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Abstract

Alzheimer’s is a progressive neurodegenerative disease, right now irreversible and re-
lated with ageing. It is caused by neuronal deterioration which leads to memory loss,
intellectual impairment and personality disorders and behavior. Several international re-
ports warn that Alzheimer’s is the most common form of dementia, affecting between
60% and 70% of the total number of cases. In addition, it has been estimated that at least
5% of the world’s population with more than 60 years old will suffer the disease at some
point in their life.

Despite the social and economic impact of the disease, there is still no treatment that
can cure dementia or prevent its evolution. It is for this reason that efforts to find solutions
that diminish the progressive development of the disease have been growing increasingly,
building a society aware of these problems. The World Health Organization recognized
dementia as a public priority in the report: "Dementia: a public health priority"[27].

The TV program L.La Marató de TV3"decided to dedicate the show of the year 2013 to
the neurodegenerative diseases. Granted by it, this work has been aimed at reinforcing the
inclusion of the new technologies in areas related with health to promote the improvement
of Alzheimer’s patients.

The framework developed in this project consists on the incorporation of a wearable
camera that automatically takes pictures of the day of the patient. Subsequently, a se-
lection is made, through the detection of objects in the images and a classification using
Machine Learning algorithms, of those photographs which can bring value to the cogni-
tive reinforcement of the patient. A serious game based on this pictures has been built to
enhance this behavior.
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Resumen

El Alzheimer es una enfermedad neurodegenerativa progresiva, por ahora irreversible
y que está relacionada con el envejecimiento. Viene provocada por un deterioro neuronal
que produce pérdidas de memoria, deterioro intelectual y trastornos de personalidad y
comportamiento. Varios informes internacionales alertan que el Alzheimer es la forma
más común de demencia, llegando a representar entre un 60% y un 70% del total de los
casos. Además, se ha calculado que al menos un 5% de la población mundial con más de
60 años sufrirá la enfermedad en algún momento de su vida.

Pese al impacto social y económico de la enfermedad, aún no existe ningún tratami-
ento que pueda curar la demencia o evite su evolución. Es por este motivo por el que los
esfuerzos en buscar soluciones que disminuyan el progresivo desarrollo de la enfermedad
han ido creciendo más y más, construyendo una sociedad concienciada. La Propia Orga-
nización Mundial de la Salud reconoció la demencia como prioridad pública en el informe
"Demencia: una prioridad de salud pública"[27].

La Marató de TV3, por su parte, decidió dedicar la gala del año 2013 a las enferme-
dades neurodegenerativas. Gracias a esto, en este trabajo se ha pretendido apostar por la
inclusión de las nuevas tecnologías en ámbitos vinculados a la sanidad para favorecer la
mejora de las personas de Alzheimer.

El marco de trabajo está formado por la incorporación de una cámara portátil que
automáticamente saca fotografías del día a día del paciente. Posteriormente se realiza una
selección, a través de la detección de los objetos que hay en las imágenes y una clasificación
utilizando algoritmos de Machine Learning, de aquellas que puedan aportar un estímulo
cognitivo al paciente. Además, se ha construido un juego serio basado en estas imágenes
para intentar impulsar esta posibilidad.
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Resum

L’Alzheimer és una malaltia neurodegenerativa progressiva, per ara irreversible i que
está relaciona amb l’envelliment. Provoca un deteriorament neuronal que produeix pér-
dues de memória, deteriorament intel·lectual i trastorns de personalitat i comportament.
Varis informes internacionals alerten que l’Alzheimer és la forma més comú de demència,
arribant a representar entre un 60% i un 70% del total dels casos.

A més a més, s’ha calculat que almenys un 5% de la població mundial amb més de 60
anys patirà la malaltia en algun moment de la seva vida.

Tot i l’impacte social i econòmic de la malaltia, encara no existeix cap tractament que
pugui curar la demència o eviti la seva evolució. És per aquet motiu pel que els esforÃ§os
en buscar solucions que disminueixin el progressiu desenvolupament de la malaltia han
anat creixent més i més, construint una societat consienciada. La própia Organització
Mundial de la Salut va reconèixer la demència com a prioritat pública a l’informe "De-
mència: Una prioritat de la salut pública"[27].

La Marató de TV3, per la seva part, va decidir dedicar la gala de l’any 2013 a les
malalties neurodegeneratives. Grácies a això, en aquest treball s’ha pretès apostar per la
inclusió de les noves tecnologies a àmbits vinculats amb la sanitat per afavorir la millorar
de les persones amb Alzheimer.

El marc d’aquest treball consisteix en la incorporació d’una càmera portàtil que au-
tomàticament pren fotografies del dia a dia del malalt. Posteriorment, es realitza una
selecció, mitjançant la detecció dels objectes que hi ha a la imatge i una classificació utilit-
zant algoritmes de Machine Learning, d’aquelles que puguin aportar un estímul cognitiu
al pacient. Per altra banda, s’ha construït un joc seriós basat en aquestes fotografies per
intentar impulsar aquesta possibilitat.
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Chapter 1

Introduction

Mild cognitive impairment (MCI) is a brain syndrome. People who suffer from it expe-
rience a progressive impairment in their cognitive and mental abilities such as memory or
thinking, but they are not severe enough to interfere in their daily lives. Some population-
based studies claim that it affects between 3% and 19% of people over 65 years.[12] Some
of them remain stables or even return to normal but more than half of them progress to
dementia within five years. Therefore, it can be considered a risk stage for dementia, so
its early diagnosis and continuous control are fundamental.

Consorci Sanitari de Terrassa was able to promote new projects with the aim of improving
the memory of Alzheimer’s patients and their quality of life and also to help doctors with
the treatment of this disease. To do this, some patients voluntarily were willing to hang
a small wearable camera that would photograph different images (taking a photo every
30 seconds) related to their environment and their daily habits. These images will then
be used to reinforce the cognitive capabilities of the patients through different activities.
The reason for using images of their own life is because this produces a sensory stimulus
for the patient and helps him memorize and recognize those scenes and people or objects
appearing in them[6].

However, not all images can be used to carry out these activities as many will be
blurred, others will be quite dark, etc. Thanks to Computer Vision we can develop al-
gorithms which help to automatically analyze, understand and filter this large number
of photographies. This analysis, in a concise manner, is necessary to make a classifica-
tion between informative (or rich) and non-informative (or non-rich) images. That is, we
need to separate those photographs that can represent a visual motivation for the patient:
frequent places that he/she visits, familiar faces, especially sensitive objects, etc.

This classification is extremely important for the subsequent development of the project,
since the evolution of the patients will depend on the rich images and will encourage the
improvement of their memory. With the chosen photographs, we can built different seri-
ous games to stimulate and exercise the memory of the patient.
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Our work methodology to achieve the inclusion of serious games as a medical instru-
ment for the improvement of diseases has been, mainly, the creation of an algorithm that
allows to discern between visually rich and non-rich images. This first step is one of the
most important since it is the basis of the subsequent game that serves as a tool to doctors
and patients.

In this work, we are going to develop a rich images detector algorithm which takes
patients’ egocentric images and selects those images that can stimulate his/her cognitive
abilities. We achieved 80% of accuracy in our results. With this results we will also
develop a serious games to let the patients exercise their memory. This instrument will
support medical professionals and will have an impact on the previous methods, allowing
the incorporation of technology in a field where it can give positive results, contributing
to the social welfare in general, and to the optimization of processes in the treatment of
Alzheimer, in particular. It allows a part of the computer vision discipline to be aimed
to social projects with direct involvement on sick people allowing a more intuitive and
accurate follow-up of the patient’s evolution.



Chapter 2

State of the Art

Any image taken through technological devices encloses tones, colors, shadows and
an endless shade that make it unique.

Currently, it is unusual to look for images by themselves, that is, by the content of
the image itself. As an example, the world biggest and reference search engine: Google,
is based on a description of the object we want to look for (text) and not on the graphic
information itself.

2.1 Egocentric Vision

Lifelogging consists of a user continuously recording their everyday experiences via
wearable sensors like cameras. This egocentric perspective allows observing the objects
that the person carrying the camera looks through his eyes(see fig. 2.1 [10]. On the one
hand, the data recorded offer the possibility to analyze and detect activities of daily living
(ADL) or special activities, allowing to capture where, when and even how something
happened. On the other hand, this data analysis also has the potential for knowing some
personal habits of the wearer like behavior patterns or they could be also used to pre-
vent diseases like obesity or depression[5] or cognitive and functional decline in elderly
people[11].
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Figure 2.1: Example of an egocentric image

However, visual lifelogs present a significant challenge for computer vision because of
some uncontrollable variables like free motion of the camera, sudden changes in lighting
conditions and image content, occluded objects or a large number of non-informative
images that capture meaningless information such as walls, sky... Furthermore, visual
lifelogs are increasing considerably fast so efficient methods to extract and locate relevant
content are needed.

Current ADLs recognition in egocentric images invite to think that the key is the de-
tection of the objects in the scene. However, although there have been some improvements
in object recognition, it remains a challenge due to unconstrained scenarios[15].

2.2 Serious Games

Current technologies not only increase the implantation of games that make life easier
for both doctors and patients in the improvement of their disease, but also stimulate them
to share ideas, projects and results. By doing a simple search on the Internet we can
find many projects with a common purpose: to improve the well-being of people with
cognitive diseases.

A serious game aims to enhance learning through play, which allows people to acquire
new knowledge or improve their skills with a more enjoyable method. Therefore, through
gaming, it provides more value than just entertainment.

Some of the most common games are finding pairs in upside down images, repeat a
series (this is very similar to Simon) or find the differences between to sequential images
1. To go one step further, in this work it has been considered that including in those games
the patients’ own day-to-day photographs can provide a stimulus for their minds[1].

1https://lasaludi.info/juegos-de-memoria-para-los-pacientes-de-alzheimer.html



2.3 Object detections systems

We can find many image recognition systems such as face recognition and facial ex-
pression, signature recognition or character recognition.

Our hypothesis is that to detect a rich semantically image, the number and appearance
of images matter (see 2.3). To identify objects more easily they can be divided into different
categories, for example, whether they are manipulated or not, whether the object changes
color or size, etc[17].

Figure 2.2: Image with its objects identified.

Some detections systems are:

• Deformable parts models (DPM). It uses a sliding window to detect objects[7] and
a disjoint pipeline to extract features, classify regions and predict bounding boxes.
It is slow and less accurate than YOLO as it replace all independent parts with a
single CNN.

• R-CNN. This model[9] and its variants (Fast R-CNN[8]) use region proposals to find
objects in images. First, it generates potential bounding boxes [26], then applying a
convolutional network extracts features and an SVM scores the boxes. Each part of
this pipeline must be trained independently and consequently it is very slow.

• Deep MultiBox. Unlike R-CNN, it trains a CNN to predict regions of interest instead
of using Selective Search but the main disadvantage is that it is not a complete
detection system, it can not perform general object detection.

• YOLO. It replaces some independent parts of the prior detectors with a single CNN.
It divide the image in a N x N grid and each cell is responsible for detecting the
objects in them.



Given that, nowadays the mission is to achieve optimum results on a large scale in
the shortest possible time. That is why alternatives like R-CNN[9] or Fast R-CNN[8] are
difficult to use as they are relatively slow. We consider that YOLO is the best option it is
able to detect objects almost in real time with a high accuracy.



Chapter 3

Rich Images Detection Algorithm

In this section, we are going to talk about the design of the algorithm itself that has
been carried out in this work. It could be divided into 3 clearly differentiated parts:

Objects Detection: The first step of the algorithm is to detect objects in patients’ images.
It is a very important part as with them we can later measure the richness of the
scene or find out if it is a familiar place for the patient.

Feature extraction: The second step is to analyze all the data obtained in the previous
part and create a vector for each image that later will be the input of the classifier
and will determine whether this is a rich or a non-rich image.
We considered that the number of objects, the variance of the color, whether a person
is in the scene and the scale, confidence (of YOLO detection) and class of the objects
detected are important features in this classification. We will detail this extraction
later in the chapter.

Image classification: The last step is to create a proper classifier. First of all, it needs to
be trained with the training subset. Once it is done, the classifier is ready to predict
the richness of every image we will have as input.
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Figure 3.1: Algorithm for Rich Scene Detection

Each of these parts is detailed below.

3.1 Object Detection: YOLO9000

The first of the important technical parts is the detection of the objects that contain the
different images (see fig. 3.3. The analysis of the different images is fundamental since
the more objects we detect in it the richer the image is as its scene has more content and,
consequently, we have much more data to base our decision on. In addition, this is a first
filtering of patient’s images as if we don’t detect any objects or the objects detected have a
very low detection confidence, this image is a candidate to be discarded. The results that
we achieve here will have an important influence on the result of the classification. Some
examples of the data that can be obtained are: the number of objects in the image, its type
(if they are people, furniture, buildings ...), their respective locations and scale within the
image or the most predominant color.

This task is time consuming. For this reason, we make use of YOLO9000 [18][19], an
extremely fast and reliable object detection system. The base version can process images
at 45 frames per second in real-time, but the fast one, is capable to run at 150 fps or even
more. In table 3.1 we can see a comparison of its speed.

Many other detection systems make use of a sliding window over the image to detect
possible objects in it. Others, like R-CNN[9] or Fast R-CNN[8] select potential bounding
boxes within the image where there can be objects, then run a classifier only on these
boxes and finally, a cleaning process is executed to improve bounding boxes and delete
duplicates.

All these systems are somehow slow. YOLO9000 unifies all the independent compo-
nents of the detection and uses a single convolutional neural network (CNN) to predict
all bounding boxes from the whole image simultaneously.



Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 63.4 45 FPS 22 ms/img

YOLOv2 (480×480) 77.8 59 FPS 16 ms/img

Table 3.1: Comparison of the speed of several Object Detection Systems

A CNN is a type of Artificial Neural Network that uses a variation of multilayer per-
ceptrons (see fig.3.2). It was inspired by biological processes in which the connectivity
pattern between the artificial neurons simulates the layout of the visual cortex. The re-
ceptive fields of different neurons (a restricted region of space) slightly overlap such that
they cover the entire field. The response of neurons to stimuli within their receptive fields
can be approximated by a convolution operation. In table 3.1 we can see how the CNN of
YOLO is structured.

Figure 3.2: Example of a Neural Network

Unlike the other detectors, YOLO sees the whole image with all its context allowing to
make more accurate detections with less errors. Firstly, it divides the image into an N x
N grid. Then, it applies the Convolutional Neural Network to predict whether each grid



cell contains an object (see fig. 3.3). Finally, it filters all objects to obtain those that have a
higher confidence of a certain threshold (by default the threshold is 0.25).

Figure 3.3: YOLO detection example

To find bounding boxes, YOLO predicts location coordinates relative to the location
of the grid cell. This bounds the confidence to fall between 0 and 1 and then a logistic
activation function is used to limit the network’s predictions to be in this range. The
network predicts 5 coordinates for each bounding box, tx, ty, tw, th, andto. If the cell is
offset from the top left corner of the image by (cx, cy) and the bounding box has width
and height pw, ph, then the predictions correspond to:

Figure 3.4: YOLO prediction

where bx and by are the top left coordinates, bw the width and bh the height of the
bounding box.

YOLO predicts width and height of the bounding box as offsets from cluster centroids
and predicts the coordinates of the box relative to the location of filter application using a
sigmoid function.

3.2 Features Extraction

Once YOLO is executed and we have all the objects within the image (with their posi-
tion and size and the confidence of the detection), we should start the classification. But,



Type Filters Size/Stride Output

Convolutional 32 3× 3 224× 224
Maxpool 2× 2/2 112× 112

Convolutional 64 3× 3 112× 112
Maxpool 2× 2/2 56× 56

Convolutional 128 3× 3 56× 56
Convolutional 64 1× 1 56× 56
Convolutional 128 3× 3 56× 56

Maxpool 2× 2/2 28× 28
Convolutional 256 3× 3 28× 28
Convolutional 128 1× 1 28× 28
Convolutional 256 3× 3 28× 28

Maxpool 2× 2/2 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14

Maxpool 2× 2/2 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7

Convolutional 1000 1× 1 7× 7
Avgpool Global 1000
Softmax

Table 3.2: Model of the CNN used in YOLOv2.

right now, the classifier can not make any decision with this information; it does not un-
derstand it. Therefore, we need to transform and adapt it to its requirements. We have to
build the feature vectors.

The input of this classifier must be a vector representing an image. Each position of
this vector is determined by ourselves valuing what we think could be determinant for the
right classification. Therefore, observing the images made by the volunteers of the project,
we consider that these are very important features:

• Is there any person in this image?

• Is the image indoor or outdoor?

• Where are usually the objects, in the center or in the edges of the image?

• Is there a significant variation of the colour or it is a monochromatic image?



3.2.1 Feature vectors

With these questions in mind, for each image we save:

1. Numbers of objects it contains. The number can range from 0 to the maximum
number of objects found in the image (no limit).

2. Variance of color. Like the previous one, from 0 when the image is of a single color
and without a defined limit.

3. Whether it contains people. It can only be 0 or 1, 0 indicating there is no person
and 1 that at least one. For this feature we chose some common people classes and
checked if any object belongs to these classes.

4. Object Scale. It is a decimal between 0 and 1.

5. Object Class. Corresponds to the line number of the class name within the 9k.names
file that varies between 1 and 9418.

6. Object Confidence. It corresponds to a percentage whose decimal value range be-
tween 0 and 1.

To get more information of images we made a pyramidal division of them: First,
we save these features for the whole image taking into account the five most important
objects of it. Then, we divide the image into 4 quadrants and get this same information
(number of objects in every quadrant, color variance...) taking into account only the 3 most
predominant objects of each quadrant. Finally, we make the same division and extraction
but in this case for a 9-quadrant division getting the 2 most important objects of each
quadrant.

The importance of objects is determined by a very simple formula:

i(O) = c(O) ∗ s(O)

where c is the object confidence of the detection of YOLO and s is the scale of the object.

Altogether, the feature vectors have a length of 147 positions, the first 18 correspond
to the data related to the whole image, the next 48 for each of the quadrants dividing the
image into four and the remaining 81 when the division is nine.

Once the feature vectors of all the images have been obtained, they are placed in a
matrix where each row corresponds to a different image and each column to each of the
positions of the vectors (the resulting matrix will have a dimension of 10997 rows x 147
columns ). Subsequently, each column is normalized. For this, maximum and minimum
values of each column of the images belonging to the training set are needed. Then for
each position the formula 3.1 is applied:

valuenormalized =
current_value−min_value

max_value−min_value
(3.1)



As we have been only considered the training set when finding maximum and mini-
mum values, it is possible that in test or validation sets there are images with a higher or
lower value than these two. In these cases, we force each column to only range between 0
and 1.

In chapter 5 of this work we analyze two other versions of feature vectors implemented
that gave slightly worse results.

3.3 Classifying images

3.3.1 Random Forest Classifier

To implement our work we propose using a Random Forest Classifier (RFC)[4][14],
a very effective method for classifying variables or objects. They are a combination of
decision trees, which are represented as a tree graph that given an input, it made a series
of decisions and depending on each answer, the algorithm descends for one branch or
another. The leaves nodes determine which will be the classification of the input so, every
decision is many important as they define the way of descent and therefore, the final
classification.

Figure 3.5: Example of a RFC with several decision trees.

The output probability of the ensemble model is:

p(c|v) = 1
T

T

∑
t=1

pt(c|v)

where c is each of the possible resulting class and v the input.

RFC require very little learning time and, moreover, they are very accurate. To train
the classifier, first, we need to choose a training set and then different decision trees are
created which will be trained with a random selection of elements of the training set or a



combination of them (with repetitions). This allows the classifier to be stronger and, very
important, avoid overfitting.

Once the classifier is built, if we want to classify an image, we must apply the RFC on
it and select the most common output class among all the trees.



Chapter 4

Implementation

In this chapter, we are going to define which technologies we have used, the libraries
imported to get new functionalities and whether we used an IDE or any other alternative.

4.1 Technologies and Dependencies

For the part of object detection, we used YOLO9000, which is programmed in C. Al-
though we have not programmed it, it has been necessary a modification in its code to
adapt it to our needs1. In addition, since it is expected to work with a large number of im-
ages, its execution has been parallelized. For this reason, it is also necessary the package
’GNU parallel’2 with all its dependencies.

For the second part, the data extraction and classification of the images have been
implemented with IPython as it is easy to read and allows an agile and robust develop-
ment. It let us do many tests and compare its results. Within the code the most important
libraries that have been used are:

scikit-learn[16] 3 For the classifier as it contains very interesting packages for machine
learning like Random Forest Classifier or Support Vector Machines among others.

NumPy 4 A very important package for scientific computing with Python. It contains
among other things: powerful N-dimensional arrays and sophisticated math func-
tions.

pandas 5 It provides powerful easy-to-use data structures and data analysis tools for
Python. Widely used for statistics and datascience.

1This modification is explained in detail in section 4.2.1
2GNU: 2017 [En línea]. <https://www.gnu.org/software/parallel/> [Consulta: 12 de junio]
3http://scikit-learn.org/stable/
4NUMPY DEVELOPERS: 2017 [En línea]. <http://www.numpy.org/> [Consulta: 12 de junio]
5NUMFOCUS: 2017 [En línea]. <http://pandas.pydata.org/> [Consulta: 12 de junio]
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cv2 (OpenCV) 6 Very interesting library for computer vision and machine learning.

plot.ly 7 It is a platform to make amazing charts and visualize data. During the tests, it
was especially good when trying to compare scores between the different classifiers
as we needed to make a 3D-chart and it let us navigate and move through them.

To save all the code, both YOLO and IPython, we have used GitHub, the Versions
Control System (VCS) par excellence.

4.2 Executing YOLO9000

The first thing we need to do is download and compile YOLO90008. In addition,
we need to download the pre-trained weight file that we can download from the YOLO
website9. This file is the result of the pre-training of the model and indicates the weights
of the different convolutions within the neural network.

Now, we can execute YOLO. It can be done with the following command:

./darknet detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
data/dog.jpg -thresh 0.1

Where:

• combine9k.data is the file that tells YOLO where the information related to the
classes is like the total number, their names, labels, etc.

• yolo9000.cfg is the configuration file of YOLO in which there are indicated among
other things the convolutions that it applies to the image.

• yolo9000.weights is the file mentioned above.

• data/dog.jpg is the image from which we want to detect objects.

• The parameter ’thresh’ is optional and indicates the minimum confidence of the
objects that YOLO will find. If we do not pass this parameter, as we mentioned
before, it is 0.25 default.

There is another way to execute YOLO9000, which is very useful if we want to detect
objects in multiple images. This is identical to the previous, but without passing the image
path. In this case, YOLO will prompt us the paths of images one by one.

In this project, we have used the first one, but with a slight modification:

6OPENCV TEAM: 2017 [En línea]. <http://opencv.org/about.html> [Consulta: 12 de junio]
7PLOTLY: 2017 [En línea]. <https://plot.ly/> [Consulta: 16 de junio]
8https://pjreddie.com/darknet/yolo/
9https://pjreddie.com/media/files/yolo9000.weights



find $1 -name ’* .jpg’ | parallel -j+1 ./darknet detector test cfg/combine9k.data
cfg/yolo9000.cfg yolo9000.weights {} -thresh 0.1

In this command, we first run find to list all the patient’s images and redirect the
output to the YOLO input, parallelizing its execution and allowing to detect objects of
multiple images simultaneously. This exeution is really fast when trying to detect objects
in a large number of images.

Once YOLO has detected all objects above a given threshold, it shows them in two
possible ways:

1. If YOLO has not been compiled with the OpenCV library, it creates predictions.png
file with the image and the bounding boxes for each object drawn on it. In figure 3.3
we can see what YOLO prints out in the image.

2. If it has been compiled the mentioned library, it shows us in a separate window the
result that previously saved in a file.

Neither of these two alternatives is useful since the algorithm needs the position of
each object and its scale. That is why a modification in the YOLO code has been necessary
for this particular use.

4.2.1 YOLO output

The function that displays the results is called draw_detections() which is located in
the image.c file. We commented the part where it shows the results and we forced YOLO
to print the detections on the screen. In this case, the data that it prints is: the name (path),
width and height of the image and the position, width, height, confidence and class for
each object YOLO has found. In figure 4.1 we can see the new YOLO output for one
image.

Subsequently, when we run YOLO this output will redirect to a file, trying to follow
the JSON format.

Figure 4.1: Example of the output with the modification we made



4.3 Running the classifier

Once all the necessary data has already been obtained, we can start predicting the class
of the images.

First, the classifier needs to be declared. This is achieved with the following command:

rfc = RandomForestClassifier(n\_estimators=n, n\_jobs=m)

Where n is the number of trees we want to declare and m is the number jobs to run in
parallel, for both train and predict.

Once it is created, it must be trained (or fit) to find relationships between features.
But we can not do this with the whole dataset as it would create a "perfect" classifier for
these particular images but we do not know its behavior with any image that will come
afterwards. For this reason we need to train this classifier with a subset of our data and
check its score with the other part of it (we can know this predicting the class of the images
and comparing results with the real classes). This is done with the following code:

rfc.fit(X_train,Y_train)

where rfc is the classifier mentioned above, X_train corresponds to the feature vectors
of the training set and Y_train corresponds to the real class of each image after the manual
classification done by the doctors. This way, the classifier can find which are the main
features knowing in advance the result of the classification of the training set images.

At this point, the classifier is ready to start predicting the richness of any image we
pass as input. To do this, the following command is executed:

rfc.predict(X_validation)

where X_validation is the feature vector of the image whose class we want to predict.
It returns the result of the predictions that, in our case, is 1 (it is probably a rich image) or
0 (it is not).



Chapter 5

Results

Once the algorihm is defined, the next step to look for the best result adjusting vari-
ables like the threshold of YOLO or the number of decision trees in RFC or making an
analysis of the images to deduce what can be an important features to make a good clas-
sification.

5.1 Dataset

5.1.1 Egocentric Images

To create any algorithm, it is necessary to have a good dataset with a sufficiently large
and representative sample of images to find patterns and common features. This will be
used to train the classifier and to find which are the most important feature and which of
them are more decisive to determine the final decision (rich or non-rich).

In this case, the dataset used is composed of photographs taken by the different mem-
bers of the research team on their day to day over a period of two weeks.

As we said before, the wearable camera takes a picture every thirty seconds automat-
ically (although you can force an image at a certain time if it is deemed appropriate).
Therefore, considering that it is a seven-people sample and that on average each camera
takes 1500 images per day approximately, we have a dataset of 10997 photographs (6399
rich and 4598 non-rich).

To favor the creation of an algorithm to detect which images are rich or not, we have
had the collaboration of several doctors of the department in charge of the treatment of
MCI patients. These professionals have performed a manual classification of all images in
the dataset. The task developed has been essential for the design of the automatic classifier.
Without it, it would not be possible to carry out the training phase and therefore, neither
extract the relevant information to find patterns or detect which characteristics are the
most determinant for subsequent classification.
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The following images are examples of egocentric rich images (see 5.1) and non-rich
images (see 5.2). We observe that rich photographies show known people or recognizable
places. However, non-rich images are meaningless or dark images (that can hardly be
seen) that it is difficult to recognize anything.

Figure 5.1: Rich images

Figure 5.2: Non-rich images



5.1.2 Data split

The dataset must be split into three subsets to allow the realization of each phase of
the algorithm.

As we said before, the images belong to a period of 15 days. Due to this, and since the
photographs taken during the same day can be very similar, we proceeded to randomly
separate the different days into three different sets.

1. Firstly, the training set consists of 60% of the days, in this case 9. This set will be
used during the training phase of the classifier. From these images, the classifier will
draw all the decisions.

2. Secondly, 20% of the days, in this case 3, are part of the validation set. This set is
used to evaluate the different trainings performed with the images of the previous
group. The purpose of this set is to evaluate the performance of the different models
and get the one that has a greater success percentage (precision and recall).

3. Finally, the remaining 20% belongs to the test set and this is the final evaluation of
the classifier that has obtained the highest percentage of success with the previous
set. Its result is an estimation of how good it can become when used in a real-life
scenario.

5.2 Evaluation Metrics

In order to evaluate the different results and compare them to get the best one, we
make use of the f1-score (or f-measure) [21] metric.

5.2.1 F1-score

This metric considers Precision and Recall[25] to make a weighted average of them
getting its best value at 1 and the worst at 0:

F1 = 2 ∗ 1
1

precision + 1
recall

= 2 ∗ precision ∗ recall
precision + recall

where precision is the quotient between the number of True Positives objects and the
number of predicted positive elements; and recall is the quotient between the number of
True Positives objects and the number of real positive elements.

To get this score in our code we imported this metric from sklearn and computed it
with the following command:

f1_score(Y_validation,prediction_rf)

where Y_validation are the real classes of the images in validation set and predictionr f
are the predicted classes of the classifier for the same set of images.



5.3 Grid search

One of the first parameters that we can adjust is the threshold of YOLO. As the detec-
tion of objects in images compared to other actions is slower, we avoided the execution of
YOLO for several thresholds making a single execution of YOLO with the threshold 0.01
in order to obtain the maximum possible number of candidates to be objects. This way,
we have executed YOLO only once and it serves us for all the tests that we do.

Subsequently, the data would be filtered to simulate the execution of YOLO with the
following thresholds: 0.01, 0.05, 0.1, 0.15, 0.25, 0.35 and 0.5, and each result will be saved
in a different file that has the JSON format allowing a fast read with the pandas library
saving this data in a dictionary.

Once we have all the possible objects detected, we calculated the feature vectors for
each of the previous thresholds saving each set in a different DataFrame and in a different
file so we did not have to calculate them again. With this we obtained 7 different feature
vectors for each image (1 for each threshold).

With all feature vectors of all the images computed, we proceed to classify the images.
For this, different classifiers with different number of estimators were trained following
the commands indicated in section 4.3. In our case, m = 4 (to take profit of the multi-core
processor) and to find the best classifier we have executed it for the following values of n:

• From 10 to 100 with a 10-value step (10, 20, 30, . . . , 90).

• From 100 to 500 with a 20-value step (100, 120, . . . , 500).

The result of the score for each classifier for the threshold 0.01 (which gave us the best
scores) is indicated in the figure 5.3:



Figure 5.3: Results of predictions

where the accuracy is the result of evaluating the metric f1-score for each classifier.

We note that for 50 estimators we have given the maximum score that is around 0.751.
Consequently, the score of this classifier is checked for the test set, which gives about
0.791. Therefore, we can conclude that after all the tests performed, the classifier with 50
estimators and threshold of YOLO 0.01 is the one that gives us the best results.

If we observe some results of the classifier we see how the images in figure 5.5 have
been correctly classified as rich images and the images in figure 5.4 as not rich. In rich
photographies appear clearly recognizable people, which is very positive for the patient.
On the other hand, negative ones are made to the sky and they do not bring any useful
information to the patient.



Figure 5.4: Examples of True Negatives images

Figure 5.5: Examples of True Positives images

However, looking at images in 5.6, which were misclassified (they are considered non-
rich by the doctors but they were classified as rich), we observe that in the first one it may
be the patient’s living room and YOLO detected a lot of objects but they are not important
enough to create a meaningful scene. In the second one, the body of a person person
appears but he is not recognizable as his face is occluded. We strongly think that to solve
this misclassification we can add to our algorithm other computer vision systems like face
detectors or we can also weight the classes to avoid the fact that all the classes have the
same importance.



Figure 5.6: Examples of False Positives images

In the last case, in figure 5.7 we have False Negatives images, in the ground truth
they are Positives but were classified as Negatives. In the first one, we see someone’s
living room with his/her curtains, the iron, etc. And in the second one we can see a store
window. In both images YOLO did not detected as objects as prior images. We think
again that weighting objects may be a solution for these situations.

Figure 5.7: Examples of False Negatives images

5.4 Word2Vec

Apart from the previous tests, different tests have been carried out to try to improve
the results. All of them are based on WORD2VEC, a 300-position vector database created
by Google, which represent words in a way that they are close in this 300-dimensional
space if their meaning is related.



The first step to use this new feature was to get the vector of all classes that can detect
YOLO (which were 9418 classes) and those classes that are not present in its vocabulary
substitute their vector for the vector of a neutral class, in our case, "thing".

5.4.1 Similarities

An advantage that gives us WORD2VEC is that it allows us to obtain the similarity
between two words depending on how close their vectors are. This is achieved by the
following formula:

model.similarity(word1,word2)

which returns the cosine distance between the two vectors.

Therefore, we believe that the feature which says if there is a person in the image (or
quadrant) could be replaced by this similarity since it is a more real approximation to
what we are looking for.

After replacing this feature, recalculate all feature vectors and re-predict the class of
them, we have obtained a slightly lower result than those discussed previously. In figure
5.8, we can see the scores for the same classifiers as before but with the new version of
feature vectors.

Figure 5.8: Results of predictions for the second version of feature vectors.



We can see that in this case the best score is 0.746 with 70 estimators, a slightly worse
value than before. For the test set, the score for this concrete classifier is about 0.781.
Although it is a lower score, it’s a very small variation (only 0.01), so we can not be sure
if this new version of feature vectors is worse than before.

5.4.2 Class vectors

The second test is based on the same database (Word2Vec) as the previous one but
replaces a different part on the feature vectors. Besides the similarity mentioned above,
we also substitute the class of the most predominant objects (in the image and in each
quadrant) by its WORD2VEC vectors. As it is not practical to directly replace the 300-
positions vectors (since we would have vectors of more than 10,000 positions), we applied
PCA to reduce the dimension of these vectors by losing the minimum possible variance
and, therefore, maintaining the greater meaning possible. It has been tested for different
length values: 1 and 20. But in both cases it gave us worse results. We think that this
scores are a consequence of the fact that the most important features before have lost their
importance as now this vectors are too long.

Again, all feature vectors have been recalculated and the classes of the validation im-
ages have been predicted and as in the previous case. These are the results:

Figure 5.9: Results of predictions for the third version of feature vectors.

We can see now that the best score is reached for 400 estimators and threshold of



YOLO 0.25: 0.747. Again, this is a slightly worse value than before but in this case, for
test set, we got 0.752 wich is a reasonably variaton to afirm that in this case, this version
is worse than the first one.

In addition to the tests explained in this chapter, we have done the comparison with
Support Vector Machines (SVM) doing a Grid Search on the variables C and gamma. As
summary, in the following table we try to show the results:

Precision Recall f1-score

RFC 0.79 0.79 0.79

RFC + Word2Vec 0.78 0.78 0.78

RFC + Word2Vec + PCA 0.74 0.75 0.75

SVM 0.68 0.67 0.68

Table 5.1: Comparison of the results



Chapter 6

Applications: Serious Games

In this chapter we are going to see two applications for our Rich Images Detector:

6.1 Simon

Simon is a memory game created in the year 1978 with the aim of following a se-
quence of colored lights that lit randomly and whose difficulty is increasing as levels are
advanced.

In this project, we have considered its inclusion as a serious game, although with slight
variations from the original as for example the replacement of the lights for personal
egocentric images, to stimulate the memory of the patient.

To do this, we have created an application for Android tablets where the patient has
to observe a series of images. All of them belong to their daily life that have been taken
by a wearable camera and then processed with our algorithm in order to select the rich
images.

The activity has been structured in a total of 9 levels with increased difficulty and 3
main screens. The first one indicates the instructions of the game and when the patient
has read them, he must click on the CONTINUE button. Then it moves to the next screen,
where a grid appears with nine white photographs. Subsequently, with a rate of 1 per
second between each of them, a number of images (the higher level, the more images) will
rise. See figure 6.1

When the series is finished, the images will be placed backwards again and the patient
can start answering pressing them in the same order in which they appeared previously.
If the patient did not start answering in 5 seconds, the answer in considered wrong. In
case the patient responds well, he will be given the feedback of "RIGHT!" and can move
to the next level; otherwise, he can try again (see Fig. 6.2) and if it fails again, he will be
given the correct answer and the same process will be repeated, but with new images.
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Figure 6.1: Example of the screens that shows the series for level 2.

If the patient answers wrong after 4 attempts, it goes back one level (if he is not in
the first one, case where the game would terminate) and the game remains the same. If
during the remaining game he fails again any level, the game will be finished (he can only
go back one level).

The game ends when the player fails two levels or if he pass the last level, the 9th.
At the end of the game, it shows a table with the percentage of hits in each level, whose
overall result is translated into neurons won. See figure 6.3.



Figure 6.2: Example of the screens where the patient gets wrong.

Figure 6.3: Example of the final screen.

6.2 Rememory-Back

Rememory-Back is also a memory game. It is like Simon but here the patient should
not remember any sequence of images; instead, he should only observe an image. The
importance of using rich images is that these can stimulate the patient and he may also
feel more motivated to play and therefore will exercise more his memory. The mechanics
is very simple:

The first screen tells him the instructions of the game and in the second the patient is
informed that before starting the game there are some practice examples that will serve



to understand the logic of the game. To start, the patient must select his preferred level of
difficulty (Level 1 or Level 2).

Figure 6.4: Example of a Rememory-Back screen.

Next, an image will be shown to the patient which he should observe and try to
memorize the maximum number of characteristics (which people appear, where it is,
some of the objects that appear... ) and after some little time, a second image will be
shown and the patient must respond by pressing YES or NO if it is the same image or a
different one.



Figure 6.5: Example of a Rememory-Back screen asking the patient’s answer.

The same process is performed with the third image (in which the patient must indicate
if it is the same as the second) and later.

When the practice is finished, the patient is told that from now on the game begins.
Each time the patient responds incorrectly, a sound is played to indicate that he or she has
been mistaken. At the end of the game, the patient will see how many points she won
with this activity.

Currently, the project Rememory is acquiring data from patients wearing the camera
for 2 weeks. Then the team of the University of Barcelona will process their data and pre-
pare images for different cognitive exercises. There is when Simon will be implemented
to be applied on the patients in order to re-live their experience.



Chapter 7

Conclusions

Thanks to the wearable cameras, it is possible to capture the day-to-day activities of
patients with MCI. This implies that after a considerable period of time, we face a large
number of images. These photographs provide an important cognitive stimulus to the
patient, since the image is taken from an egocentric point of view and allows the patient
to relive an event from the past. Unfortunately, these images have some disadvantages
such as their limited field of view or free motion of the camera, which causes to take bad
images.

In this project, we have helped doctors in their work to diagnose and treat a disease as
complicated as Alzheimer’s by automating the process of filtering these photographs by
discarding those that have no meaning (such as those taken to a wall or to the sky) and
selecting those images that may favor the exercise of patient’s memory.

This classification is achieved through an object detection process (performed using
YOLO9000[19]) and a subsequent analysis of this data with Machine Learning technolo-
gies (feature extraction and Random Forest Classifier).

This classifier system has many applications. In chapter 6 we mentioned two alterna-
tives but the possible applications are very diverse and can help automate many processes
and be a part of many projects that require human interaction with images as they are
meaningful photographies which ease the attention of the user and help exercising some
capabilities like memory in our case.

Future Work

The results obtained in the two tests performed gave worse than the original one. They
were supposed to give better results since they have replaced features with others that give
more meaning or that favor a more similar feature value when the concept they represent
is related. Therefore, we believe that this part of the project is a matter of study. Some
possibilities are:
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• Look for another database different to WORD2VEC which may give better results in
our particular project.

• Explore with a wide battery of classifiers.

• Find weights to YOLO detections to give some importance to some classes.

An important future step is to integrate in the final application of Rememory and apply
it on the patients in order to check the hypothesis for the intervention of mild cognitive
impairment, to be done in September 2017.
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