
Differential MicroRNA Expression Profile between
Stimulated PBMCs from HIV-1 Infected Elite Controllers
and Viremic Progressors
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Manel Enric Bargalló2, Felipe Garcia3, José Marı́a Gatell3, Montserrat Plana2., Mireia Arnedo1*., HIV

Controllers Consortium of the AIDS Spanish Network"

1 Group of Genomics and Pharmacogenomics, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d’Investigacions
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Abstract

Background: The emerging relationship between microRNAs (miRNA) and viral-control is a topic of interest in the field of
HIV. Host-genome might play an important role in the control of viremia. The aim of this study was to assess the specific
miRNA profile that could contribute to the control of HIV replication in Elite Controllers

Results: After adequate normalization, expression profile of 286 human miRNAs (hsa-miR) was evaluated in
phytohaemagglutinin-stimulated PBMCs from 29 individuals classified in 4 groups: 8 elite controllers (EC; viral load ,
50 cp/ml without treatment), 8 viremic progressors (VP; VL.5000 cp/ml without treatment), 8 patients under antiretroviral
treatment (ART; VL,200 cp/ml) and 5 uninfected individuals (HIV-) through TaqMan Array Human microRNA Cards v3.0. A
differential expression pattern consisting of 23 miRNAs became significantly different when comparing EC and VP. Profiling
analysis segregated the population in two different blocks: while EC and HIV- clustered together in the same block (EC/HIV-
_block 1), VP and ART individuals clustered together in a second block (VP/ART_block 2). Two inversely expressed miRNA
patterns were determined within those two blocks: a set of 4 miRNAs (hsa-miR-221, -27a, -27b and -29b) was up-expressed
in EC/HIV-_block and down-expressed in VP/ART_block while 19 miRNAs were down-expressed in block 1 and up-expressed
in block 2. Differential miRNAs were successfully validated through individual RT-qPCR assays.

Conclusions: Profile in EC resembled HIV- and differentially clusters with VP and ART. Therefore, differential clustering does
not rely on undetectable viremia.
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Introduction

The control of human immunodeficiency virus (HIV) replica-

tion is an intrinsic feature present in a subset of infected individuals

known as Elite Controllers (EC). Contrary to viremic progressors

(VP), who register high levels of viral load and exhibit a dramatic

loss of CD4+ T-cells, more than 60% of EC have the ability to

maintain high T-cell-counts and undetectable viral load (HIV

RNA ,50 copies/ml) in the absence of antiretroviral therapy

(ART) [1–3]. The mechanisms associated with this extreme

control of the viremia remains elusive [4]. However, the presence

of a low viral reservoir or the existence of a potent CD8+ T-cell

response, mainly against the structural protein gag, could partially

explain this control [5].

There has been an effort to identify molecular, immunological

and virological mechanisms leading to the susceptibility of HIV-1

infection, control of viral replication, and disease progression [6–

8]. Genetically, EC have been shown to describe a composite of

CCR5 delta-32 gene deletion and/or certain class-I HLA alleles,
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such as HLA-B*57, that discriminate them from progressors [9–

11]. However to date, there has been no clear explanation to why

some subjects can control viremia in the absence of antiretroviral

treatment and others cannot, even when carrying the same

protective alleles. In addition, genome-wide associations studies

and transcriptome analyses have been performed aiming to

determine specific DNA variants and gene expression patterns

present in HIV controllers [12–17]. Furthermore, the discovery of

a growing class of small RNAs, termed microRNAs (miRNAs), has

opened a new field of research and revealed the possibility to

identify plausible miRNA profiles in the context of diseases,

including HIV/AIDS and vaccines.

miRNAs are approximately 19–25 nucleotide long single-strand

noncoding RNAs capable of regulating gene expression at the

post-transcriptional level [18–20]. They pair to the messages of

protein-coding genes, usually through imperfect base-pairing with

the 3’-untranslated region causing translational repression and/or

mRNA destabilization, which is sometimes through direct mRNA

cleavage [21–23]. To date, thousands of miRNAs have been

identified in a wide diversity of organisms including humans,

leading to an actively expanding research field [24]. After over a

decade of investigation of miRNAs, it is now clear that these non-

coding RNA molecules serve a fundamental role in the regulation

of gene expression; even though specific regulation and function of

miRNAs is still largely unknown.

The expression profile and role of host miRNAs in the scenario

of HIV-infection and AIDS progression has become a topic of

interest. Several miRNAs have been described to interact either

with the immune system related genes [25,26] or the viral genes

[27–29]. Despite recent studies have reported cellular miRNA

profiles in several cohorts of HIV-infected patients [30–33],

further studies are required in order to better understand the role

of miRNAs in the field of HIV/AIDS. The assessment of how a

specific miRNA profile could influence the different progression of

HIV disease may be useful for understanding the basis of viral and

immunological control for future functional therapeutic approach-

es. Thus, the aim of our study was to determine if there was a

specific differential miRNA profile of Elite Controllers.

Materials and Methods

Study population
Samples were obtained from HIV-1-infected patients followed-

up at the HIV Unit of the Hospital Clinic of Barcelona (Barcelona,

Spain) between 1999 and 2009. Samples of non-infected donors,

as a control group, were also obtained. The study was approved by

the Institutional Ethics Committee and all participants gave

written informed consent for miRNA profiling. Twenty-nine

individuals, classified in 4 groups, were included in the study:

HIV-negative individuals (HIV-; n = 5), Elite Controllers (EC;

n = 8; viral load ,50 cp/ml and CD4+ cell count .450 cells/

mm3 for more than six years of follow-up in the absence of ART),

Viremic Progressors (VP; n = 8; viral load .5000 cp/ml and

CD4+ cell count .400 cells/mm3 for more than one year of

follow-up in the absence of ART) and HIV-infected patients under

antiretroviral treatment (ART; n = 8; viral load ,50 cop/ml and

CD4+ cell count .450 cells/mm3 for more than one year of

follow-up). Medians were used to show central tendencies and

interquartile ranges (IQR = upper quartile Q3-lower quartile Q1)

were calculated as measures of variability and statistical dispersion

in each group.
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RNA isolation and quality control
Peripheral blood mononuclear cells (PBMCs) were either

isolated from fresh blood by Ficoll-Hypaque gradient centrifuga-

tion or used after thawing. PBMCs (206106 cells) were cultured in

RPMI medium containing 10% FBS and 2% gentamycin. Cells

were stimulated with 1 ug/ml of phytohaemagglutinin (PHA;

Sigma-Aldrich, St. Louis, Mo, USA) for 72 hours, washed in PBS

(16) and pelleted for RNA extraction. Total RNA (enriched for

small RNA) was isolated according to manufacturer’s instructions

using the mirVana miRNA isolation Kit (Ambion, Huntingdon,

UK). RNA concentration was calculated using NanoDrop

technology ND-1000 (Thermo Scientific, Waltham, MA, USA).

RNA integrity was then evaluated using RNA 6000 Nano

LabChips on an Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, CA, USA). All chips were prepared according to the

manufacturer’s instructions at the Genomic platform of the

CCiTUB (Centres Cientı́fics i Tecnològics University of Barce-

lona) located at the Barcelona Science Park (PCB). Total RNA

degradation was evaluated by reviewing the electropherograms

and the RNA integrity number (RIN) of each sample. Only

samples with preserved 18S and 28S peaks and RIN values greater

than 7 were selected for miRNA profile analysis.

miRNA profiling using TaqMan low-density arrays (TLDA)
RNA (1 to 350 ng in 3 ml) was reverse transcribed using the

miRNA reverse transcription kit in combination with the stem-

loop Megaplex primer pool (Applied Biosystems, Foster City, CA,

USA), allowing simultaneous reverse transcription of 381 small

RNAs. miRNA expression profiles were acquired using TaqMan

Array Human microRNA Card A v2.0 (Applied Biosystems,

Foster City, CA, USA), containing 384 human miRNAs (hsa-

miR). Reactions were performed using the Applied Biosystems

7900HT Fast Real-time PCR system. Reaction volumes con-

tained: 50 ml of cDNA sample (30 to 1000 ng) in RNase-free water

and 50 ml of (26) TaqMan Universal PCR Master Mix.

Thermocycler conditions were as follows: 94.5uC hot-start for

10 min, followed by 40 cycles of 97uC for 30 s and 59.7uC for

1 min.

Accessibility of array data
Raw data and sets of filtered and global mean normalized data

from TaqMan low-density arrays (TLDA) were deposited with the

Gene Expression Omnibus (GEO, [34]) and are accessible at

Series number GSE57323.

TLDA data analysis
TLDAs were run in the in the 7900HT Fast Real-time PCR

system using the SDS software v.2.3 (Applied Biosystems, Foster

City, CA, USA) and raw Ct (cycle threshold: the number of cycles

required for the fluorescent signal to cross the threshold) values of

the expression of each individual miRNA were obtained using

automatic thresholding of all the processed data together with the

StatMiner Software (Integromics, Granada, Spain). Those miR-

NAs with Ct values .35 and not amplified wells were omitted

from the analysis. Moreover, miRNAs that were not expressed in

more than 25% of the samples, belonging to each group of study,

were also excluded from the analysis. For each individual sample,

global mean normalization strategy [35,36] was performed

calculating the DCt values for each miRNA (DCt =

Cttarget miRNA – mean Ctall assessed miRNAs). A non-parametric

Mann-Whitney U test was run in MEV software V4.5 [37] for

statistical comparisons between group-pairs. Benjamini-Hochberg

correction test was applied as an estimated false discovery rate

(FDR) of 5%, controlling for the expected proportion of

incorrectly rejected null hypotheses [38]. Samples were clustered,

comparing EC and VP, by their miRNA expression profiles using

the hierarchical clustering algorithm of the software. The

Euclidean distance-metric hierarchical cluster represented up-

expressed miRNAs in red tones and down-expressed miRNAs in

green tones. Fold change (log2) expression of differentially

expressed individual miRNAs in EC and VP relative to HIV-

and ART were calculated as 2-DDCt (DDCt = DCtEC or VP –

DCtHIV- or ART). A fold change value closer to ‘‘0’’ would indicate

a similar expression level compared to reference group, whereas a

positive/negative value would represent an up/down-expressed

level. Two-way analysis of variance (ANOVA) tests were

performed for global comparisons and Bonferroni post-tests for

replicate-means comparisons using GraphPad Prism 5.0.

Validation of results
Those differentially expressed miRNAs with a significance p-

value #0.001 were re-assessed through individual RT-qPCR assay

(Applied Biosystems, Foster City, CA, USA). Furthermore, in

order to strengthen the observed expression profiles, a validation

cohort consisting of 8 HIV-, 13 EC, 14 VP and 14 ART new

patients was added to the study. Individual RT-qPCR assays of the

differentially expressed miRNAs of interest were performed in this

validation cohort.

RNA (10 ng) was reverse transcribed in 15 ml according to

manufacturer’s recommendations using TaqMan miRNA reverse

transcription kit (Applied Biosystems, Foster City, CA, USA).

miRNA expression assays were carried out using TaqMan primers

and probes (Applied Biosystems, Foster City, CA, USA) for

endogenous control small RNAs RNU44 (ID 001094) and

RNU48 (ID 001006) and target miRNAs. Relative quantifications

(RQ) were performed using the Applied Biosystems 7900HT Fast

Real-time PCR system. Reaction volumes contained: 7.67 ml of

water, 1 ml of TaqMan primer/probe mix for target or endoge-

nous control small RNA, 10 ml of (26) Universal master mix

(Applied Biosystems, Foster City, CA, USA) and 1.33 ml of cDNA

at a final concentration of 10 ng. Thermocycler conditions were as

follows: 95uC hot-start for 10 min, followed by 40 cycles of 95uC
for 15 s and 60uC for 1 min. Raw Ct values were exported from

the SDS software v.2.3 to the RQ Manager v1.2 softwear (Applied

Biosystems, Foster City, CA, USA) for DCt (DCt = Cttarget miRNA

– mean Ctendogenous small RNAs) value determination as the

normalization method. Fold change (log2) expression levels of

the individual miRNAs in EC, VP, ART, relative to HIV-, were

calculated as 22DDCt (DDCt = DCtEC, VP, ART – DCtHIV-). One-

way analysis of variance (ANOVA) tests were performed for global

comparisons and Turkey post-hoc tests for pair comparisons using

GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA).

Results

Characteristics of the study participants
Characteristics of the study participants of the screening and the

validation cohorts are shown in Table 1. None of them was co-

infected by hepatitis C virus (HCV). After seven years of follow-up

all the participants from the EC group maintained viral load ,

50 cp/ml and CD4+ cell count .450 cells/mm3. A heteroge-

neous distribution of HLA-B57*01 was observed and none of them

showed the CCR5 delta-32 gene deletion (data not shown). No

statistically significant differences were observed in any compar-

ison except in the time since HIV diagnosis (p = 0.002) and time of

exposure to antiretroviral therapy (p = 0.002) between the ART

groups of the screening and the validation cohorts.
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Taqman Low-density miRNA arrays reveal differentially
expressed miRNAs

All RNAs were suitable (RIN .7) for the miRNA expression

profile analysis through the TaqMan Array Human microRNA

Cards v3.0. Expression profiles of HIV-, EC, VP, and ART

individuals were acquired after adequate normalisation steps for

statistical analysis. Finally, 286 (38%) miRNAs were included in

the analysis once the exclusion criteria were carried out. Mann-

Whitney U test set to a false discovery rate (FDR) of 5% provided

a set of miRNAs differentially expressed in each group-pair: 52

miRNAs in HIV- vs ART, 23 miRNAs in EC vs VP, 22 miRNAs

in EC vs ART and 25 miRNAs in VP vs HIV-. No differential

miRNAs were observed when comparing neither EC vs HIV- nor

VP vs ART; EC were statistically similar to HIV- and VP to ART

in terms of PHA-activated PBMC miRNA profile (Table S1).

Hierarchical clustering: miRNA profile in Elite Controllers
differs from Viremic Progressors

Twenty-three differentially expressed miRNAs resulting from

the Mann–Whitney U test (5% FDR) (Table S1) were classified by

hierarchical clustering (average linkage clustering constructed on

Euclidian distances) (Figure 1A). The analysis segregated the

population in two separate blocks (block1/block2). Block 1

included EC and HIV- with no significant differences on miRNA

expression. Viremic progressor patient number 3 clustered

together within this block, making this block slightly heteroge-

neous. Block 2 clustered VP and ART patients. A set of 4 miRNAs

with an inverse expression profile between the two blocks,

subdivided each block of patients into two groups of miRNA

(group1/group2). On the one hand, these 4 miRNAs (hsa-miR-

221, hsa-miR-27a, hsa-miR-27b and hsa-miR-29b) were down-

expressed in VP and ART (block1-group1) and up-expressed in

EC and HIV- (block2-group1). On the other hand, these 19

miRNAs (hsa-miR106a, hsa-miR-125a, hsa-miR-140, hsa-miR-

146a, hsa-miR-146b, hsa-miR-155, hsa-miR-16, hsa-miR-17, hsa-

miR186, hsa-miR-191, hsa-miR-197, hsa-miR-200b, hsa-miR-

200c, hsa-miR-339, hsa-miR-374, hsa-miR-422, hsa-miR-422,

hsa-miR-454, hsa-miR-484 and hsa-miR-590) were up-expressed

in VP and ART (block1-group2) and down-expressed in EC and

HIV- (block2-group2). Expression of the differentially expressed

miRNAs in EC was measured as fold change (log2) relative to VP:

hsa-miR-221 and hsa-miR-29b were the most highly expressed

miRNAs (fold change 1.24 and 1.23, respectively) and hsa-miR-

454 showed the lowest expression (fold change -1.95) in EC when

compared to VP (Figure 1B).

miRNA profile in Elite Controllers differs from Viremic

progressors and treated individuals. Differential miRNA

expression between EC and VP was measured as fold change (log2)

relative to ART (Figure 2A). Overall, EC showed a down-

expressed miRNA profile compared to the ART group except

for hsa-miR-221, -27a, -27b, -29b levels. hsa-miR-29b was the

most highly expressed miRNA (fold change 2.1) and hsa-miR-197

the one with the lowest expression level (fold change -2.2)

compared to ART. Six miRNAs were statistically similar (p,

0.05) between EC and VP when compared to ART: hsa-miR-

106a, -140-5p, -17, -27a, -27b and -374b. In summary, VP showed

a closer profile (global mean fold change of 0.1) to the ART group

than the EC (global mean fold change of -0.69) (Table S2 A).

miRNA profile in Elite Controllers is similar to non-

infected individuals. Differential miRNA expression between

EC and VP was measured as fold change (log2) relative to HIV-

(Figure 2B). Hsa-miR-221 and hsa-miR-155 were the most highly

expressed miRNAs (fold-change 0.9) and hsa-miR-191 and hsa-

miR-200c were the ones with the lowest expression levels (fold

change -0.3) compared to HIV-. Interestingly, has-miR-155 was

the most up-expressed miRNA in both groups compared to HIV-

being the expression level significantly higher (p,0.05) in VP. Six

miRNAs were statistically similar (p,0.05) between EC and VP

compared to HIV-: hsa-miR-106a, -140-5p, -17, -27a, -27b and -

374b. In summary, EC showed a closer profile (global mean fold

change of 0.08) to the ART group than the VP (global mean fold

change of 0.87) (Table S2 B).

Validation of expression profiles through individual RT-
qPCR assays

Differentially expressed miRNAs between EC and VP, with a

significance p-value #0.001 (n = 5, 22%), were successfully

validated through individual RT-qPCR assays in the same study

population (data not shown).

Moreover, in order to strengthen the tendencies observed in the

miRNA profiling analysis, four miRNAs of interest were re-

assessed in a validation cohort with similar characteristics to the

screening cohort (Table 1).

Validation cohort was analysed for the expression levels of hsa-

miR-221, -29b, -146a and -155 between EC, VP and ART,

relative to HIV- (Figure 3). Although significant differences were

only observed for hsa-miR-221 (p,0.001) and hsa-miR-29b (p,

0.05), the four miRNAs of interest reflected the same expression

tendencies observed in the profiling analysis: EC showed up-

expressed levels of hsa-miR-221 and hsa-miR-29b and lower levels

of hsa-miR146a and hsa-miR-155 compared to VP. However,

individual RT-qPCR assay for hsa-miR-146a did not reproduce

the expression levels observed in the profiling analysis in any of the

three groups of study. Moreover, the ART group from the

validation cohort did not imitate the expression levels of hsa-miR-

29b and hsa-miR-146a shown in the profiling analysis.

Discussion

The goal of our study was to assess potential miRNAs that are

differentially expressed in HIV-1-infected patients who control

viremia in the absence of antiretroviral therapy: Elite Controllers.

For that purpose, miRNA profile of 29 individuals categorized in

EC, VP, ART and HIV-, was obtained from PHA-activated

PBMCs. Even though the heterogeneity observed within EC in

previous transcriptome studies [17,39], our results show a specific

differential miRNA pattern in EC when compared to VP. Our

findings revealed 23 differentially expressed miRNAs in EC that

are present in similar levels in HIV- but dissimilarly in VP and

ART. In order to validate the expression levels observed, those

miRNAs with a significance p-value #0.001 between EC and VP

Figure 1. Differential miRNAs between Elite Controllers (EC) and Viremic Progressors (VP). A) Hierarchical clustering of the differentially
expressed miRNAs between EC and VP. Patients are ordered on vertical lines and candidate miRNAs on horizontal lines. For each miRNA, green
represents under-expressed and red over-expressed values compared to the average value (median), in dark. Dendrograms (tree graph) between
patients and between miRNAs are depicted, where the closest branches of the tree represent patients/miRNAs with the most similar expression
pattern. Two blocks of patients (Block 1/Block 2) with an inverse expression profile were segregated. Two groups of miRNAs (Group 1/Group 2) with
an inverse expression profile were segregated within each block. B) Fold change (log 2) of the 23 differentially expressed miRNAs in EC. Differential
levels are normalized to all assesed miRNAs and relative to VP. Bars represent standard error means (SEM).
doi:10.1371/journal.pone.0106360.g001
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were validated through individual RT-qPCR assays. Our results

are consistent with studies reporting that either PBMCs or specific

blood cell population miRNA profile of HIV-infected elite

controllers, resembles that of HIV- individuals [30,40]. A recent

study comparing PBMC miRNA profiles between HIV-infected

individuals with low or undetectable viral load and uninfected

subjects, conclude that similar patterns are observed across the

study groups [32]. However, the suppressed patients used in this

last study were all on antiretroviral therapy at the moment of

sample collection, a fact that suggest HIV-1 to be able to induce a

miRNA dysregulation. Indeed, previously published data showed

a major down-regulation of most of the miRNAs in HIV-infected

patients [30,31] whereas in the current study, where stimulated

PBMCs were used, we observed a trend to a preferential miRNA

down-regulation in EC and non-infected subjects as well as a

major up-regulation of the differential miRNAs in non-suppressed

HIV-positive individuals, probably as a consequence of the effects

of the in vitro T-cell stimulation.

On the one hand, EC showed up-expressed levels of hsa-miR-

221, hsa-miR-27a, hsa-miR-27b and hsa-miR-29b compared to

VP. These miRNAs are highly expressed in PBMCs [41] and are

plausible molecular candidates to be involved in HIV replication

and infectivity. Human miR-29b has been previously described as

one of the profile components of EC [30] and to be related with

infected patients with low viral load [31]. Additionally, previous

data report the implication of hsa-miR-29b in HIV replication

through targeting the virus in the transcribed 39-LTR region [42]

or regulating the viral negative regulatory factor (nef) [43]. Nef

highjacks MHC (mayor histocompatibility complex)-class I along

with other molecules impeding a correct antigen presentation

[44,45]. Moreover, hsa-miR-29b and hsa-miR-27b have been

described to repress the translation of cellular cofactor cyclin T1 in

resting and activated CD4+ T-cells. Cyclin T1 binds the viral

trans-activator of transcription (tat) and activates the transcription

of the integrated provirus [46]. Cellular levels of integrated viral

DNA have been described to be much lower in elite controllers

compared to other patients on and off anti-retroviral drugs [47].

VP and ART patients might express these miRNAs in lower levels

in order to avoid cyclin t1 suppression and allow replication of

integrated provirus. A second miRNA, newly identified in this

work, to be potentially related to the control of viral infectivity is

hsa-miR-221. In this case, previous data reports a functionality in

the control of Intracellular Adhesion Molecule-1 (ICAM-1)

expression levels either through the IFN-alpha pathway or by

direct targeting [48,49]. Cellular levels of ICAM-1 influence HIV-

1 infectivity and viral dissemination [49-52]. Considering the

mentioned functional analyses, up-expression of these two

molecules in EC could suggest an improved viral control and

antigen presentation through miR-29b and a reduced viral

infectivity through miR-221, although this should be more

accurately investigated.

On the other hand, 19 miRNAs were significantly down-

expressed in EC. Out of these miRNAs, hsa-miR-146a and hsa-

miR-155 became of our interest due their important role in a wide

spectrum of immune compartments. Both miRNAs were up-

expressed in VP and this pattern has already been correlated with

high viral load [31,32]. The co-activation of hsa-miR-146 and hsa-

miR-155 results in a transcriptional activation of NF-kB target

genes that encode various mediators of inflammation, such as

cytokines, acute phase proteins and inducible enzymes against a

variety of microbial components [53]. Subsequent findings showed

that both hsa-miR-146 and -155 targeted mRNAs in the signalling

cascade of toll-like receptor 4 (TLR4) and bolstered the link with

NFkB-regulated innate immunity, leading to a model in which

these two miRNAs facilitate a negative-feedback loop that may

protect from an excessive TLR4 response [54]. Other groups have

recently found that hsa-miR-155 was strongly expressed in

effector/memory Tregs [55]. Levels of effector/memory Tregs

are significantly increased in different HIV progression profiles

(HIV-infected individuals with progressive infection versus long

term non-progressors). Thus, we stress the importance of analysing

the expression of these molecules in different T-cell subsets to

better understand its role in HIV pathogenesis.

Moreover, hsa-miR-155 has been shown to be involved in the

differentiation from naive to effector CD8+ T cells being required

for effective CD8+ T cell responses to virus infections through

modulation of responsiveness to type I interferon [56-58]. Down-

expression of these two molecules in EC would suggest less

inflammatory status, a minor activation of the immune system and

a better antiviral immune response. In fact, previously data

suggested the contribution of miR-155 to the pathogenesis of HIV-

1 infection in HIV naı̈ve individuals [29].

In order to give consistency to the tendencies of the miRNA

profiles observed, a validation cohort was analysed through

individual RT-qPCR assay for four differentially expressed

miRNAs of interest: hsa-221, -29b, -146a, -155. Re-assessment

of these miRNAs in a new set of patients reflected the same

tendencies observed in the profiling analysis between EC and VP,

although significant differences were only observed for hsa-miR-

221 (p,0.0001) and hsa-miR-29b (p,0.05). The ART group from

the validation cohort did not imitate the expression levels of hsa-

miR-29b and hsa-miR-146a shown in the profiling analysis.

Intriguingly, ART patients from the two cohorts (screening and

validation) differed in the time of exposure to ART [median

(IQR)]: 15.1 (1) years in the screening cohort and 6 (10.25) years in

the validation cohort and in the time since HIV diagnosis [median

(IQR)]: 16 (3) years in the screening cohort and 9 (9.5) years in the

validation cohort. This observation leads us to a new hypothesis

that questions whether these variables might influence miRNA

levels.

The findings described herein should be considered with

caution due to the limitations of our study. First of all, although

the screening results have been validated by enlarging the number

of individuals per group, we are conscious of the degree of

variation that could occur by the limited sample size used.

Moreover, our experimental design does not allow us to attribute

the different pattern of miRNA found to any particular specific cell

subset. Lastly, no functional data focused on the differential

miRNAs is described in the current manuscript. In order to shed

more light to all these questions, new experiments should be

performed in the future.

In summary, our study reveals a differentially expressed miRNA

profile in Elite Controllers that is similar to non-infected

individuals and differs from Viremic Progressors who are closer

to treated individuals. Some of these differential miRNAs have

been reported to be involved in the control of viral replication,

viral infectivity, immune activation, and modulation of both innate

and acquired immune responses. Nevertheless, more studies are

Figure 2. Fold change (log2) of the 23 differentially expressed miRNAs in EC and VP. A) normalized to all assessed miRNAs and relative to
ART, B) normalized to all assessed miRNAs and relative to HIV-. Bars represent standard error means (SEM); *, p,0.05; **, p,0.01; ***, p,0.001; VP,
viremic progressors; EC, elite controllers; ART, antiretroviral therapy.
doi:10.1371/journal.pone.0106360.g002
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needed in order to dissect the relevant roles of miRNAs in various

states of HIV infection and its use as a potential prognostic marker

in disease progression or as a future therapeutic approach.
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