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Uniform-price assignment markets

Abstract: Uniform–price assignment games are introduced as those assignment mar-

kets with the core reduced to a segment. In these games, for all active agents,

competitive prices are uniform although products may be non-homogeneous. A char-

acterization in terms of the assignment matrix is given. The only assignment markets

where all submarkets are uniform are the Böhm–Bawerk horse markets. We prove

that for uniform-price assignment games the kernel, or set of symmetrically-pairwise

bargained allocations, either coincides with the core or reduces to the nucleolus.

Key words: assignment game, core, Böhm–Bawerk horse market, kernel

JEL: C71, C78

Resum: Els jocs d’assignació amb preu uniforme són aquells mercats d’assignació

on el core es redueix a un segment. En aquests casos, per a tots els agents actius

en el mercat, els preus competitius varien de forma uniforme, tot i que els productes

poden ser no homogenis. En aquest treball es dona una caracterització dels mercats

amb preu uniforme a partir de la matriu d’assignació. Els únics mercats on tots els

subjocs són de preu uniforme són els mercats de cavalls de Böhm-Bawerk. Finalment,

provem que en aquests mercats de preu uniforme el kernel, o conjunt de pagaments

que s’obtenen a partir d’un procés de negociació bilateral i simètric, o bé coincideix

amb tot core o es redueix al seu punt mig que és el nucleolus.



1 Introduction

In an assignment market, two disjoint sets of agents exist, let us say buyers and

sellers, and when a buyer is paired with a seller an additional value is created. The

first problem is to find an optimal matching, that is to say an assignment of buyers

to sellers that maximizes the total profit. The second one is to know how the output

of each pairing will be divided between the two agents involved in the trade. It is

assumed in such markets that the goods traded are indivisible and heterogeneous,

and utilities are transferable. The difference between what the object sold is worth

to the buyer and the minimum that would be accepted by the seller must be divided

between them by determining a price. Thus, one of the most interesting questions

regarding the classical assignment market is that of the formation of prices.

Given a matching of buyers to sellers, a vector of incomes that allocates the

output of each pairing between the corresponding paired agents is said to be stable

if no other mixed-pair formed by a buyer and a seller could produce together more

than the sum of their incomes. In 1972 Shapley and Shubik introduce the assignment

game as a cooperative model for two–sided markets with transferable utility. They

prove that assignment games have a non empty core and it coincides with the set of

stable allocations. Moreover, the core turns out to be in one–to–one correspondence

with the set of competitive price vectors.

Before that, Böhm–Bawerk had carried out a deep analysis of some very sim-

ple markets which are now known as Böhm–Bawerk horse markets. After Shapley

and Shubik (1972), Böhm–Bawerk horse markets appear as a particular case of an

assignment market when there is no product differentiation. In the Böhm–Bawerk

horse market each buyer places the same valuation on each one of the objects and

in equilibrium all transactions take place at the same price. There is then no possi-

bility of price discrimination in those assignment markets where there is no product

differentiation. In fact, Shapley and Shubik (1972) prove that, in the Böhm–Bawerk

horse market, the core is a segment and consequently the set of competitive prices is

also one–dimensional. The term uniform prices is already used there.

The aim of the present paper is thus to study those markets where although the
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buyers discriminate between the objects (each buyer may place different values on

different objects), the prices still behave uniformly (that is, they move in a segment).

More formally, we will analyze those assignment markets where the core reduces to

a segment, not necessarily being Böhm–Bawerk markets.

Section 2 presents the definitions and notations for the assignment model that

will be needed in the paper. Section 3 defines the uniform–price assignment games

as those assignment games with a one–dimensional core, and gives a characterization

of these games in terms of their matrix. In Section 4 we analyze when an assignment

market is such that every submarket is also uniform–price and prove that this only

happens in the case of Böhm–Bawerk horse markets.

Although it reduces to a segment, there are still infinitely many possible alloca-

tions in the core of a uniform-price assignment game. A way of selecting some core

allocations of an assignment market with additional stability properties is to con-

sider the set of pairwise–bargained allocations introduced by Rochford (1984), which

coincides with the kernel of the game. In Section 4 we compute the set of pairwise–

bargained allocations of a uniform–price assignment game, and it turns out that this

set either coincides with the core or reduces to the midpoint of the core.

2 The assignment model

Let M be a finite set of buyers and M ′ a finite set of sellers and let us denote by m

and m′ their cardinalities. We may think of the formal model of assignment games

as arising from a situation where each seller j ∈ M ′ has an object for sale which

he valuates in cj ∈ R+ (reservation price of seller j ), being R+ the set of non

negative real numbers, while each buyer i ∈ M wants exactly one indivisible object

and places a value of hij ∈ R+ in the object offered by seller j , hi = (hij)j∈M ′ .

Then, if h = (hi)i∈M and c = (cj)j∈M ′ , a matrix A = A(h, c) = (aij)(i,j)∈M×M ′ is

defined, where aij = max{hij − cj, 0} are the potential gains from the trade between

i and j. We will denote by Mm×m′(R+) the set of non negative matrices with m

rows and m′ columns. An assignment market is then a triple (M, M ′, A) .

A matching (or assignment) between M and M ′ (or a matching for A ) is a
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subset µ of M × M ′ such that each k ∈ M ∪ M ′ belongs to at most one pair in

µ . We will denote by M(A) the set of matchings of A . A matching µ is optimal if

for all µ′ ∈ M(A) ,
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij and we denote by M∗(A) the set of

optimal matchings.

The above two–sided market can be described by means of a cooperative game

where the player set consists of the union M ∪M ′ of the sets of buyers and sellers.

Then, m+m′ is the cardinality of the player set. The profits of mixed–pair coalitions,

{i, j} where i ∈ M and j ∈ M ′ , are wA(i, j) = aij ≥ 0 , and the matrix A also

determines the worth of any other coalition S ∪ T , where S ⊆ M and T ⊆ M ′ , in

the following way: wA(S ∪ T ) = max{∑(i,j)∈µ aij | µ ∈ M(S, T )} , M(S, T ) being

the set of matchings between S and T . It will be assumed as usual that a coalition

formed only by sellers or only by buyers has worth zero. Moreover, we say a buyer

i ∈ M is not assigned by µ if (i, j) 6∈ µ for all j ∈ M ′ (and similarly for sellers). We

denote by µ(i) the seller j such that (i, j) ∈ µ and then we also write i = µ−1(j) .

Shapley and Shubik (1972) prove that the core, C(wA) , of the assignment game

(M ∪M ′, wA) is nonempty and coincides with the set of stable outcomes. This means

that given any optimal matching µ of M ∪M ′ , a payoff vector (u, v) ∈ RM
+ ×RM ′

+

is in the core if ui + vj = aij for all (i, j) ∈ µ , ui + vj ≥ aij for all (i, j) ∈ M ×M ′ ,

and the payoff to any agent not matched by µ is zero.

Moreover, the core has a lattice structure with two special extreme core alloca-

tions: the buyers–optimal core allocation, (u, v) , where each buyer attains her max-

imum core payoff, and the sellers–optimal core allocation, (u, v) , where each seller

does. Notice that, when agents on one side of the market obtain their maximum core

payoff, the agents on the opposite side obtain their minimum core payoff, as the joint

payoff of an optimally matched pair is fixed.

From Demange (1982) and Leonard (1983) we know that the maximum core payoff

of any player coincides with his marginal contribution:

ui = wA(N)− wA(N \ {i}) and vj = wA(N)− wA(N \ {j}) (1)

for all i ∈ M and all j ∈ M ′ . As a consequence, for each optimally matched pair
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(i, j) , the minimum core payoffs are

ui = wA(M ∪M ′ \ {j})− wA(M ∪M ′ \ {i, j}) and

vj = wA(M ∪M ′ \ {i})− wA(M ∪M ′ \ {i, j}) .
(2)

The present paper is devoted to the analysis of those assignment games which have

a segment as a core, the segment with extreme points the buyers–optimal and the

sellers–optimal core allocations. It is important to point out that different assignment

games may have the same core. For instance, if there exists a matrix entry aij which

is not attained by any core allocation, ui + vj > aij for all (u, v) ∈ C(wA) , then the

worth of aij can be slightly raised without changing the core. It is shown in Núñez

and Rafels (2002) that for every assignment matrix A there exists a unique matrix

Ar such that C(wA) = C(wAr) and wAr is buyer–seller exact, which means that for

all (i, j) ∈ M ×M ′ there exists (u, v) ∈ C(wAr) with ui + vj = ar
ij . Thus no entry

in Ar can be raised without changing the core.

If we assume that A is square, and this can always been achieved by adding

dummy players, then the entries in matrix Ar , once fixed an optimal matching µ ,

are

ar
ij = aiµ(i) + aµ−1(j)j + wA(M ∪M ′ \ {µ−1(j), µ(i)})− wA(M ∪M ′) . (3)

Moreover, an assignment game (M ∪M ′, wA) is buyer–seller exact ( A = Ar ) if and

only if its matrix A is doubly dominant diagonal, which means that aij + akµ(k) ≥
aiµ(k) + akj for all i, k ∈ M and j ∈ M ′ .

A particular case of assignment market is a glove market. In a glove market

(Shapley, 1959), not only goods are homogeneous but, in addition to that, all buyers

have the same valuation for them all, and all sellers have the same reservation price.

Then an assignment market (M, M ′, A) is a glove market if aij = c ≥ 0 for all

i ∈ M and all j ∈ M ′ . Those glove markets where the number of buyers differs from

the number of sellers have only one core point, where each agent on the short side

of the market gets c while agents on the large side get zero. If there are as many

buyers as sellers, the core is a line segment where each agent can obtain any amount

from zero to c . We will now extend this notion by allowing for some dummy agents

in the glove market.
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Definition 1 An assignment market (M, M ′, A) is an extended glove market if

there exists a subset of buyers M1 ⊆ M and a subset of sellers M ′
1 ⊆ M ′ such that

aij = c ≥ 0 for all (i, j) ∈ M1 ×M ′
1 and aij = 0 if i 6∈ M1 or j 6∈ M ′

1 .

If |M1| = |M ′
1| we say the game is an extended square glove market.

The core of the extended square glove market is also a segment, where all i ∈
M \M1 and all j ∈ M ′ \M ′

1, receive zero payoff in any core allocation. These games

will play an important representative role in the next section.

To end this section, we recall the definitions of competitive prices and competitive

equilibrium. As a notational convention, we assume in this definition that M ′ con-

tains an artificial agent 0 the object of whom has null value, hi0 = 0 for all i ∈ M .

Several buyers may buy the object of seller 0. A feasible price vector is p ∈ Rm′
+

such that pj ≥ cj for all j ∈ M ′ \ {0} , where cj is the reservation price of seller j ,

and p0 = 0 . Once fixed a feasible price p , the demand set for buyer i ∈ M at price

p is defined by Di(p) = {j ∈ M ′ | hij − pj = maxk∈M ′{hik − pk}} . Now, a price

vector p is quasi-competitive if there is a matching µ ∈M(A) such that if µ(i) = j

then j ∈ Di(p) and if i is not matched by µ then 0 ∈ Di(p) . Then µ is said to be

compatible with price p . Finally, the pair (p, µ) is a competitive equilibrium if p is

quasi-competitive, µ is compatible with p and pj = cj for all j not matched by µ .

We then say that p is an equilibrium price vector.

It is easy to check that if (p, µ) is a competitive equilibrium then the correspond-

ing payoffs (u, v) are stable, where ui = hij − pj , if (i, j) ∈ µ , and vj = pj − cj for

all j ∈ M ′ \ {0} . Conversely, if (u, v) is stable and pj = vj + cj for all j ∈ M ′ ,

then p is an equilibrium price vector.

3 Uniform–price assignment markets: definition

and characterization

We introduce now those assignment markets which have a segment as a core as

uniform–price assignment markets.
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Definition 2 An assignment market (M, M ′, A) is uniform–price if and only if the

core is a segment, that is to say

C(wA) = [(u, v), (u, v)] = {λ(u, v) + (1− λ)(u, v) , λ ∈ [0, 1] }.

Notice that in the above definition those assignment games where the competitive

equilibrium price is unique are also included. In these games the core shrinks as much

as possible.

We know from Shapley and Shubik (1972) that Böhm–Bawerk horse markets are

uniform–price assignment games. We will see in the next section that if we consider

2 × 2 matrices, all uniform–price markets are Böhm–Bawerk horse markets, but

for higher dimensions both classes differ. The assignment game with set of buyers

M = {1, 2, 3} , set of sellers M ′ = {1′, 2′, 3′} and defined by matrix

A1 =




1 0 1

1 1 1

1 1 1




has a one–dimensional core C(wA1) = [(1, 1, 1; 0, 0, 0), (0, 0, 0; 1, 1, 1)] , but is not a

Böhm–Bawerk horse market. To see that, notice that from a11′ = a21′ we deduce

that buyers 1 and 2 have the same valuation for the object of seller 1’, but this enters

in contradiction with a12′ 6= a22′ .

In the above example, we can rise the entry a12′ in one unit to obtain a Böhm–

Bawerk horse market with the same core. This fact might suggest that the existence

of uniform–price assignment games which are not horse markets is only caused by

the lack of exactness and that given any such game A , its buyer–seller exact repre-

sentative Ar (see Núñez and Rafels, 2002) is always a Böhm–Bawerk horse market.

However, this is not the case, as it is shown by matrix

A2 =




8 8 5

8 9 6

2 3 0


 . (4)

It is easily obtained that C(wA2) = [(5, 6, 0; 3, 3, 0), (6, 6, 0; 2, 3, 0)] and it can then

be noticed that every matrix entry is attained in some extreme core allocation, which
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means that wA2 is buyer–seller exact. But the same argument used for matrix A1

shows that A2 does neither define a Böhm-Bawerk horse market.

If (M, M ′, A) is an arbitrary assignment market, let us denote by I0 the subset

of buyers with fixed core payoff, and J0 the subset of sellers with the same property:

I0 = {i ∈ M | ui = ui } and J0 = {j ∈ M | vj = vj } .

Recall that (u, v) can be obtained as the solution of a few linear programs, since all

buyers achieve their maximum core payoff in the same core allocation, and the same

happens with (u, v) . Consequently, the sets I0 and J0 are easily determined even

for assignment games with large number of players.

Agents in I0 or J0 can be assumed to be non-active as, although they may take

part of some transaction, they have no bargaining capability as their core payoff is

fixed. Then, agents in M \ I0 or M ′ \ J0 are active agents. Let µ be any optimal

matching for A . Notice first that if i is not matched by µ , then ui = 0 for all

(u, v) ∈ C(wA) , and thus i ∈ I0 . Also j ∈ J0 if j is not matched by µ . Moreover,

if i ∈ I0 and (i, j) ∈ µ for some µ ∈ M∗(A) , then from ui + vj = ui + vj = aij

follows vj = vj and thus j ∈ J0 . Similarly, if j ∈ J0 and (i, j) ∈ µ , µ ∈ M∗(A) ,

then i ∈ I0 . This implies that the number of active players is always even and we

will sometimes refer to any pair (i, j) formed by active agents as an active pair.

Since the core of an assignment game is always a 45o–lattice (Quint, 1991), given a

uniform-price assignment market (M, M ′, A) , its core segment cannot have arbitrary

slopes: the core payoffs to the active buyers must be of the type u − ε · 1 , where

1 ∈ Rm gives unitary payoff to any active buyer and null payoff to any non-active

one, and 0 ≤ ε ≤ K for some fixed K ≥ 0 . Thus, the core can be described by

C(wA) =





(u, v) ∈ Rm+m′
+

ui = ui for i ∈ I0 ,

ui = ui − ε for i ∈ M \ I0 ,

vj = vj for j ∈ J0 ,

vj = vj + ε for j ∈ M ′ \ J0 ,

for some ε ∈ [0, K]




(5)

where K = ui − ui = vj − vj for all i ∈ M \ I0 and j ∈ M ′ \ J0 .
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Notice that the prices of those transactions between active agents are described

by the single parameter ε : once fixed an arbitrary j ∈ M ′ \ J0 , pj = cj + vj + ε .

We then say that prices vary uniformly.

The next theorem characterizes the uniform–price assignment markets in terms of

the assignment matrix, under the assumption that A is square. Notice that this can

always be achieved by adding null rows or columns, and this action does not modify

the dimension of the core. Recall also that the minimum core payoff of each agent

can be easily computed from the matrix, by using equations (2).

Theorem 3 Let (M, M ′, A) be an assignment market with as many buyers as sell-

ers, Ar the unique buyer–seller exact matrix such that C(wA) = C(wAr) and let

it be A = (aij)(i,j)∈M×M ′ where aij = ui + vj . Then the following statements are

equivalent:

1. (M, M ′, A) is uniform–price.

2. Ac = Ar − A defines an extended square glove market.

Proof: 1 ⇒ 2) Since (M∪M ′, wA) is a uniform–price assignment game, Ar defines

a buyer–seller exact assignment game such that C(wA) = C(wAr) is a segment. For

all (i, j) ∈ M ×M ′ , there exists (u, v) ∈ C(wA) such that ar
ij = ui + vj ≥ ui + vj

and consequently Ac ≥ 0 . Moreover, if (i, j) ∈ M × M ′ with i ∈ I0 , we get

ar
ij ≥ ui+vj = ui+vj . But, being (u, v) a core allocation, it must hold ar

ij = ui+vj ,

and then ac
ij = 0 . The same happens if j ∈ J0 . Finally, as C(wAr) is a segment,

from (5) follows that, if i ∈ M and j ∈ M ′ are active, ui + vj = u′i + v′j for any pair

of core allocations (u, v) and (u′, v′) and consequently, from buyer–seller exactness,

ui + vj = ar
ij for all (u, v) ∈ C(wAr) . In particular, ui + vj = ar

ij .

Then, for i ∈ M \ I0 and j ∈ M ′ \ J0 ,

ac
ij = ar

ij − ui − vj = ui + vj − ui − vj = vj − vj = K > 0 ,

which proves Ac is an extended square glove market.

2 ⇒ 1) Assume now Ar = A+Ac , where Ac is an extended square glove market.

We prove first that any optimal matching µ ∈ M∗(Ac) which is maximal, in the
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sense that all agents are matched by µ , is also optimal for Ar . To see that, take any

µ ∈ M∗(Ac) and maximal. This can always be achieved since Ac is square. Then
∑

(i,j)∈µ ac
ij =

∑
(i,j)∈µ ar

ij −
∑

i∈M ui −
∑

j∈M ′ vj . Moreover, for any µ′ ∈M(Ac) ,

∑

(i,j)∈µ

ac
ij ≥

∑

(i,j)∈µ′
ac

ij =
∑

(i,j)∈µ′
ar

ij −
∑

(i,j)∈µ′
(ui + vj) ≥

∑

(i,j)∈µ′
ar

ij −
∑
i∈M

ui −
∑

j∈M ′
vj ,

which implies
∑

(i,j)∈µ ar
ij ≥

∑
(i,j)∈µ′ a

r
ij , and µ ∈M∗(Ar) .

Now, we prove that C(wAr) ⊆ (u, v) + C(wAc) = {(u, v) ∈ Rm+m′|(u, v) =

(u, v) + (u′, v′) and (u′, v′) ∈ C(wAc) }. To see that, for all (u, v) ∈ C(wAr) define

(u′, v′) in the following way:

u′i = ui − ui for all i ∈ M and v′j = vj − vj for all j ∈ M ′ .

Let us see that (u′, v′) ∈ C(wAc) . Notice first that u′i ≥ 0 and v′j ≥ 0 . Taking

an arbitrary maximal optimal matching µ ∈ M∗(Ac) , u′i + v′j = ac
ij if (i, j) ∈

µ , since we also have µ ∈ M∗(Ar) . Moreover, for all i ∈ M and all j ∈ M ′ ,

u′i + v′j = ui− ui + vj − vj ≥ ar
ij − ui− vj = ac

ij . Then (u, v) = (u, v) + (u′, v′) where

(u′, v′) ∈ C(wAc) , which proves that C(wAr) ⊆ (u, v) + C(wAc) .

As Ac defines an extended square glove market, C(wAc) is a segment and, from

the above argument, C(wAr) is included in the translation of C(wAc) by the vector

(u, v) and thus C(wAr) = C(wA) is also a segment. 2

Let us remark that, by the proof of the above theorem, we get that given a

uniform-price assignment market (M,M ′, A) and its related extended square glove

market Ac , ac
ij = 0 if and only if i or j are non-active.

Theorem 3 shows that any uniform–price assignment market, after exactification

( Ar ) and substraction of the minimum core payoffs ( A ), gives an extended square

glove market where only active pairs have a positive output. For instance, if we take

again matrix A2 in expression (4), which is buyer–seller exact, the corresponding

extended glove market is Ac
2 = A2 − A2 =




1 0 0

0 0 0

0 0 0


 .
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Let us look into another example. Consider a market with four buyers and four

sellers, M = {1, 2, 3, 4} and M ′ = {1′, 2′, 3′, 4′}, described by matrix

A3 =




9 8 0 4

8 7 0 0

0 0 3 2

3 0 1 0




(6)

which is not buyer–seller exact. To see that, just notice that an optimal matching

is placed in the diagonal and a13′ + a22′ < a12′ + a23′ shows that A3 is not doubly

dominant diagonal. If we compute the marginal contribution of each agent and

take into account the aforementioned optimal matching, we get the buyers–optimal

core allocation (u, v) = (6, 5, 2, 0; 3, 2, 1, 0) and the sellers–optimal core allocation

(u, v) = (4, 3, 2, 0; 5, 4, 1, 0) . How to know if these are the unique extreme allocations

in C(wA3) ?

The first step is to compute the matrix Ar
3 by means of equation (3). Then,

ar
13′ = a11′ + a33′ + wA3(M ∪M ′ \ {3, 1′})− wA3(M ∪M ′) = 5

ar
23′ = a22′ + a33′′ + wA3(M ∪M ′ \ {3, 2′})− wA3(M ∪M ′) = 4

ar
24′ = a22′ + a44′ + wA3(M ∪M ′ \ {4, 2′})− wA3(M ∪M ′) = 3 .

Similarly, ar
31′ = 5 , ar

32′ = 4 , ar
42′ = 2 and ar

ij = aij otherwise, which leads to

Ar
3 =




9 8 5 4

8 7 4 3

5 4 3 2

3 2 1 0




.

On the other hand, as (u, v) = (4, 3, 2, 0; 3, 2, 1, 0) , the matrix A3 is

A3 =




7 6 5 4

6 5 4 3

5 4 3 2

3 2 1 0



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and consequently

Ac
3 = Ar

3 − A3 =




2 2 0 0

2 2 0 0

0 0 0 0

0 0 0 0




.

Now, from Theorem 3 follows that A3 is a uniform–price assignment game where

only the two first agents on each side of the market are active.

Finally, as a consequence of Theorem 3 we see that the equilibrium price vector is

unique if and only if Ar = A , which means that the buyer–seller exactification (but

maybe not the original matrix) is additively generated by the minimum core payoffs.

4 Totally uniform-price assignment markets

In this section we look for those uniform-price assignment markets where all subgames

also have uniform prices. A well known example of that are the Böhm–Bawerk horse

markets. We ask whether these are the only assignment markets with this property.

The Horse Market of Böhm–Bawerk (1891) is also studied from the viewpoint of

game theory in Shapley and Shubik (1972). In this market, each seller has one horse

for sale and each buyer wishes to buy one horse and places the same valuation in

all the horses available, as they are all alike. Let 0 ≤ c1 ≤ c2 ≤ · · · ≤ cm′ be the

reservation prices of the sellers and h1 ≥ h2 ≥ · · · ≥ hm ≥ 0 the valuations of the

buyers. If hi < cj , no transaction is possible between these two agents but whenever

hi ≥ cj , agents i and j can trade and obtain a joint profit of hi − cj . Thus, the

assignment matrix describing this market is defined by aij = max{hi − cj, 0} .

It is already known from Shapley and Shubik (1972) that the core of the Böhm–

Bawerk horse market game consists of a segment, with extreme points the buyers–

optimal and the sellers–optimal core allocations. Moreover, in a core allocation all

transactions take place at the same price. This means that there exists an interval

of prices [p, p] such that (u, v) ∈ C(wA) if and only if there exists p ∈ [p, p] and

ui = hi − p and vj = p− cj (7)
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if buyer i and seller j are involved in some transaction, while the remaining agents

receive a zero payoff.

In this section, given an arbitrary assignment matrix, we will need to recognize,

merely by inspection of the matrix entries, if it represents such a particular market as

the Böhm–Bawerk horse market. To this end we will develop an idea already present

in the work of Shapley and Shubik (1972), who point out that a property of the

assignment matrix of these particular markets is that in each 2 × 2 submatrix with

nonzero entries, the sums of the diagonals are equal. This property is not enough

to characterize the matrices defining a Böhm–Bawerk horse market (see for instance

matrix A1 ).

However, it is not difficult to prove that a 2 × 2 assignment matrix defines a

Böhm–Bawerk horse market if and only if either two optimal matchings exist or

there is only one optimal matching but one of the optimally matched pairs has a null

outcome. Thus, 2 × 2 matrices defining a Böhm–Bawerk horse market are, up to

possible permutations of buyers or sellers,


 a11 a12

a21 a22


 with a11 + a22 = a12 + a21 ,

or


 a11 a12

a21 0


 with a11 ≥ a12 + a21 .

The next corollary, which is a consequence of Theorem 3, states that the class

of uniform-price assignment markets coincides with the class of Böhm–Bawerk horse

markets if we restrict to 2× 2 matrices. We leave the proof for the appendix.

Corollary 4 Every uniform-price assignment market defined by a 2× 2 matrix is a

Böhm-Bawerk horse market.

Notice that, unlike what happens with Böhm–Bawerk horse markets, the sub-

games of a uniform–price assignment market, need not be uniform–price. Take for

instance the submatrix


 1 0

1 1


 from A1 =




1 0 1

1 1 1

1 1 1


 and notice that it de-

fines an assignment game with a two–dimensional core.

We name totally uniform–price assignment markets those assignment markets

14



such that every submarket is also uniform–price. Next theorem states that this

property characterizes the Böhm–Bawerk horse markets.

Theorem 5 Let (M, M ′, A) be an assignment market. The following statements

are equivalent:

1. (M, M ′, A) is totally uniform–price,

2. (M, M ′, A) is a Böhm–Bawerk horse market.

Proof: If (M, M ′, A) is a Böhm–Bawerk horse market, then all subgames are also

Böhm–Bawerk horse markets, and thus they are all uniform–price.

To prove the converse statement notice first that if one side of the market has

only one agent, then trivially the market is a Böhm–Bawerk horse market. So, let

us assume that (M, M ′, A) is a totally uniform–price assignment market with at

least two agents on each side. Then every 2× 2–subgame is also uniform-price and,

by Corollary 4, it is a Böhm–Bawerk horse market. We claim that this property

characterizes the Böhm–Bawerk horse markets:

Claim: If A ∈ Mm×m′(R+) is such that every 2 × 2 submatrix defines a Böhm–

Bawerk horse market, then A also defines a Böhm–Bawerk horse market.

The proof of this claim is done in the appendix. 2

5 The kernel or symmetrically pairwise–bargained

allocations

In this second part of the paper, we analyze which core allocations of a uniform-price

assignment game are supported by another cooperative set-solution concept as it is

the kernel of the game. The kernel of a cooperative game (Davis and Maschler, 1965)

is always nonempty and it always contains the nucleolus, a single-valued solution

concept introduced by Schmeidler (1969).

The first analysis of the kernel of an assignment game, K(wA) , is carried out by

Rochford (1984) where the optimally matched players are engaged in bargaining of
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the sort modelled by Nash, using as their threats the maximum they could receive in

an alternative matching. A symmetrically pairwise–bargained (SPB) allocation is a

core allocation such that all partners are in bargained equilibrium. Rochford proves

that an SPB allocation always exists and that the set of SPB allocations coincides

with the intersection of the kernel and the core of the assignment game. Once proved,

for assignment games, the inclusion of the kernel in the core (Driessen, 1998), it turns

out that the set of SPB allocations is the kernel of the game.

Given an assignment game (M ∪ M ′, wA) , it is easy to see, and it is justified

in Rochford (1984), that once fixed an optimal matching µ ∈ M∗(A) and given

(u, v) ∈ C(wA) , we get that (u, v) ∈ K(wA) if and only if sij(u, v) = sji(u, v)

for all (i, j) ∈ µ , where sij(u, v) = max{−ui, aij′ − ui − vj′ , ∀j′ ∈ M ′ \ {j}} and

sji(u, v) = max{−vj, ai′j − ui′ − vj, ∀i′ ∈ M \ {i}} . In fact, since the kernel of an

assignment game is included in its core, the above equalities characterize the kernel

of the assignment game:

K(wA) = {(u, v) ∈ C(wA) | sij(u, v) = sji(u, v) , for all (i, j) ∈ µ} .

In these markets, the kernel can be viewed as those imputations for which any two

optimally matched players are equally powerful concerning their mutual threats. We

want to remark the fact that, unlike the case of arbitrary coalitional games, to com-

pute the kernel of an assignment game, only the excesses of individual coalitions and

mixed-pair coalitions are to be taken into account and, moreover, equilibrium is only

required for pairs of agents which are optimally matched.

Our aim in this section is to prove that the kernel of a uniform–price assignment

game either coincides with the core or reduces to the nucleolus. This is not true for

arbitrary assignment games: an example can be found in Granot and Granot (1992)

of an assignment game with a kernel which is not a convex set.

If no active pair exists, then the core of the assignment market reduces to only

one point and, since the kernel is always nonempty, it coincides with the kernel (and

also with the nucleolus). We can thus assume that at least one active pair exists.

Theorem 6 Let (M ∪ M ′, wA) be a uniform–price assignment game with at least
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one active pair. Then, the kernel K(wA) either coincides with the core or reduces to

only one point. This last case happens if and only if a unique active pair exists.

Proof: We will assume without loss of generality, that A is buyer–seller exact, A =

Ar , since by Núñez (2004) we know that K(wA) = K(wAr) . Once fixed µ ∈M∗(A) ,

let us prove first that if (i, j) ∈ µ is a non-active pair, then sij(u, v) = sji(u, v) for

all (u, v) ∈ C(wA) . To do that, we consider two cases.

Case 1: Assume first that (i, j) ∈ µ is a non-active pair but it is not the only

one. Since there exists j′ 6= j non-active, aij′ − ui − vj′ = aij′ − ui − vj′ = 0

for all (u, v) ∈ C(wA) , where the second equality follows from the fact that wA is

buyer–seller exact. Thus, sij(u, v) = 0 and, by the same argument, sji(u, v) = 0 .

Case 2: Assume now that (i, j) ∈ µ is the unique non-active pair. For all (u, v) ∈
C(wA) , either ui = 0 or if ui > 0 we claim that there exists j′ ∈ M ′ \{j} such that

aij′−ui−vj′ = 0 . To prove the claim notice that if ui > 0 and aij′−ui−vj′ < 0 for

all j′ ∈ M \{j} , then we could choose ε > 0 small enough so that (u′, v′) ∈ Rm+m′
,

defined by u′i = ui − ε , v′j = vj + ε , u′k = uk for k ∈ M \ {i} , and v′l = vl for

l ∈ M ′ \ {j} , would be a core allocation. Since ui 6= u′i and both (u, v) and (u′, v′)

belong to the core, this contradicts that i is a non-active buyer. Once proved the

claim, we have that also in this case sij(u, v) = 0 , and the same argument applies to

obtain sji(u, v) = 0 .

At this point we can state that to know if a core allocation (u, v) belongs to the

kernel of a buyer-seller exact assignment game you only need to check the constraints

sij(u, v) = sji(u, v) for those (i, j) ∈ µ formed by active agents. We now consider

the two cases that appear in the statement of the theorem.

Let us now assume there exists more than one active pair. Take (i, j) ∈ µ an

active pair and consider sij(u, v) = max{−ui, aij′ − ui − vj′ , ∀j′ ∈ M \ {j}} . Notice

that if j′ is also active then, taking into account the description of the core of

uniform–price assignment games given in (5), aij′ − ui − vj′ is constant for all core

allocations. This means that, since wA is buyer–seller exact, aij′ − ui − vj′ = 0 for

all core allocation (u, v) and all j′ active. By assumption, an active seller j′ 6= j

exists and so sij(u, v) = 0 . The same argument proves that sji(u, v) = 0 , and thus
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sij(u, v) = sji(u, v) .

To sum up, if more than one active pair exists, we have seen that for all (u, v) ∈
C(wA) and all (i, j) ∈ µ , sij(u, v) = sji(u, v) which means that C(wA) ⊆ K(wA) .

Since the other inclusion always holds, we have obtained in this case the coincidence

of the kernel with the core.

Assume now that A has only one active pair (i1, j1) ∈ µ . Since the kernel of an

arbitrary coalitional game is always nonempty, take (x, y) ∈ K(wA) . We then have

si1j1(x, y) = sj1i1(x, y) , (8)

where

si1j1(x, y) = max{−xi1 , ai1j − xi1 − yj, ∀j ∈ M ′ \ {j1}}
sj1i1(x, y) = max{−yj1 , aij1 − xi − yj1 , ∀i ∈ M \ {i1}} .

We will prove that (x, y) is the unique allocation in the kernel.

If there exist some (u, v) ∈ K(wA) , (x, y) 6= (u, v) , then, since K(wA) ⊆ C(wA) ,

both (x, y) and (u, v) must be of the form described in (5). Taking this into account

and the fact that I0 = M \ {i1} and J0 = M ′ \ {j1} , there exists ε′ > 0 such that

either ui1 = xi1 + ε′ , ui = xi for all i ∈ M \ {i1} , vj1 = yj1 − ε′ and vj = yj for

all j ∈ M ′ \ {j1} , or else ui1 = xi1 − ε′ , ui = xi for all i ∈ M \ {i1} , vj1 = yj1 + ε′

and vj = yj for all j ∈ M ′ \ {j1} . We will do the proof only in the first case, as the

second one is proved analogously.

Since M ′ \ {j1} = J0 and M \ {i1} = I0 , we get

si1j1(u, v) = max{−xi1 − ε′, ai1j − (xi1 + ε′)− yj, ∀j ∈ M ′ \ {j1}} = si1j1(x, y)− ε′

and

sj1i1(u, v) = max{−yj1 + ε′, aij1 − xi − (yj1 − ε′), ∀i ∈ M \ {i1}} = sj1i1(x, y) + ε′

Thus, si1j1(u, v) = sj1i1(u, v) if and only if ε′ = 0 , and this means that (u, v)

coincides with (x, y) . 2

Notice that when there exists only one active pair and the kernel reduces to only

one point, this point is necessarily the nucleolus of the game (Schmeidler, 1969).
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Moreover, looking at some examples given before, we realize that both cases in the

theorem above can really happen. The game wA2 has only one active pair, while the

game wA3 has several active pairs.

A Appendix

Proof of Corollary 1: Recall from Núñez and Rafels (2002) that all 2 × 2

assignment games are buyer-seller exact. Then, by Theorem 3, A = Ar = A + Ac

where Ac is an extended square glove market where ac
ij = 0 if and only if i or j are

non-active in A . This means that, up to permutations of the buyers or the sellers,

either Ac = 0 and all agents are non-active, or Ac =


 c c

c c


 with c > 0 and all

agents are active, or Ac =


 c 0

0 0


 with c > 0 and only the first buyer and the

first seller are active. In the first two cases, by adding A , we obtain a 2× 2 matrix

with two optimal matchings, and thus a Böhm–Bawerk horse market.

In the last case, Ar =


 c + u1 + v1 u1 + v2

u2 + v1 u2 + v2


, and we claim that u2 = v2 =

0 . To see that, recall first that in every extreme core allocation of an assignment

game there is at least one agent who receives a null payoff (see Balinski and Gale,

1987). Since in this case (u, v) and (u, v) are two different extreme core allocations

there exists i ∈ {1, 2} such that ui = 0 and there exists j ∈ {1, 2} such that vj = 0 .

If we assume that v2 > 0 , then it must hold v1 = 0 . Let us now consider u2 . By

equation (1), u2 is the marginal contribution of buyer 2 to the grand coalition but,

since this is a non-active agent, we know u2 = u2 . When computing this marginal

contribution we get

u2 = c + u1 + v1 + u2 + v2 −max{c + u1 + v1, u1 + v2}.

If the maximum is attained in c+u1+v1 , we have u2 = u2+v2 = u2 in contradiction

with v2 > 0 , and in the second case we obtain u2 = c + u2 = u2 , in contradiction

with c > 0 . Thus, v2 = 0 . The fact that u2 = 0 is proved analogously. This means
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that A = Ar =


 c + u1 + v1 u1

v1 0


 and thus it is also a Böhm–Bawerk horse

market. 2

Proof of the Claim in Theorem 6: If A ∈Mm×m′(R+) is such that every

2×2 submatrix defines a Böhm–Bawerk horse market, then A also defines a Böhm–

Bawerk horse market.

To prove the claim let us assume, without loss of generality, that rows and columns

have been ordered in such a way that a1j ≥ a1j+1 for all j ∈ {1, . . . , m′ − 1} ,

ai1 ≥ ai+11 for all i ∈ {1, . . . , m − 1} and, moreover, a11 ≥ aij for all i ∈ M and

j ∈ M ′ . Notice that this can always be achieved.

Under the assumption that all 2× 2 submatrices define Böhm–Bawerk markets,

the above ordering implies that, for all i ∈ M and j ∈ M ′ , aij ≥ aij′ for all j′ ≥ j

and aij ≥ ai′j for all i′ ≥ i .

We prove the first inequality of the above statement (the second one is proved

analogously). Take j′ > j and consider the matrix A′ =


 a11 a1j

ai1 aij


 . As this

matrix defines a Böhm–Bawerk horse market, and because of the given orders in

the sets of buyers and sellers, if a1j = 0 , then aij = 0 . But on the other side, as

a1j ≥ a1j′ , we obtain a1j′ = 0 and since matrix


 a11 a1j′

ai1 aij′


 is a Böhm–Bawerk

horse market, we deduce that aij′ = 0 and thus aij ≥ aij′ .

If a1j > 0 we will first see that a1j ≥ aij . As this is obvious when aij = 0 ,

let us assume aij > 0 . Then, since A′ is a Böhm–Bawerk horse market, we obtain

a11 + aij = a1j + ai1 , which from a11 ≥ ai1 implies a1j ≥ aij .

Now take matrix A′′ =


 a1j a1j′

aij aij′


 . If aij′ = 0 , then trivially aij ≥ aij′ . If

aij′ > 0 , since A′′ is a Böhm–Bawerk horse market, a1j + aij′ = aij + a1j′ which, as

a1j ≥ a1j′ , implies aij ≥ aij′ .

We now define valuations for buyers and sellers which show that A is a Böhm–

Bawerk horse market.

Define hi = ai1 for all i ∈ M and cj = a11− a1j for all j ∈ M ′ . Let us consider
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the submarket A′ =


 a11 a1j

ai1 aij


 which, by assumption, is a Böhm–Bawerk horse

market. If aij > 0 , then A′ > 0 and

max{hi − cj, 0} = max{ai1 − (a11 − a1j), 0} = max{aij, 0} = aij .

If aij = 0 , then a11 ≥ a1j + ai1 , which means

max{hi − cj, 0} = max{ai1 − (a11 − a1j), 0} = 0 = aij .

2
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