the (CART) tree model with

misclassification costs should be used. Finally, when compared to

these two methods, Tree Bagging offered no modeling advantages in

the context described here.

In terms of the number of nodes, trees were in general very deep,

hindering the direct interpretation of variables. According to the

Random Forest variable importance indicators, the most important

variables were those of the area of control, the hour of day and the

driver’s age, findings that are in line with previous studies ([1], [13],

[3],[2], [10]). Built-up/non-built-up areas was the most important

variable in the classification. As for the implications of our findings

for road safety, it is clear that different enforcement strategies are

required to address drunk driving in each of the two areas. An

interesting application of tree-based methods is their utility for

helping in-situ police officers select the drivers that should be tested

when the checkpoint is set up. This application could be extended to

drug testing since the unitary cost of drug tests is high in comparison

to that of alcohol tests.

Future areas of research include to distinguish between

administrative and criminal offenses. In this highly imbalanced

scenario it would be interesting to analyze whether similar results

were obtained regarding the performance of tree-based models.

Additionally, other supervised classification techniques could be

applied such as linear discriminant analysis, naive Bayes or support
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vector machine. Finally, a promising approach to explore in

the future in order to cut down the computation time is to

apply dimension reduction techniques, such as principal component

analysis or partial least squares.
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220 M. Alcañiz, L. Ramon, M. Santolino

[23] Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G. and

Ziegler, A. (2012). Probability machines: consistent probability

estimation using nonparametric learning machines, Methods of

Information in Medicine, 51(1):74.

[24] Mathijssen, M. (2005). Drink driving policy and road safety in

the Netherlands: a retrospective analysis, Transportation

research part E: logistics and transportation review,

41(5):395-408.

[25] Meinshausen, N. (2006). Quantile regression forests, The

Journal of Machine Learning Research, 7:983-999.

[26] R Core Team (2016). R: A Language and Environment for

Statistical Computing, R Foundation for Statistical Computing,

Vienna, Austria.

[27] Raileanu, L. E. and Stoffel, K. (2004). Theoretical comparison

between the gini index and information gain criteria, Annals of

Mathematics and Artificial Intelligence, 41(1):77-93.

[28] Segal, M. R. (2004). Machine learning benchmarks and random

forest regression, Center for Bioinformatics & Molecular

Biostatistic.

[29] Sela, R. J. and Simonoff, J. S. (2011). RE-EM trees: a data

mining approach for longitudinal and clustered data, Mach.

Learn., 86(2):169-207.

[30] Strobl, C., Boulesteix, A.-L. and Augustin, T. (2007). Unbiased

split selection for classification trees based on the Gini index,

Computational Statistics & Data Analysis, 52(1):483-501.

[31] Strobl, C., Boulesteix, A.-L., Zeileis, A. and Hothorn, T.

(2007). Bias in random forest variable importance measures:



Tree-based models classifying imbalanced breath alcohol data 221

Illustrations, sources and a solution, BMC bioinformatics,

8(1):1.

[32] Vanlaar, W., Robertson, R., Marcoux, K., Mayhew, D., Brown,

S. and Boase, P. (2012). Trends in alcohol-impaired driving in

Canada, Accident Analysis & Prevention, 48:297-302.

[33] Wager, S., Hastie, T. Efron, B. (2014). Confidence intervals for

random forests: The jackknife and the infinitesimal jackknife,

The Journal of Machine Learning Research, 15(1):1625-1651.

[34] Williams, A. F. (2006). Alcohol-impaired driving and its

consequences in the United States: the past 25 years, Journal

of safety research, 37(2):123-138.

[35] Xu, B., Huang, J. Z., Williams, G., Wang, Q. and Ye, Y.

(2012). Classifying very high-dimensional data with random

forests built from small subspaces, International Journal of

Data Warehousing and Mining (IJDWM), 8(2):44-63.
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Appendix

ART # tests # positives (%)
ART Girona 50,143 2,610 5.2
ART Manresa Central 44,917 1,656 3.7
ART Metropolitana N 142,719 6,730 4.7
ART Metropolitana S 37,983 1,582 4.2
ART Pirineu Lleida 20,344 495 2.4
ART Ponent Lleida 41,524 525 1.3
ART Tarragona 45,711 2,141 4.7
ART Terres Ebre 25,595 755 2.9

Table A.1: Number of tests, positives and percentage of positives by
Police Territorial Division (ART).

Month # tests # positives (%)
1 32,286 1,046 3.2
2 38,231 1,446 3.8
3 41,161 1,749 4.2
4 29,485 1,162 3.9
5 34,485 1,487 4.3
6 41,897 1,916 4.6
7 27,521 1,373 5.0
8 28,788 1,386 4.8
9 29,319 1,402 4.8

10 38,298 1,126 2.9
11 31,182 1,271 4.1
12 36,283 1,130 3.1

Table A.2: Number of tests, positives and percentage of positives by
month of the year.
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Hour # tests # positives (%)
1 22,656 1,069 4.7
2 9,777 761 7.8
3 35,935 2,677 7.4
4 25,562 2,161 8.5
5 7,043 954 13.5
6 21,499 1,958 9.1
7 22,746 1,094 4.8
8 14,282 293 2.1
9 8,801 73 0.8

10 8,752 42 0.5
11 11,966 47 0.4
12 10,524 46 0.4
13 3,020 23 0.8
14 1,160 21 1.8
15 19,151 136 0.7
16 23,296 234 1.0
17 11,790 148 1.3
18 6,243 64 1.0
19 10,755 139 1.3
20 11,999 157 1.3
21 2,588 86 3.3
22 2,057 123 6.0
23 28,448 750 2.6
24 88,886 3,438 3.9

Table A.3: Number of tests, positives and percentage of positives by
hour of the day.


