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i Empresarials, Universitat de Barcelona, Av. Diagonal 690, E-08034 Barcelona

e-mail: crafels@ub.edu
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Abstract

This paper provides an axiomatic framework to compare the D-core (the set of undomi-

nated imputations) and the core of a cooperative game with transferable utility. Theorem

1 states that the D-core is the only solution satisfying projection consistency, reasonable-

ness (from above), (∗)-antimonotonicity, and modularity. Theorem 2 characterizes the

core replacing (∗)-antimonotonicity by antimonotonicity. Moreover, these axioms also

characterize the core on the domain of convex games, totally balanced games, balanced

games, and superadditive games.

Resum

En aquest treball es caracteritza axiomàticament el conjunt d’imputacions no dominades

(el D-core) i se’l compare amb el core. El teorema 1 estableix que el D-core és l’única

solució que satisfà Projection consistency, (*)-antimonotonicity, Reasonableness (from

above) i modularity. En el teorema 2 es caracteritza el core canviant (*)-antimonotonicity

per antimonotonicity. Aquest últim resultat és robust en el sentit que també caracteritza

el core en el domini dels jocs convexes, totalment equilibrats, equilibrats i superadditius.
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1 Introduction

The core and the D-core of a transferable utility coalitional game (TU-game, for short)

were introduced by Gillies (1959) by means of a domination relation. The core is the

set of undominated preimputations, and it can be rewritten as the solution of a well-

known system of linear inequalities. The D-core coincides with the set of undominated

imputations. In general, the D-core is a proper extension of the core, but for a large class

of games both sets coincide. Moreover, Rafels and Tijs (1997) and Chang (2000) prove

that the D-core of a game can be expressed in terms of the core of a new associated game.

The above results show that both concepts are closely related. However, the core has

been intensely studied and axiomatized in game theory, but, as far as we know, there is

not a proper characterization result for the D-core. This fact opens a natural question:

which is the difference, from an axiomatic point of view, between the core and the D-core?

In this paper, we axiomatize the D-core on the space of all TU-games. As a byproduct,

and only changing one axiom, we obtain a new axiomatic approach for the core. This

last result is interesting by itself since it also characterizes the core on the class of convex

games, totally balanced games, balanced games, and superadditive games.

The paper is organized as follows. Section 2 contains notation and some definitions.

In Section 3 we present the main results: Theorem 1 states that the D-core is the only

solution on the space of all TU-games satisfying projection consistency, reasonableness

(from above), (∗)-antimonotonicity, and modularity. Theorem 2 characterizes the core by

replacing (∗)-antimonotonicity by antimonotonicity.
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2 Notation and terminology

The set of natural numbers N denotes the universe of potential players. By N ⊆ N we

denote a finite set of players, in general N = {1, . . . , n}. A transferable utility coalitional

game (a game) is a pair (N, v) where v : 2N −→ R is the characteristic function with

v(Ø) = 0 and 2N denotes the set of all subsets (coalitions) of N . We use S ⊂ T to

indicate strict inclusion, that is S ⊆ T but S 6= T . By |S| we denote the cardinality of the

coalition S ⊆ N . The set of all games is denoted by Γ. Given a coalition S ⊂ N, S 6= Ø

and (N, v) ∈ Γ, we define the subgame (S, vS) by vS(Q) := v(Q), for all Q ⊆ S.

Let RN stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for

all S ⊆ N , x(S) =
∑

i∈S xi, with the convention x(Ø) = 0. For each x ∈ RN and T ⊆ N ,

xT denotes the restriction of x to T : xT = (xi)i∈T ∈ RT .

For the game (N, v), the set of feasible payoff vectors is defined by X∗(N, v) := {x ∈

RN |x(N) ≤ v(N)}. A solution on a set Γ of games is a mapping σ which associates

with any game (N, v) a subset σ(N, v) of the set X∗(N, v). Notice that the solution set

σ(N, v) is allowed to be empty. The pre-imputation set of a game (N, v) is defined by

X(N, v) := {x ∈ RN |x(N) = v(N)}, and the set of imputations by I(N, v) := {x ∈

X(N, v) |x(i) ≥ v(i), ∀ i ∈ N}. A game with a non-empty set of imputations is called

essential. We say that a solution σ is Pareto optimal if σ(N, v) ⊆ X(N, v) for (N, v) ∈ Γ.

Given two pre-imputations x, y ∈ X(N, v), we say that x dominates y, in short

x domv y, if there exists a coalition S ⊆ N such that xi > yi, for all i ∈ S, and

x(S) ≤ v(S). For a game (N, v) the set of undominated pre-imputations is the core

of the game (Gillies, 1959). The core of a game (N, v) can be rewritten as the set

of those imputations where each coalition gets at least its worth, that is C(N, v) :=

{x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. The D-core is formed by those imputa-
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tions which are not dominated by any other imputation. Formally, DC(N, v) := {x ∈

I(N, v) | @ y ∈ I(N, v) such that y domv x}, while C(N, v) := {x ∈ X(N, v) | @ y ∈

X(N, v) such that y domv x}. The core is always included in the D-core, C(N, v) ⊆

DC(N, v). Nevertheless, there are games where both concepts are different (see Exam-

ple 1). A game with a non-empty core is called balanced and, if all its subgames have

non-empty cores, the game is said to be totally balanced.

For our purposes we need to recall the following result (Rafels and Tijs, 1997): for any

game (N, v) with DC(N, v) 6= ∅, DC(N, v) = C(N, v′), where (N, v′) is defined by

v′(S) := min

v(S), v(N)−
∑

i∈N\S

v(i)

 , for all S ⊆ N, (1)

This result can be extended to any essential game (Chang, 2000): for any game (N, v)

with I(N, v) 6= ∅, DC(N, v) = C(N, v′). From this result, it is straightforward to see

that, for any game (N, v), DC(N, v) = C(N, v∗), where (N, v∗) is defined by

v∗ :=


v′ if I(N, v) 6= ∅,

v if I(N, v) = ∅.

(2)

A game (N, v) is convex (Shapley, 1971) if, for every S, T ⊆ N , v(S) + v(T ) ≤

v(S ∪ T ) + v(S ∩ T ). A game (N, v) is superadditive if, for every S, T ⊆ N, S ∩ T = Ø,

v(S) + v(T ) ≤ v(S ∪ T ). A game (N, v) is said to be modular if there exists a vector

x = (x1, . . . , xn) ∈ RN such that for every S ⊆ N , v(S) =
∑

i∈S xi. To indicate the

modular game generated by x ∈ RN we will use (N, vx). A game (N, v) is N -monotonic if

v(S)+
∑

i∈N\S v({i}) ≤ v(N), for all S ⊆ N . By ZN we denote the class of N -monotonic

games. For any (N, v) ∈ ZN , C(N, v) = DC(N, v) (Rafels and Tijs, 1997). Notice that

for any (N, v) ∈ Γ, (N, v′) ∈ ZN , where (N, v′) is defined by (1).
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3 An axiomatic characterization of the core and the

D-core

This section introduces an axiomatic framework to axiomatize and to compare the D-

core and the core of a game. Both characterizations use the same type of axioms and

differ only in one of them, which is slightly changed. First, in Theorem 1 we provide an

axiomatization of the D-core using projection consistency, reasonableness (from above),

(∗)-antimonotonicity, and modularity. In Theorem 2, by replacing (∗)-antimonotonicity

by antimonotonicity, a new axiomatic characterization of the core is given. We start by

defining the above properties.

To introduce consistency first we need to define reduced games.

Definition 1 Let (N, v) ∈ Γ, x ∈ RN and ∅ 6= T ⊂ N . The projected reduced game

relative to T at x is the game (T, rT
x (v)) defined by

rT
x (v)(S) :=

 v(S) if S ⊂ T,

v(N)− x(N\T ) if S = T.

For interpretation of the notion of the projected reduced game see, for instance, Thom-

son (1998).

Let σ be a solution on Γ. Then, σ satisfies

• projection consistency (P-CONS) if for any (N, v) ∈ Γ, all T ⊂ N, T 6= ∅,

and all x ∈ σ(N, v), then (T, rT
x (v)) ∈ Γ and xT ∈ σ(T, rT

x (v)).

• reasonableness (from above) (REAB) if, for all (N, v) ∈ Γ, all x ∈ σ(N, v) and

all i ∈ N , then xi ≤ max
S⊆N\{i}

{v(S ∪ {i})− v(S)}.
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• antimonotonicity (AMON) if for any pair (N, v), (N, w) ∈ Γ such that v(S) ≥

w(S), for all S ⊂ N , and v(N) = w(N), then σ(N, v) ⊆ σ(N, w).

• (∗)-antimonotonicity ((∗)-AMON) if for any pair (N, v), (N, w) ∈ Γ such that

v∗(S) ≥ w∗(S), for all S ⊂ N , and v∗(N) = w∗(N), where (N, v∗) and (N, w∗) are

defined by (2), then σ(N, v) ⊆ σ(N, w).

• modularity (MOD) if for any modular game (N, vx), then σ(N, v) = {x}.

Consistency (or reduced game property) is, perhaps, the most fundamental property

used in this field. Roughly speaking, this principle says that there is no difference in

what the players of the reduced game will get in both the original game and the reduced

game (see Thomson, 1998, and Driessen, 1991 for surveys of consistency). Projection

consistency has been used by Funaki and Yamato (2001) to characterize the core on the

class of balanced games. Here it is important to point out that the D-core does not

satisfy the reduced game properties used in the well-known axiomatizations of the core

(see, among others, Peleg, 1986, Tadenuma, 1992, Winter and Wooders, 1994, Voorneveld

and van den Nouweland, 1998, and Hwang and Sudhölter, 2001). The reason is that the

non-emptiness of the imputation set may not be preserved in this kind of reduced games

when we take a point of the D-core. Indeed, consider the following example given by

Rafels and Tijs (1997):

Example 1 Let (N, v) be a 3-person game, where N = {1, 2, 3} and v({1}) = v({2}) = 0,

v({3}) = 1, v({1, 2}) = 2, v({1, 3}) = v({2, 3}) = 1, and v({1, 2, 3}) = 2. The core of

this games is empty, but the D-core is DC(N, v) = [(1, 0, 1), (0, 1, 1)]. As the reader can

easily check, the Davis-Maschler reduced game (Davis and Maschler, 1965) relative to

S = {2, 3} and x =
(

1
2
, 1

2
, 1

)
∈ DC(N, v) is inessential. The same problem appears for
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the other reduce games used in the axiomatizations of the core just commented before.

Milnor (1952) introduced reasonableness (from above) as a necessary condition to

decide whether a payoff vector is a “plausible” outcome for a game. Sudhölter and Peleg

(2000) use this principle to characterize the positive prekernel.

Antimonotonicity was introduced by Keiding (1986) to axiomatize the core. The

intuition is that if the coalitions, except the grand coalition, get impoverished, then any

payoff vector in the solution of the original game remains in the solution of the new game.

(∗)-Antimonotonicity is a technical modification of the antimonotonicity in which the

worth of the coalitions is compared not in the original game, but in an associated game

(N, v∗).

A modular game can be considered as one where no conflict is present: every coalition

can get exactly what its members can get for themselves. So, modularity forces the

solution to be the “natural” one for these games. It is important to point out that this

axiom is satisfied by the main solution concepts.

Now we axiomatize the D-core using projection consistency, reasonableness (from

above), (∗)-antimonotonicity, and modularity.

Theorem 1 The D-core is the only solution on Γ satisfying projection consistency, rea-

sonableness (from above), (∗)-antimonotonicity, and modularity.

Notice that for games where the set of players is a singleton, any solution satisfying

modularity coincides with the D-core. So, from now on, we consider games with at least

two players. Theorem 1 is proved with the help of the following lemmata.

Lemma 1 The D-core satisfies projection consistency, reasonableness (from above), (∗)-

antimonotonicity, and modularity.
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Proof: First we show that the D-core satisfies projection consistency. Let (N, v) be

a game, x ∈ DC(N, v) and ∅ 6= S ⊂ N . Then, x ∈ I(N, v), and from the definition of the

projected reduced game xS ∈ I(S, rS
x (v)). Assume that xS 6∈ DC(S, rS

x (v)). Then, there

is an imputation y ∈ I(S, rS
x (v)) and a coalition ∅ 6= R ⊂ S, 1 < |R| < |S|, such that

y domrS
x (v) xS via R. Define z ∈ I(N, v) as follow: zi := yi, for all i ∈ S, and zi := xi,

for all i ∈ N \ S. Clearly z domv x via R, which is a contradiction with the fact that

x ∈ DC(N, v). Hence, we can conclude that xS ∈ DC(S, rS
x (v)).

To prove Reasonableness (from above), let x ∈ DC(N, v) and assume, on the contrary,

that there is i ∈ N such that xi > maxS⊆N\{i}{v(S ∪ {i}) − v(S)}. Now, let ε =

min
{

v(N\{i})−x(N\{i})
n−1

, xi−v({i})
n−1

}
> 0, and define the vector y ∈ RN as follows: yj := xj +ε,

for any j ∈ N \ {i}, and yi := xi− (n− 1) ε. Then, y ∈ I(N, v) and y domv x via N \ {i},

which contradicts the fact that x ∈ DC(N, v).

To show (∗)-antimonotonicity it is enough to take into account the antimonotonicity

of the core and the fact that, for any game (N, v), DC(N, v) = C(N, v∗), where (N, v∗) is

defined by (2). Modularity follows straightforward from the coincidence between the core

and the D-core for modular games. 2

Lemma 2 Let σ be a solution on Γ satisfying projection consistency, and modularity.

Then, σ is Pareto optimal.

Proof: Let σ be a solution on Γ satisfying P-CONS and MOD, (N, v) ∈ Γ, and x ∈

σ(N, v). For i ∈ N , by P-CONS, xi ∈ σ({i}, r{i}x (v)). Since ({i}, r{i}x (v)) is the modular

game generated by y = r
{i}
x (v)({i}) ∈ R, by MOD xi = r

{i}
x (v)({i}) = v(N)−

∑
j∈N\{i} xj,

and thus x(N) = v(N). 2

Lemma 3 Let σ be a solution on Γ satisfying (∗)-antimonotonicity, and modularity.

Then, for any (N, v) ∈ Γ, DC(N, v) ⊆ σ(N, v).
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Proof: Let σ be a solution on Γ satisfying the above properties, (N, v) ∈ Γ and

x ∈ DC(N, v). Then x ∈ C(N, v∗), where (N, v∗) is defined by (2). Now define the

modular game (N, vx). Clearly v∗x = vx. But then, v∗x ≥ v∗, and by (∗)-AMON we

obtain σ(N, vx) ⊆ σ(N, v). Finally, by MOD, x ∈ σ(N, vx), and then x ∈ σ(N, v). 2

Lemma 4 Let σ be a solution on Γ satisfying projection consistency, reasonableness (from

above), (∗)-antimonotonicity, and modularity. Then, for any (N, v) ∈ ZN , σ(N, v) ⊆

C(N, v).

Proof: Let σ be a solution on Γ satisfying P-CONS, REAB, (∗)-AMON and

MOD, and (N, v) ∈ ZN . From Llerena and Rafels (2005) we know that there is a finite

collection of convex games (N, v1), . . . , (N, vk) such that

v = max{v1, . . . , vk}, with v(N) = v1(N) = . . . = vk(N). (3)

By N -monotonicity, v∗ = v, and by convexity, v∗l = vl, for all l ∈ {1, . . . , k}. Since

v∗ = v ≥ vl = v∗l , for all l ∈ {1, . . . , k}, by (∗)-AMON,

σ(N, v) ⊆
k⋂

l=1

σ(N, vl). (4)

Let x ∈ σ(N, v) and for any l ∈ {1, . . . , k} consider the convex game (N, vl). By (4),

x ∈ σ(N, vl), and by REAB,

xi ≤ max
S⊆N\{i}

{vl(S ∪ {i})− vl(S)} = vl(N)− vl(N \ {i}),∀ i ∈ N, (5)

where the equality follows from the convexity of the game (N, vl). Now, by Pareto op-

timality (Lemma 2), x(N \ {i}) ≥ vl(N \ {i}). Or, equivalently, x(S) ≥ vl(S) for any

coalition S ⊂ N with |S| = n− 1.

From the convexity of the game (N, vl), and taking into account that xi ≤ vl(N)− vl(N \
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{i}), it is straightforward to check that the projected reduced game (N \{i}, rN\{i}
x (vl)) is

also a convex game. By P-CONS, xN\{i} ∈ σ(N \ {i}, rN\{i}
x (vl)). REAB together with

the convexity of the projected reduced game implies that, for any player j ∈ N \ {i},

xj ≤ rN\{i}
x (vl)(N \ {i})− rN\{i}

x (vl)(N \ {i, j}).

From the definition of the projected reduced game we have that,

xj ≤ vl(N)− xi − vl(N \ {i, j}), for any j ∈ N \ {i}.

Thus, by Pareto optimality we can conclude that, for any coalition S ⊂ N with |S| = n−2,

x(S) ≥ vl(S).

By repeating the same argument, and taking into account that the projected reduction

operation is transitive (i.e. for any (N, v) ∈ Γ, all x ∈ RN and all ∅ 6= S ⊂ T ⊆ N ,

rS
xT

(rT
x (v)) = rS

x (v)), we can conclude that, for any coalition S ⊆ N , x(S) ≥ vl(S). Hence,

for any l ∈ {1, . . . , k},

σ(N, vl) ⊆ C(N, vl). (6)

Combining expressions (3), (4) and (6), and taking into account that

C(N, v) = C(N, max{v1, . . . , vk}) =
k⋂

l=1

C(N, vl),

we obtain

σ(N, v) ⊆
k⋂

l=1

σ(N, vl) ⊆
k⋂

l=1

C(N, vl) = C(N, v).

2

Lemma 5 Let σ be a solution on Γ satisfying projection consistency, reasonableness (from

above), (∗)-antimonotonicity, and modularity. Then, for any (N, v) ∈ Γ, σ(N, v) ⊆

DC(N, v).
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Proof: Let σ be a solution on Γ satisfying the above properties, (N, v) ∈ Γ and

x ∈ σ(N, v). Consider the games (N, v′) and (N, v∗) defined by (1) and (2), respectively.

Since (N, v′) ∈ ZN , (v′)∗ = v′. Moreover, by definition v∗ ≥ v′. Hence, by (∗)-AMON

and Lemma 4, σ(N, v) ⊆ σ(N, v′) ⊆ C(N, v′). Now we can distinguish two cases. First,

if I(N, v) 6= ∅, then DC(N, v) = C(N, v′) (Rafels and Tijs, 1997, and Chang, 2000),

and so σ(N, v) ⊆ DC(N, v). Otherwise, if I(N, v) = ∅, from Llerena and Rafels (2005)

we can express v = max{v1, . . . , vk}, where (N, v1), . . . , (N, vk) are convex games with

v(N) = v1(N) = . . . = vk(N). Since I(N, v) = ∅, v∗ = v, and by convexity v∗l = vl, for

any l = 1, . . . , k. Then, by (∗)-AMON and Lemma 4:

σ(N, v) ⊆
k⋂

l=1

σ(N, vl) ⊆
k⋂

l=1

C(N, vl) = C(N, max{v1, . . . , vk}) = C(N, v).

But C(N, v) = ∅ since I(N, v) = ∅, which implies σ(N, v) = ∅ and σ(N, v) ⊆ DC(N, v).

2

This completes the proof of the Theorem 1.

The following examples show that the above axioms are independent:

• Let σ1 be the empty set: σ1(N, v) := ∅, for each (N, v) ∈ Γ. Then, σ1 satisfies

P-CONS, REAB, (∗)-AMON, but not MOD.

• Let σ2 be the set of imputations of a game. Then, σ2 satisfies P-CONS, (∗)-

AMON, MOD, but not REAB.

• Let σ3 be the core of a game. Then, σ3 satisfies P-CONS, REAB, MOD, but not

(∗)-AMON.

• Let it be σ4(N, v) := {x ∈ X∗(N, v) | v∗({i}) ≤ xi ≤ bv∗
i , for all i ∈ N}, where

(N, v∗) is defined by (2). Then, σ4 satisfies REAB, (∗)-AMON, MOD, but not

P-CONS.
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Now we introduce a new axiomatic characterization of the core where (∗)-antimonotonicity

is replaced by antimonotonicity.

Theorem 2 The core is the only solution on Γ satisfying projection consistency, reason-

ableness (from above), antimonotonicity, and modularity.

Proof: Clearly, the core satisfies P-CONS, REAB, AMON, and MOD. Let σ

be a solution satisfying these properties and (N, v) ∈ Γ.

To show the inclusion C(N, v) ⊆ σ(N, v), let x ∈ C(N, v) and consider the modular

game (N, vx) generated by x. Then, by AMON and MOD we have that x ∈ σ(N, v).

To prove the reverse inclusion it is enough to follow the proof of Lemma 4 considering an

arbitrary game (N, v) and applying AMON instead of (∗)-AMON. 2

Remark 1 : Since the projected reduction operation w.r.t. a core element is closed for

convex games, totally balanced games, balanced games, and superadditive games, Theorem

2 also characterizes the core in all these domains. Notice that the max-convex decompo-

sition result (Llerena and Rafels, 2005) used in the proof of Theorem 2 can be applied

to extend the axiomatization to the above domains because the class of convex games is

included in the other classes. Moreover, it is important to point out that Theorem 2 is

valid on the universal domain, that is, no constraints on the number of players are needed.

The following examples show that the above axioms are independent:

• Let σ1 be the empty set: σ1(N, v) := ∅, for each (N, v) ∈ Γ. Then, σ1 satisfies

P-CONS, REAB, AMON, but not MOD.

• Let σ2 be the set of imputations of a game. Then, σ2 satisfies P-CONS, AMON,

MOD, but not REAB.
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• Let σ5 be the D-core of a game. Then, σ5 satisfies P-CONS, REAB, MOD, but

not AMON.

• Let it be σ6(N, v) := {x ∈ X∗(N, v) | v({i}) ≤ xi ≤ bv
i , for all i ∈ N}, where

bv
i = v(N) − v(N\{i}), for all i ∈ N . Then, σ6 satisfies REAB, AMON, MOD,

but not P-CONS.
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